This file is indexed.

/usr/include/lemon/cycle_canceling.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_CYCLE_CANCELING_H
#define LEMON_CYCLE_CANCELING_H

/// \ingroup min_cost_flow_algs
/// \file
/// \brief Cycle-canceling algorithms for finding a minimum cost flow.

#include <vector>
#include <limits>

#include <lemon/core.h>
#include <lemon/maps.h>
#include <lemon/path.h>
#include <lemon/math.h>
#include <lemon/static_graph.h>
#include <lemon/adaptors.h>
#include <lemon/circulation.h>
#include <lemon/bellman_ford.h>
#include <lemon/howard_mmc.h>
#include <lemon/hartmann_orlin_mmc.h>

namespace lemon {

  /// \addtogroup min_cost_flow_algs
  /// @{

  /// \brief Implementation of cycle-canceling algorithms for
  /// finding a \ref min_cost_flow "minimum cost flow".
  ///
  /// \ref CycleCanceling implements three different cycle-canceling
  /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
  /// \cite amo93networkflows, \cite klein67primal,
  /// \cite goldberg89cyclecanceling.
  /// The most efficent one is the \ref CANCEL_AND_TIGHTEN
  /// "Cancel-and-Tighten" algorithm, thus it is the default method.
  /// It runs in strongly polynomial time \f$O(n^2 m^2 \log n)\f$,
  /// but in practice, it is typically orders of magnitude slower than
  /// the scaling algorithms and \ref NetworkSimplex.
  /// (For more information, see \ref min_cost_flow_algs "the module page".)
  ///
  /// Most of the parameters of the problem (except for the digraph)
  /// can be given using separate functions, and the algorithm can be
  /// executed using the \ref run() function. If some parameters are not
  /// specified, then default values will be used.
  ///
  /// \tparam GR The digraph type the algorithm runs on.
  /// \tparam V The number type used for flow amounts, capacity bounds
  /// and supply values in the algorithm. By default, it is \c int.
  /// \tparam C The number type used for costs and potentials in the
  /// algorithm. By default, it is the same as \c V.
  ///
  /// \warning Both \c V and \c C must be signed number types.
  /// \warning All input data (capacities, supply values, and costs) must
  /// be integer.
  /// \warning This algorithm does not support negative costs for
  /// arcs having infinite upper bound.
  ///
  /// \note For more information about the three available methods,
  /// see \ref Method.
#ifdef DOXYGEN
  template <typename GR, typename V, typename C>
#else
  template <typename GR, typename V = int, typename C = V>
#endif
  class CycleCanceling
  {
  public:

    /// The type of the digraph
    typedef GR Digraph;
    /// The type of the flow amounts, capacity bounds and supply values
    typedef V Value;
    /// The type of the arc costs
    typedef C Cost;

  public:

    /// \brief Problem type constants for the \c run() function.
    ///
    /// Enum type containing the problem type constants that can be
    /// returned by the \ref run() function of the algorithm.
    enum ProblemType {
      /// The problem has no feasible solution (flow).
      INFEASIBLE,
      /// The problem has optimal solution (i.e. it is feasible and
      /// bounded), and the algorithm has found optimal flow and node
      /// potentials (primal and dual solutions).
      OPTIMAL,
      /// The digraph contains an arc of negative cost and infinite
      /// upper bound. It means that the objective function is unbounded
      /// on that arc, however, note that it could actually be bounded
      /// over the feasible flows, but this algroithm cannot handle
      /// these cases.
      UNBOUNDED
    };

    /// \brief Constants for selecting the used method.
    ///
    /// Enum type containing constants for selecting the used method
    /// for the \ref run() function.
    ///
    /// \ref CycleCanceling provides three different cycle-canceling
    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel-and-Tighten"
    /// is used, which is by far the most efficient and the most robust.
    /// However, the other methods can be selected using the \ref run()
    /// function with the proper parameter.
    enum Method {
      /// A simple cycle-canceling method, which uses the
      /// \ref BellmanFord "Bellman-Ford" algorithm for detecting negative
      /// cycles in the residual network.
      /// The number of Bellman-Ford iterations is bounded by a successively
      /// increased limit.
      SIMPLE_CYCLE_CANCELING,
      /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
      /// well-known strongly polynomial method
      /// \cite goldberg89cyclecanceling. It improves along a
      /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
      /// Its running time complexity is \f$O(n^2 m^3 \log n)\f$.
      MINIMUM_MEAN_CYCLE_CANCELING,
      /// The "Cancel-and-Tighten" algorithm, which can be viewed as an
      /// improved version of the previous method
      /// \cite goldberg89cyclecanceling.
      /// It is faster both in theory and in practice, its running time
      /// complexity is \f$O(n^2 m^2 \log n)\f$.
      CANCEL_AND_TIGHTEN
    };

  private:

