/usr/include/lemon/cycle_canceling.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CYCLE_CANCELING_H
#define LEMON_CYCLE_CANCELING_H
/// \ingroup min_cost_flow_algs
/// \file
/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/maps.h>
#include <lemon/path.h>
#include <lemon/math.h>
#include <lemon/static_graph.h>
#include <lemon/adaptors.h>
#include <lemon/circulation.h>
#include <lemon/bellman_ford.h>
#include <lemon/howard_mmc.h>
#include <lemon/hartmann_orlin_mmc.h>
namespace lemon {
/// \addtogroup min_cost_flow_algs
/// @{
/// \brief Implementation of cycle-canceling algorithms for
/// finding a \ref min_cost_flow "minimum cost flow".
///
/// \ref CycleCanceling implements three different cycle-canceling
/// algorithms for finding a \ref min_cost_flow "minimum cost flow"
/// \cite amo93networkflows, \cite klein67primal,
/// \cite goldberg89cyclecanceling.
/// The most efficent one is the \ref CANCEL_AND_TIGHTEN
/// "Cancel-and-Tighten" algorithm, thus it is the default method.
/// It runs in strongly polynomial time \f$O(n^2 m^2 \log n)\f$,
/// but in practice, it is typically orders of magnitude slower than
/// the scaling algorithms and \ref NetworkSimplex.
/// (For more information, see \ref min_cost_flow_algs "the module page".)
///
/// Most of the parameters of the problem (except for the digraph)
/// can be given using separate functions, and the algorithm can be
/// executed using the \ref run() function. If some parameters are not
/// specified, then default values will be used.
///
/// \tparam GR The digraph type the algorithm runs on.
/// \tparam V The number type used for flow amounts, capacity bounds
/// and supply values in the algorithm. By default, it is \c int.
/// \tparam C The number type used for costs and potentials in the
/// algorithm. By default, it is the same as \c V.
///
/// \warning Both \c V and \c C must be signed number types.
/// \warning All input data (capacities, supply values, and costs) must
/// be integer.
/// \warning This algorithm does not support negative costs for
/// arcs having infinite upper bound.
///
/// \note For more information about the three available methods,
/// see \ref Method.
#ifdef DOXYGEN
template <typename GR, typename V, typename C>
#else
template <typename GR, typename V = int, typename C = V>
#endif
class CycleCanceling
{
public:
/// The type of the digraph
typedef GR Digraph;
/// The type of the flow amounts, capacity bounds and supply values
typedef V Value;
/// The type of the arc costs
typedef C Cost;
public:
/// \brief Problem type constants for the \c run() function.
///
/// Enum type containing the problem type constants that can be
/// returned by the \ref run() function of the algorithm.
enum ProblemType {
/// The problem has no feasible solution (flow).
INFEASIBLE,
/// The problem has optimal solution (i.e. it is feasible and
/// bounded), and the algorithm has found optimal flow and node
/// potentials (primal and dual solutions).
OPTIMAL,
/// The digraph contains an arc of negative cost and infinite
/// upper bound. It means that the objective function is unbounded
/// on that arc, however, note that it could actually be bounded
/// over the feasible flows, but this algroithm cannot handle
/// these cases.
UNBOUNDED
};
/// \brief Constants for selecting the used method.
///
/// Enum type containing constants for selecting the used method
/// for the \ref run() function.
///
/// \ref CycleCanceling provides three different cycle-canceling
/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel-and-Tighten"
/// is used, which is by far the most efficient and the most robust.
/// However, the other methods can be selected using the \ref run()
/// function with the proper parameter.
enum Method {
/// A simple cycle-canceling method, which uses the
/// \ref BellmanFord "Bellman-Ford" algorithm for detecting negative
/// cycles in the residual network.
/// The number of Bellman-Ford iterations is bounded by a successively
/// increased limit.
SIMPLE_CYCLE_CANCELING,
/// The "Minimum Mean Cycle-Canceling" algorithm, which is a
/// well-known strongly polynomial method
/// \cite goldberg89cyclecanceling. It improves along a
/// \ref min_mean_cycle "minimum mean cycle" in each iteration.
/// Its running time complexity is \f$O(n^2 m^3 \log n)\f$.
MINIMUM_MEAN_CYCLE_CANCELING,
/// The "Cancel-and-Tighten" algorithm, which can be viewed as an
/// improved version of the previous method
/// \cite goldberg89cyclecanceling.