    TEMPLATE_DIGRAPH_TYPEDEFS(GR);

    typedef std::vector<int> IntVector;
    typedef std::vector<double> DoubleVector;
    typedef std::vector<Value> ValueVector;
    typedef std::vector<Cost> CostVector;
    typedef std::vector<char> BoolVector;
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons

  private:

    template <typename KT, typename VT>
    class StaticVectorMap {
    public:
      typedef KT Key;
      typedef VT Value;

      StaticVectorMap(std::vector<Value>& v) : _v(v) {}

      const Value& operator[](const Key& key) const {
        return _v[StaticDigraph::id(key)];
      }

      Value& operator[](const Key& key) {
        return _v[StaticDigraph::id(key)];
      }

      void set(const Key& key, const Value& val) {
        _v[StaticDigraph::id(key)] = val;
      }

    private:
      std::vector<Value>& _v;
    };

    typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
    typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;

  private:


    // Data related to the underlying digraph
    const GR &_graph;
    int _node_num;
    int _arc_num;
    int _res_node_num;
    int _res_arc_num;
    int _root;

    // Parameters of the problem
    bool _has_lower;
    Value _sum_supply;

    // Data structures for storing the digraph
    IntNodeMap _node_id;
    IntArcMap _arc_idf;
    IntArcMap _arc_idb;
    IntVector _first_out;
    BoolVector _forward;
    IntVector _source;
    IntVector _target;
    IntVector _reverse;

    // Node and arc data
    ValueVector _lower;
    ValueVector _upper;
    CostVector _cost;
    ValueVector _supply;

    ValueVector _res_cap;
    CostVector _pi;

    // Data for a StaticDigraph structure
    typedef std::pair<int, int> IntPair;
    StaticDigraph _sgr;
    std::vector<IntPair> _arc_vec;
    std::vector<Cost> _cost_vec;
    IntVector _id_vec;
    CostArcMap _cost_map;
    CostNodeMap _pi_map;

  public:

    /// \brief Constant for infinite upper bounds (capacities).
    ///
    /// Constant for infinite upper bounds (capacities).
    /// It is \c std::numeric_limits<Value>::infinity() if available,
    /// \c std::numeric_limits<Value>::max() otherwise.
    const Value INF;

  public:

    /// \brief Constructor.
    ///
    /// The constructor of the class.
    ///
    /// \param graph The digraph the algorithm runs on.
    CycleCanceling(const GR& graph) :
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
      _cost_map(_cost_vec), _pi_map(_pi),
      INF(std::numeric_limits<Value>::has_infinity ?
          std::numeric_limits<Value>::infinity() :
          std::numeric_limits<Value>::max())
    {
      // Check the number types
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
        "The flow type of CycleCanceling must be signed");
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
        "The cost type of CycleCanceling must be signed");

      // Reset data structures
      reset();
    }

    /// \name Parameters
    /// The parameters of the algorithm can be specified using these
    /// functions.

    /// @{

    /// \brief Set the lower bounds on the arcs.
    ///
    /// This function sets the lower bounds on the arcs.
    /// If it is not used before calling \ref run(), the lower bounds
    /// will be set to zero on all arcs.
    ///
    /// \param map An arc map storing the lower bounds.
    /// Its \c Value type must be convertible to the \c Value type
    /// of the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    template <typename LowerMap>
    CycleCanceling& lowerMap(const LowerMap& map) {
      _has_lower = true;
      for (ArcIt a(_graph); a != INVALID; ++a) {
        _lower[_arc_idf[a]] = map[a];
      }
      return *this;
    }