/// It is faster both in theory and in practice, its running time
/// complexity is \f$O(n^2 m^2 \log n)\f$.
CANCEL_AND_TIGHTEN
};
private:
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typedef std::vector<int> IntVector;
typedef std::vector<double> DoubleVector;
typedef std::vector<Value> ValueVector;
typedef std::vector<Cost> CostVector;
typedef std::vector<char> BoolVector;
// Note: vector<char> is used instead of vector<bool> for efficiency reasons
private:
template <typename KT, typename VT>
class StaticVectorMap {
public:
typedef KT Key;
typedef VT Value;
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
const Value& operator[](const Key& key) const {
return _v[StaticDigraph::id(key)];
}
Value& operator[](const Key& key) {
return _v[StaticDigraph::id(key)];
}
void set(const Key& key, const Value& val) {
_v[StaticDigraph::id(key)] = val;
}
private:
std::vector<Value>& _v;
};
typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
private:
// Data related to the underlying digraph
const GR &_graph;
int _node_num;
int _arc_num;
int _res_node_num;
int _res_arc_num;
int _root;
// Parameters of the problem
bool _has_lower;
Value _sum_supply;
// Data structures for storing the digraph
IntNodeMap _node_id;
IntArcMap _arc_idf;
IntArcMap _arc_idb;
IntVector _first_out;
BoolVector _forward;
IntVector _source;
IntVector _target;
IntVector _reverse;
// Node and arc data
ValueVector _lower;
ValueVector _upper;
CostVector _cost;
ValueVector _supply;
ValueVector _res_cap;
CostVector _pi;
// Data for a StaticDigraph structure
typedef std::pair<int, int> IntPair;
StaticDigraph _sgr;
std::vector<IntPair> _arc_vec;
std::vector<Cost> _cost_vec;
IntVector _id_vec;
CostArcMap _cost_map;
CostNodeMap _pi_map;
public:
/// \brief Constant for infinite upper bounds (capacities).
///
/// Constant for infinite upper bounds (capacities).
/// It is \c std::numeric_limits<Value>::infinity() if available,
/// \c std::numeric_limits<Value>::max() otherwise.
const Value INF;
public:
/// \brief Constructor.
///
/// The constructor of the class.
///
/// \param graph The digraph the algorithm runs on.
CycleCanceling(const GR& graph) :
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
_cost_map(_cost_vec), _pi_map(_pi),
INF(std::numeric_limits<Value>::has_infinity ?
std::numeric_limits<Value>::infinity() :
std::numeric_limits<Value>::max())
{
// Check the number types
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
"The flow type of CycleCanceling must be signed");
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
"The cost type of CycleCanceling must be signed");
// Reset data structures
reset();
}
/// \name Parameters
/// The parameters of the algorithm can be specified using these
/// functions.
/// @{
/// \brief Set the lower bounds on the arcs.
///
/// This function sets the lower bounds on the arcs.
/// If it is not used before calling \ref run(), the lower bounds
/// will be set to zero on all arcs.
///
/// \param map An arc map storing the lower bounds.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template <typename LowerMap>
CycleCanceling& lowerMap(const LowerMap& map) {
_has_lower = true;
for (ArcIt a(_graph); a != INVALID; ++a) {
_lower[_arc_idf[a]] = map[a];
}
return *this;
}
/// \brief Set the upper bounds (capacities) on the arcs.
///
/// This function sets the upper bounds (capacities) on the arcs.
/// If it is not used before calling \ref run(), the upper bounds
/// will be set to \ref INF on all arcs (i.e. the flow value will be
/// unbounded from above).
///
/// \param map An arc map storing the upper bounds.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename UpperMap>
CycleCanceling& upperMap(const UpperMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_upper[_arc_idf[a]] = map[a];
}
return *this;
}
/// \brief Set the costs of the arcs.
///
/// This function sets the costs of the arcs.
/// If it is not used before calling \ref run(), the costs
/// will be set to \c 1 on all arcs.
///
/// \param map An arc map storing the costs.
/// Its \c Value type must be convertible to the \c Cost type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename CostMap>
CycleCanceling& costMap(const CostMap& map) {
for (ArcIt a(_graph); a != INVALID; ++a) {
_cost[_arc_idf[a]] = map[a];
_cost[_arc_idb[a]] = -map[a];
}
return *this;
}
/// \brief Set the supply values of the nodes.
///
/// This function sets the supply values of the nodes.
/// If neither this function nor \ref stSupply() is used before
/// calling \ref run(), the supply of each node will be set to zero.
///
/// \param map A node map storing the supply values.
/// Its \c Value type must be convertible to the \c Value type
/// of the algorithm.
///
/// \return <tt>(*this)</tt>
template<typename SupplyMap>
CycleCanceling& supplyMap(const SupplyMap& map) {
for (NodeIt n(_graph); n != INVALID; ++n) {
_supply[_node_id[n]] = map[n];
}
return *this;
}
/// \brief Set single source and target nodes and a supply value.
///
/// This function sets a single source node and a single target node
/// and the required flow value.
/// If neither this function nor \ref supplyMap() is used before
/// calling \ref run(), the supply of each node will be set to zero.
///
/// Using this function has the same effect as using \ref supplyMap()
/// with a map in which \c k is assigned to \c s, \c -k is
/// assigned to \c t and all other nodes have zero supply value.
///
/// \param s The source node.
/// \param t The target node.
/// \param k The required amount of flow from node \c s to node \c t
/// (i.e. the supply of \c s and the demand of \c t).
///
/// \return <tt>(*this)</tt>
CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
for (int i = 0; i != _res_node_num; ++i) {
_supply[i] = 0;
}
_supply[_node_id[s]] = k;
_supply[_node_id[t]] = -k;
return *this;
}
/// @}
/// \name Execution control
/// The algorithm can be executed using \ref run().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
/// The paramters can be specified using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
/// For example,
/// \code
/// CycleCanceling<ListDigraph> cc(graph);
/// cc.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
/// \endcode
///
/// This function can be called more than once. All the given parameters
/// are kept for the next call, unless \ref resetParams() or \ref reset()
/// is used, thus only the modified parameters have to be set again.
/// If the underlying digraph was also modified after the construction
/// of the class (or the last \ref reset() call), then the \ref reset()
/// function must be called.
///
/// \param method The cycle-canceling method that will be used.
/// For more information, see \ref Method.
///
/// \return \c INFEASIBLE if no feasible flow exists,
/// \n \c OPTIMAL if the problem has optimal solution
/// (i.e. it is feasible and bounded), and the algorithm has found
/// optimal flow and node potentials (primal and dual solutions),
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost
/// and infinite upper bound. It means that the objective function
/// is unbounded on that arc, however, note that it could actually be
/// bounded over the feasible flows, but this algroithm cannot handle
/// these cases.
///
/// \see ProblemType, Method
/// \see resetParams(), reset()
ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
ProblemType pt = init();
if (pt != OPTIMAL) return pt;
start(method);
return OPTIMAL;
}
/// \brief Reset all the parameters that have been given before.
///
/// This function resets all the paramaters that have been given
/// before using functions \ref lowerMap(), \ref upperMap(),
/// \ref costMap(), \ref supplyMap(), \ref stSupply().
///
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
///
/// For example,
/// \code
/// CycleCanceling<ListDigraph> cs(graph);
///
/// // First run
/// cc.lowerMap(lower).upperMap(upper).costMap(cost)
/// .supplyMap(sup).run();
///
/// // Run again with modified cost map (resetParams() is not called,
/// // so only the cost map have to be set again)
/// cost[e] += 100;
/// cc.costMap(cost).run();
///
/// // Run again from scratch using resetParams()
/// // (the lower bounds will be set to zero on all arcs)
/// cc.resetParams();
/// cc.upperMap(capacity).costMap(cost)
/// .supplyMap(sup).run();
/// \endcode
///
/// \return <tt>(*this)</tt>
///
/// \see reset(), run()
CycleCanceling& resetParams() {
for (int i = 0; i != _res_node_num; ++i) {
_supply[i] = 0;
}
int limit = _first_out[_root];
for (int j = 0; j != limit; ++j) {
_lower[j] = 0;
_upper[j] = INF;
_cost[j] = _forward[j] ? 1 : -1;
}
for (int j = limit; j != _res_arc_num; ++j) {
_lower[j] = 0;
_upper[j] = INF;
_cost[j] = 0;
_cost[_reverse[j]] = 0;
}
_has_lower = false;
return *this;
}
/// \brief Reset the internal data structures and all the parameters
/// that have been given before.