    /// \brief Set the upper bounds (capacities) on the arcs.
    ///
    /// This function sets the upper bounds (capacities) on the arcs.
    /// If it is not used before calling \ref run(), the upper bounds
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
    /// unbounded from above).
    ///
    /// \param map An arc map storing the upper bounds.
    /// Its \c Value type must be convertible to the \c Value type
    /// of the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    template<typename UpperMap>
    CycleCanceling& upperMap(const UpperMap& map) {
      for (ArcIt a(_graph); a != INVALID; ++a) {
        _upper[_arc_idf[a]] = map[a];
      }
      return *this;
    }

    /// \brief Set the costs of the arcs.
    ///
    /// This function sets the costs of the arcs.
    /// If it is not used before calling \ref run(), the costs
    /// will be set to \c 1 on all arcs.
    ///
    /// \param map An arc map storing the costs.
    /// Its \c Value type must be convertible to the \c Cost type
    /// of the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    template<typename CostMap>
    CycleCanceling& costMap(const CostMap& map) {
      for (ArcIt a(_graph); a != INVALID; ++a) {
        _cost[_arc_idf[a]] =  map[a];
        _cost[_arc_idb[a]] = -map[a];
      }
      return *this;
    }

    /// \brief Set the supply values of the nodes.
    ///
    /// This function sets the supply values of the nodes.
    /// If neither this function nor \ref stSupply() is used before
    /// calling \ref run(), the supply of each node will be set to zero.
    ///
    /// \param map A node map storing the supply values.
    /// Its \c Value type must be convertible to the \c Value type
    /// of the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    template<typename SupplyMap>
    CycleCanceling& supplyMap(const SupplyMap& map) {
      for (NodeIt n(_graph); n != INVALID; ++n) {
        _supply[_node_id[n]] = map[n];
      }
      return *this;
    }

    /// \brief Set single source and target nodes and a supply value.
    ///
    /// This function sets a single source node and a single target node
    /// and the required flow value.
    /// If neither this function nor \ref supplyMap() is used before
    /// calling \ref run(), the supply of each node will be set to zero.
    ///
    /// Using this function has the same effect as using \ref supplyMap()
    /// with a map in which \c k is assigned to \c s, \c -k is
    /// assigned to \c t and all other nodes have zero supply value.
    ///
    /// \param s The source node.
    /// \param t The target node.
    /// \param k The required amount of flow from node \c s to node \c t
    /// (i.e. the supply of \c s and the demand of \c t).
    ///
    /// \return <tt>(*this)</tt>
    CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
      for (int i = 0; i != _res_node_num; ++i) {
        _supply[i] = 0;
      }
      _supply[_node_id[s]] =  k;
      _supply[_node_id[t]] = -k;
      return *this;
    }

    /// @}

    /// \name Execution control
    /// The algorithm can be executed using \ref run().

    /// @{

    /// \brief Run the algorithm.
    ///
    /// This function runs the algorithm.
    /// The paramters can be specified using functions \ref lowerMap(),
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
    /// For example,
    /// \code
    ///   CycleCanceling<ListDigraph> cc(graph);
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
    ///     .supplyMap(sup).run();
    /// \endcode
    ///
    /// This function can be called more than once. All the given parameters
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
    /// is used, thus only the modified parameters have to be set again.
    /// If the underlying digraph was also modified after the construction
    /// of the class (or the last \ref reset() call), then the \ref reset()
    /// function must be called.
    ///
    /// \param method The cycle-canceling method that will be used.
    /// For more information, see \ref Method.
    ///
    /// \return \c INFEASIBLE if no feasible flow exists,
    /// \n \c OPTIMAL if the problem has optimal solution
    /// (i.e. it is feasible and bounded), and the algorithm has found
    /// optimal flow and node potentials (primal and dual solutions),
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
    /// and infinite upper bound. It means that the objective function
    /// is unbounded on that arc, however, note that it could actually be
    /// bounded over the feasible flows, but this algroithm cannot handle
    /// these cases.
    ///
    /// \see ProblemType, Method
    /// \see resetParams(), reset()
    ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
      ProblemType pt = init();
      if (pt != OPTIMAL) return pt;
      start(method);
      return OPTIMAL;
    }