///
/// This function resets the internal data structures and all the
/// paramaters that have been given before using functions \ref lowerMap(),
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
///
/// It is useful for multiple \ref run() calls. Basically, all the given
/// parameters are kept for the next \ref run() call, unless
/// \ref resetParams() or \ref reset() is used.
/// If the underlying digraph was also modified after the construction
/// of the class or the last \ref reset() call, then the \ref reset()
/// function must be used, otherwise \ref resetParams() is sufficient.
///
/// See \ref resetParams() for examples.
///
/// \return <tt>(*this)</tt>
///
/// \see resetParams(), run()
CycleCanceling& reset() {
// Resize vectors
_node_num = countNodes(_graph);
_arc_num = countArcs(_graph);
_res_node_num = _node_num + 1;
_res_arc_num = 2 * (_arc_num + _node_num);
_root = _node_num;
_first_out.resize(_res_node_num + 1);
_forward.resize(_res_arc_num);
_source.resize(_res_arc_num);
_target.resize(_res_arc_num);
_reverse.resize(_res_arc_num);
_lower.resize(_res_arc_num);
_upper.resize(_res_arc_num);
_cost.resize(_res_arc_num);
_supply.resize(_res_node_num);
_res_cap.resize(_res_arc_num);
_pi.resize(_res_node_num);
_arc_vec.reserve(_res_arc_num);
_cost_vec.reserve(_res_arc_num);
_id_vec.reserve(_res_arc_num);
// Copy the graph
int i = 0, j = 0, k = 2 * _arc_num + _node_num;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_node_id[n] = i;
}
i = 0;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_first_out[i] = j;
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_arc_idf[a] = j;
_forward[j] = true;
_source[j] = i;
_target[j] = _node_id[_graph.runningNode(a)];
}
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
_arc_idb[a] = j;
_forward[j] = false;
_source[j] = i;
_target[j] = _node_id[_graph.runningNode(a)];
}
_forward[j] = false;
_source[j] = i;
_target[j] = _root;
_reverse[j] = k;
_forward[k] = true;
_source[k] = _root;
_target[k] = i;
_reverse[k] = j;
++j; ++k;
}
_first_out[i] = j;
_first_out[_res_node_num] = k;
for (ArcIt a(_graph); a != INVALID; ++a) {
int fi = _arc_idf[a];
int bi = _arc_idb[a];
_reverse[fi] = bi;
_reverse[bi] = fi;
}
// Reset parameters
resetParams();
return *this;
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// The \ref run() function must be called before using them.
/// @{
/// \brief Return the total cost of the found flow.
///
/// This function returns the total cost of the found flow.
/// Its complexity is O(m).
///
/// \note The return type of the function can be specified as a
/// template parameter. For example,
/// \code
/// cc.totalCost<double>();
/// \endcode
/// It is useful if the total cost cannot be stored in the \c Cost
/// type of the algorithm, which is the default return type of the
/// function.
///
/// \pre \ref run() must be called before using this function.
template <typename Number>
Number totalCost() const {
Number c = 0;
for (ArcIt a(_graph); a != INVALID; ++a) {
int i = _arc_idb[a];
c += static_cast<Number>(_res_cap[i]) *
(-static_cast<Number>(_cost[i]));
}
return c;
}
#ifndef DOXYGEN
Cost totalCost() const {
return totalCost<Cost>();
}
#endif
/// \brief Return the flow on the given arc.
///
/// This function returns the flow on the given arc.
///
/// \pre \ref run() must be called before using this function.
Value flow(const Arc& a) const {
return _res_cap[_arc_idb[a]];
}
/// \brief Copy the flow values (the primal solution) into the
/// given map.
///
/// This function copies the flow value on each arc into the given
/// map. The \c Value type of the algorithm must be convertible to
/// the \c Value type of the map.
///
/// \pre \ref run() must be called before using this function.
template <typename FlowMap>
void flowMap(FlowMap &map) const {
for (ArcIt a(_graph); a != INVALID; ++a) {
map.set(a, _res_cap[_arc_idb[a]]);
}
}
/// \brief Return the potential (dual value) of the given node.
///
/// This function returns the potential (dual value) of the
/// given node.
///
/// \pre \ref run() must be called before using this function.
Cost potential(const Node& n) const {
return static_cast<Cost>(_pi[_node_id[n]]);
}
/// \brief Copy the potential values (the dual solution) into the
/// given map.
///
/// This function copies the potential (dual value) of each node
/// into the given map.
/// The \c Cost type of the algorithm must be convertible to the
/// \c Value type of the map.
///
/// \pre \ref run() must be called before using this function.
template <typename PotentialMap>
void potentialMap(PotentialMap &map) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
}
}
/// @}
private:
// Initialize the algorithm
ProblemType init() {
if (_res_node_num <= 1) return INFEASIBLE;
// Check the sum of supply values
_sum_supply = 0;
for (int i = 0; i != _root; ++i) {
_sum_supply += _supply[i];
}
if (_sum_supply > 0) return INFEASIBLE;
// Check lower and upper bounds
LEMON_DEBUG(checkBoundMaps(),
"Upper bounds must be greater or equal to the lower bounds");
// Initialize vectors
for (int i = 0; i != _res_node_num; ++i) {
_pi[i] = 0;
}
ValueVector excess(_supply);
// Remove infinite upper bounds and check negative arcs
const Value MAX = std::numeric_limits<Value>::max();
int last_out;
if (_has_lower) {
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
if (_forward[j]) {
Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
if (c >= MAX) return UNBOUNDED;
excess[i] -= c;
excess[_target[j]] += c;
}
}
}
} else {
for (int i = 0; i != _root; ++i) {
last_out = _first_out[i+1];
for (int j = _first_out[i]; j != last_out; ++j) {
if (_forward[j] && _cost[j] < 0) {
Value c = _upper[j];
if (c >= MAX) return UNBOUNDED;
excess[i] -= c;
excess[_target[j]] += c;
}
}
}
}
Value ex, max_cap = 0;
for (int i = 0; i != _res_node_num; ++i) {
ex = excess[i];
if (ex < 0) max_cap -= ex;
}
for (int j = 0; j != _res_arc_num; ++j) {
if (_upper[j] >= MAX) _upper[j] = max_cap;
}
// Initialize maps for Circulation and remove non-zero lower bounds
ConstMap<Arc, Value> low(0);
typedef typename Digraph::template ArcMap<Value> ValueArcMap;
typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
ValueArcMap cap(_graph), flow(_graph);
ValueNodeMap sup(_graph);
for (NodeIt n(_graph); n != INVALID; ++n) {
sup[n] = _supply[_node_id[n]];
}
if (_has_lower) {
for (ArcIt a(_graph); a != INVALID; ++a) {
int j = _arc_idf[a];
Value c = _lower[j];
cap[a] = _upper[j] - c;
sup[_graph.source(a)] -= c;
sup[_graph.target(a)] += c;
}
} else {
for (ArcIt a(_graph); a != INVALID; ++a) {
cap[a] = _upper[_arc_idf[a]];
}
}
// Find a feasible flow using Circulation
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
circ(_graph, low, cap, sup);
if (!circ.flowMap(flow).run()) return INFEASIBLE;
// Set residual capacities and handle GEQ supply type
if (_sum_supply < 0) {
for (ArcIt a(_graph); a != INVALID; ++a) {
Value fa = flow[a];
_res_cap[_arc_idf[a]] = cap[a] - fa;
_res_cap[_arc_idb[a]] = fa;
sup[_graph.source(a)] -= fa;
sup[_graph.target(a)] += fa;
}
for (NodeIt n(_graph); n != INVALID; ++n) {
excess[_node_id[n]] = sup[n];
}
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
int u = _target[a];
int ra = _reverse[a];
_res_cap[a] = -_sum_supply + 1;
_res_cap[ra] = -excess[u];
_cost[a] = 0;
_cost[ra] = 0;
}
} else {
for (ArcIt a(_graph); a != INVALID; ++a) {
Value fa = flow[a];
_res_cap[_arc_idf[a]] = cap[a] - fa;
_res_cap[_arc_idb[a]] = fa;
}
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
int ra = _reverse[a];
_res_cap[a] = 1;
_res_cap[ra] = 0;
_cost[a] = 0;
_cost[ra] = 0;
}
}
return OPTIMAL;
}
// Check if the upper bound is greater than or equal to the lower bound
// on each forward arc.