    /// \brief Reset all the parameters that have been given before.
    ///
    /// This function resets all the paramaters that have been given
    /// before using functions \ref lowerMap(), \ref upperMap(),
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
    ///
    /// It is useful for multiple \ref run() calls. Basically, all the given
    /// parameters are kept for the next \ref run() call, unless
    /// \ref resetParams() or \ref reset() is used.
    /// If the underlying digraph was also modified after the construction
    /// of the class or the last \ref reset() call, then the \ref reset()
    /// function must be used, otherwise \ref resetParams() is sufficient.
    ///
    /// For example,
    /// \code
    ///   CycleCanceling<ListDigraph> cs(graph);
    ///
    ///   // First run
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
    ///     .supplyMap(sup).run();
    ///
    ///   // Run again with modified cost map (resetParams() is not called,
    ///   // so only the cost map have to be set again)
    ///   cost[e] += 100;
    ///   cc.costMap(cost).run();
    ///
    ///   // Run again from scratch using resetParams()
    ///   // (the lower bounds will be set to zero on all arcs)
    ///   cc.resetParams();
    ///   cc.upperMap(capacity).costMap(cost)
    ///     .supplyMap(sup).run();
    /// \endcode
    ///
    /// \return <tt>(*this)</tt>
    ///
    /// \see reset(), run()
    CycleCanceling& resetParams() {
      for (int i = 0; i != _res_node_num; ++i) {
        _supply[i] = 0;
      }
      int limit = _first_out[_root];
      for (int j = 0; j != limit; ++j) {
        _lower[j] = 0;
        _upper[j] = INF;
        _cost[j] = _forward[j] ? 1 : -1;
      }
      for (int j = limit; j != _res_arc_num; ++j) {
        _lower[j] = 0;
        _upper[j] = INF;
        _cost[j] = 0;
        _cost[_reverse[j]] = 0;
      }
      _has_lower = false;
      return *this;
    }

    /// \brief Reset the internal data structures and all the parameters
    /// that have been given before.
    ///
    /// This function resets the internal data structures and all the
    /// paramaters that have been given before using functions \ref lowerMap(),
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
    ///
    /// It is useful for multiple \ref run() calls. Basically, all the given
    /// parameters are kept for the next \ref run() call, unless
    /// \ref resetParams() or \ref reset() is used.
    /// If the underlying digraph was also modified after the construction
    /// of the class or the last \ref reset() call, then the \ref reset()
    /// function must be used, otherwise \ref resetParams() is sufficient.
    ///
    /// See \ref resetParams() for examples.
    ///
    /// \return <tt>(*this)</tt>
    ///
    /// \see resetParams(), run()
    CycleCanceling& reset() {
      // Resize vectors
      _node_num = countNodes(_graph);
      _arc_num = countArcs(_graph);
      _res_node_num = _node_num + 1;
      _res_arc_num = 2 * (_arc_num + _node_num);
      _root = _node_num;

      _first_out.resize(_res_node_num + 1);
      _forward.resize(_res_arc_num);
      _source.resize(_res_arc_num);
      _target.resize(_res_arc_num);
      _reverse.resize(_res_arc_num);

      _lower.resize(_res_arc_num);
      _upper.resize(_res_arc_num);
      _cost.resize(_res_arc_num);
      _supply.resize(_res_node_num);

      _res_cap.resize(_res_arc_num);
      _pi.resize(_res_node_num);

      _arc_vec.reserve(_res_arc_num);
      _cost_vec.reserve(_res_arc_num);
      _id_vec.reserve(_res_arc_num);

      // Copy the graph
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
        _node_id[n] = i;
      }
      i = 0;
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
        _first_out[i] = j;
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
          _arc_idf[a] = j;
          _forward[j] = true;
          _source[j] = i;
          _target[j] = _node_id[_graph.runningNode(a)];
        }
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
          _arc_idb[a] = j;
          _forward[j] = false;
          _source[j] = i;
          _target[j] = _node_id[_graph.runningNode(a)];
        }
        _forward[j] = false;
        _source[j] = i;
        _target[j] = _root;
        _reverse[j] = k;
        _forward[k] = true;
        _source[k] = _root;
        _target[k] = i;
        _reverse[k] = j;
        ++j; ++k;
      }
      _first_out[i] = j;
      _first_out[_res_node_num] = k;
      for (ArcIt a(_graph); a != INVALID; ++a) {
        int fi = _arc_idf[a];
        int bi = _arc_idb[a];
        _reverse[fi] = bi;
        _reverse[bi] = fi;
      }

      // Reset parameters
      resetParams();
      return *this;
    }

    /// @}

    /// \name Query Functions
    /// The results of the algorithm can be obtained using these
    /// functions.\n
    /// The \ref run() function must be called before using them.