bool checkBoundMaps() {
for (int j = 0; j != _res_arc_num; ++j) {
if (_forward[j] && _upper[j] < _lower[j]) return false;
}
return true;
}
// Build a StaticDigraph structure containing the current
// residual network
void buildResidualNetwork() {
_arc_vec.clear();
_cost_vec.clear();
_id_vec.clear();
for (int j = 0; j != _res_arc_num; ++j) {
if (_res_cap[j] > 0) {
_arc_vec.push_back(IntPair(_source[j], _target[j]));
_cost_vec.push_back(_cost[j]);
_id_vec.push_back(j);
}
}
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
}
// Execute the algorithm and transform the results
void start(Method method) {
// Execute the algorithm
switch (method) {
case SIMPLE_CYCLE_CANCELING:
startSimpleCycleCanceling();
break;
case MINIMUM_MEAN_CYCLE_CANCELING:
startMinMeanCycleCanceling();
break;
case CANCEL_AND_TIGHTEN:
startCancelAndTighten();
break;
}
// Compute node potentials
if (method != SIMPLE_CYCLE_CANCELING) {
buildResidualNetwork();
typename BellmanFord<StaticDigraph, CostArcMap>
::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
bf.distMap(_pi_map);
bf.init(0);
bf.start();
}
// Handle non-zero lower bounds
if (_has_lower) {
int limit = _first_out[_root];
for (int j = 0; j != limit; ++j) {
if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
}
}
}
// Execute the "Simple Cycle Canceling" method
void startSimpleCycleCanceling() {
// Constants for computing the iteration limits
const int BF_FIRST_LIMIT = 2;
const double BF_LIMIT_FACTOR = 1.5;
typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
typedef typename BellmanFord<ResDigraph, CostArcMap>
::template SetDistMap<CostNodeMap>
::template SetPredMap<PredMap>::Create BF;
// Build the residual network
_arc_vec.clear();
_cost_vec.clear();
for (int j = 0; j != _res_arc_num; ++j) {
_arc_vec.push_back(IntPair(_source[j], _target[j]));
_cost_vec.push_back(_cost[j]);
}
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
FilterMap filter_map(_res_cap);
ResDigraph rgr(_sgr, filter_map);
std::vector<int> cycle;
std::vector<StaticDigraph::Arc> pred(_res_arc_num);
PredMap pred_map(pred);
BF bf(rgr, _cost_map);
bf.distMap(_pi_map).predMap(pred_map);
int length_bound = BF_FIRST_LIMIT;
bool optimal = false;
while (!optimal) {
bf.init(0);
int iter_num = 0;
bool cycle_found = false;
while (!cycle_found) {
// Perform some iterations of the Bellman-Ford algorithm
int curr_iter_num = iter_num + length_bound <= _node_num ?
length_bound : _node_num - iter_num;
iter_num += curr_iter_num;
int real_iter_num = curr_iter_num;
for (int i = 0; i < curr_iter_num; ++i) {
if (bf.processNextWeakRound()) {
real_iter_num = i;
break;
}
}
if (real_iter_num < curr_iter_num) {
// Optimal flow is found
optimal = true;
break;
} else {
// Search for node disjoint negative cycles
std::vector<int> state(_res_node_num, 0);
int id = 0;
for (int u = 0; u != _res_node_num; ++u) {
if (state[u] != 0) continue;
++id;
int v = u;
for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
-1 : rgr.id(rgr.source(pred[v]))) {
state[v] = id;
}
if (v != -1 && state[v] == id) {
// A negative cycle is found
cycle_found = true;
cycle.clear();
StaticDigraph::Arc a = pred[v];
Value d, delta = _res_cap[rgr.id(a)];
cycle.push_back(rgr.id(a));
while (rgr.id(rgr.source(a)) != v) {
a = pred_map[rgr.source(a)];
d = _res_cap[rgr.id(a)];
if (d < delta) delta = d;
cycle.push_back(rgr.id(a));
}
// Augment along the cycle
for (int i = 0; i < int(cycle.size()); ++i) {
int j = cycle[i];
_res_cap[j] -= delta;
_res_cap[_reverse[j]] += delta;
}
}
}
}
// Increase iteration limit if no cycle is found
if (!cycle_found) {
length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
}
}
}
}
// Execute the "Minimum Mean Cycle Canceling" method
void startMinMeanCycleCanceling() {
typedef Path<StaticDigraph> SPath;
typedef typename SPath::ArcIt SPathArcIt;
typedef typename HowardMmc<StaticDigraph, CostArcMap>
::template SetPath<SPath>::Create HwMmc;
typedef typename HartmannOrlinMmc<StaticDigraph, CostArcMap>
::template SetPath<SPath>::Create HoMmc;
const double HW_ITER_LIMIT_FACTOR = 1.0;
const int HW_ITER_LIMIT_MIN_VALUE = 5;
const int hw_iter_limit =
std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
HW_ITER_LIMIT_MIN_VALUE);
SPath cycle;
HwMmc hw_mmc(_sgr, _cost_map);
hw_mmc.cycle(cycle);
buildResidualNetwork();
while (true) {
typename HwMmc::TerminationCause hw_tc =
hw_mmc.findCycleMean(hw_iter_limit);
if (hw_tc == HwMmc::ITERATION_LIMIT) {
// Howard's algorithm reached the iteration limit, start a
// strongly polynomial algorithm instead
HoMmc ho_mmc(_sgr, _cost_map);
ho_mmc.cycle(cycle);
// Find a minimum mean cycle (Hartmann-Orlin algorithm)
if (!(ho_mmc.findCycleMean() && ho_mmc.cycleCost() < 0)) break;
ho_mmc.findCycle();
} else {
// Find a minimum mean cycle (Howard algorithm)
if (!(hw_tc == HwMmc::OPTIMAL && hw_mmc.cycleCost() < 0)) break;
hw_mmc.findCycle();
}
// Compute delta value
Value delta = INF;
for (SPathArcIt a(cycle); a != INVALID; ++a) {
Value d = _res_cap[_id_vec[_sgr.id(a)]];
if (d < delta) delta = d;
}
// Augment along the cycle
for (SPathArcIt a(cycle); a != INVALID; ++a) {
int j = _id_vec[_sgr.id(a)];
_res_cap[j] -= delta;
_res_cap[_reverse[j]] += delta;
}
// Rebuild the residual network
buildResidualNetwork();
}
}
// Execute the "Cancel-and-Tighten" method
void startCancelAndTighten() {
// Constants for the min mean cycle computations
const double LIMIT_FACTOR = 1.0;
const int MIN_LIMIT = 5;
const double HW_ITER_LIMIT_FACTOR = 1.0;
const int HW_ITER_LIMIT_MIN_VALUE = 5;
const int hw_iter_limit =
std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
HW_ITER_LIMIT_MIN_VALUE);
// Contruct auxiliary data vectors
DoubleVector pi(_res_node_num, 0.0);
IntVector level(_res_node_num);
BoolVector reached(_res_node_num);
BoolVector processed(_res_node_num);
IntVector pred_node(_res_node_num);
IntVector pred_arc(_res_node_num);
std::vector<int> stack(_res_node_num);
std::vector<int> proc_vector(_res_node_num);
// Initialize epsilon
double epsilon = 0;
for (int a = 0; a != _res_arc_num; ++a) {
if (_res_cap[a] > 0 && -_cost[a] > epsilon)
epsilon = -_cost[a];
}
// Start phases
Tolerance<double> tol;
tol.epsilon(1e-6);
int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
if (limit < MIN_LIMIT) limit = MIN_LIMIT;
int iter = limit;
while (epsilon * _res_node_num >= 1) {
// Find and cancel cycles in the admissible network using DFS
for (int u = 0; u != _res_node_num; ++u) {
reached[u] = false;
processed[u] = false;
}
int stack_head = -1;
int proc_head = -1;
for (int start = 0; start != _res_node_num; ++start) {
if (reached[start]) continue;
// New start node
reached[start] = true;
pred_arc[start] = -1;
pred_node[start] = -1;
// Find the first admissible outgoing arc
double p = pi[start];
int a = _first_out[start];
int last_out = _first_out[start+1];
for (; a != last_out && (_res_cap[a] == 0 ||
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
if (a == last_out) {
processed[start] = true;
proc_vector[++proc_head] = start;
continue;
}
stack[++stack_head] = a;
while (stack_head >= 0) {
int sa = stack[stack_head];
int u = _source[sa];
int v = _target[sa];
if (!reached[v]) {
// A new node is reached
reached[v] = true;
pred_node[v] = u;
pred_arc[v] = sa;
p = pi[v];
a = _first_out[v];
last_out = _first_out[v+1];
for (; a != last_out && (_res_cap[a] == 0 ||
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
stack[++stack_head] = a == last_out ? -1 : a;
} else {
if (!processed[v]) {
// A cycle is found
int n, w = u;
Value d, delta = _res_cap[sa];
for (n = u; n != v; n = pred_node[n]) {
d = _res_cap[pred_arc[n]];
if (d <= delta) {
delta = d;
w = pred_node[n];
}
}
// Augment along the cycle
_res_cap[sa] -= delta;
_res_cap[_reverse[sa]] += delta;
for (n = u; n != v; n = pred_node[n]) {
int pa = pred_arc[n];
_res_cap[pa] -= delta;
_res_cap[_reverse[pa]] += delta;
}
for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
--stack_head;
reached[n] = false;
}
u = w;
}
v = u;
// Find the next admissible outgoing arc
p = pi[v];
a = stack[stack_head] + 1;
last_out = _first_out[v+1];
for (; a != last_out && (_res_cap[a] == 0 ||
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
stack[stack_head] = a == last_out ? -1 : a;
}
while (stack_head >= 0 && stack[stack_head] == -1) {
processed[v] = true;
proc_vector[++proc_head] = v;
if (--stack_head >= 0) {
// Find the next admissible outgoing arc
v = _source[stack[stack_head]];
p = pi[v];
a = stack[stack_head] + 1;
last_out = _first_out[v+1];
for (; a != last_out && (_res_cap[a] == 0 ||
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
stack[stack_head] = a == last_out ? -1 : a;
}
}
}
}
// Tighten potentials and epsilon
if (--iter > 0) {
for (int u = 0; u != _res_node_num; ++u) {
level[u] = 0;
}
for (int i = proc_head; i > 0; --i) {
int u = proc_vector[i];
double p = pi[u];
int l = level[u] + 1;
int last_out = _first_out[u+1];
for (int a = _first_out[u]; a != last_out; ++a) {
int v = _target[a];
if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
l > level[v]) level[v] = l;
}
}
// Modify potentials
double q = std::numeric_limits<double>::max();
for (int u = 0; u != _res_node_num; ++u) {
int lu = level[u];
double p, pu = pi[u];
int last_out = _first_out[u+1];
for (int a = _first_out[u]; a != last_out; ++a) {
if (_res_cap[a] == 0) continue;
int v = _target[a];
int ld = lu - level[v];
if (ld > 0) {
p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
if (p < q) q = p;
}
}
}
for (int u = 0; u != _res_node_num; ++u) {
pi[u] -= q * level[u];
}
// Modify epsilon
epsilon = 0;
for (int u = 0; u != _res_node_num; ++u) {
double curr, pu = pi[u];
int last_out = _first_out[u+1];
for (int a = _first_out[u]; a != last_out; ++a) {
if (_res_cap[a] == 0) continue;
curr = _cost[a] + pu - pi[_target[a]];
if (-curr > epsilon) epsilon = -curr;
}
}
} else {
typedef HowardMmc<StaticDigraph, CostArcMap> HwMmc;
typedef HartmannOrlinMmc<StaticDigraph, CostArcMap> HoMmc;
typedef typename BellmanFord<StaticDigraph, CostArcMap>
::template SetDistMap<CostNodeMap>::Create BF;
// Set epsilon to the minimum cycle mean
Cost cycle_cost = 0;
int cycle_size = 1;
buildResidualNetwork();
HwMmc hw_mmc(_sgr, _cost_map);
if (hw_mmc.findCycleMean(hw_iter_limit) == HwMmc::ITERATION_LIMIT) {
// Howard's algorithm reached the iteration limit, start a
// strongly polynomial algorithm instead
HoMmc ho_mmc(_sgr, _cost_map);
ho_mmc.findCycleMean();
epsilon = -ho_mmc.cycleMean();
cycle_cost = ho_mmc.cycleCost();
cycle_size = ho_mmc.cycleSize();
} else {
// Set epsilon
epsilon = -hw_mmc.cycleMean();
cycle_cost = hw_mmc.cycleCost();
cycle_size = hw_mmc.cycleSize();
}
// Compute feasible potentials for the current epsilon
for (int i = 0; i != int(_cost_vec.size()); ++i) {
_cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
}
BF bf(_sgr, _cost_map);
bf.distMap(_pi_map);
bf.init(0);
bf.start();
for (int u = 0; u != _res_node_num; ++u) {
pi[u] = static_cast<double>(_pi[u]) / cycle_size;
}
iter = limit;
}
}
}
}; //class CycleCanceling
///@}
} //namespace lemon
#endif //LEMON_CYCLE_CANCELING_H
|