    /// @{

    /// \brief Return the total cost of the found flow.
    ///
    /// This function returns the total cost of the found flow.
    /// Its complexity is O(m).
    ///
    /// \note The return type of the function can be specified as a
    /// template parameter. For example,
    /// \code
    ///   cc.totalCost<double>();
    /// \endcode
    /// It is useful if the total cost cannot be stored in the \c Cost
    /// type of the algorithm, which is the default return type of the
    /// function.
    ///
    /// \pre \ref run() must be called before using this function.
    template <typename Number>
    Number totalCost() const {
      Number c = 0;
      for (ArcIt a(_graph); a != INVALID; ++a) {
        int i = _arc_idb[a];
        c += static_cast<Number>(_res_cap[i]) *
             (-static_cast<Number>(_cost[i]));
      }
      return c;
    }

#ifndef DOXYGEN
    Cost totalCost() const {
      return totalCost<Cost>();
    }
#endif

    /// \brief Return the flow on the given arc.
    ///
    /// This function returns the flow on the given arc.
    ///
    /// \pre \ref run() must be called before using this function.
    Value flow(const Arc& a) const {
      return _res_cap[_arc_idb[a]];
    }

    /// \brief Copy the flow values (the primal solution) into the
    /// given map.
    ///
    /// This function copies the flow value on each arc into the given
    /// map. The \c Value type of the algorithm must be convertible to
    /// the \c Value type of the map.
    ///
    /// \pre \ref run() must be called before using this function.
    template <typename FlowMap>
    void flowMap(FlowMap &map) const {
      for (ArcIt a(_graph); a != INVALID; ++a) {
        map.set(a, _res_cap[_arc_idb[a]]);
      }
    }

    /// \brief Return the potential (dual value) of the given node.
    ///
    /// This function returns the potential (dual value) of the
    /// given node.
    ///
    /// \pre \ref run() must be called before using this function.
    Cost potential(const Node& n) const {
      return static_cast<Cost>(_pi[_node_id[n]]);
    }

    /// \brief Copy the potential values (the dual solution) into the
    /// given map.
    ///
    /// This function copies the potential (dual value) of each node
    /// into the given map.
    /// The \c Cost type of the algorithm must be convertible to the
    /// \c Value type of the map.
    ///
    /// \pre \ref run() must be called before using this function.
    template <typename PotentialMap>
    void potentialMap(PotentialMap &map) const {
      for (NodeIt n(_graph); n != INVALID; ++n) {
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
      }
    }

    /// @}

  private:

    // Initialize the algorithm
    ProblemType init() {
      if (_res_node_num <= 1) return INFEASIBLE;

      // Check the sum of supply values
      _sum_supply = 0;
      for (int i = 0; i != _root; ++i) {
        _sum_supply += _supply[i];
      }
      if (_sum_supply > 0) return INFEASIBLE;

      // Check lower and upper bounds
      LEMON_DEBUG(checkBoundMaps(),
          "Upper bounds must be greater or equal to the lower bounds");


      // Initialize vectors
      for (int i = 0; i != _res_node_num; ++i) {
        _pi[i] = 0;
      }
      ValueVector excess(_supply);

      // Remove infinite upper bounds and check negative arcs
      const Value MAX = std::numeric_limits<Value>::max();
      int last_out;
      if (_has_lower) {
        for (int i = 0; i != _root; ++i) {
          last_out = _first_out[i+1];
          for (int j = _first_out[i]; j != last_out; ++j) {
            if (_forward[j]) {
              Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
              if (c >= MAX) return UNBOUNDED;
              excess[i] -= c;
              excess[_target[j]] += c;
            }
          }
        }
      } else {
        for (int i = 0; i != _root; ++i) {
          last_out = _first_out[i+1];
          for (int j = _first_out[i]; j != last_out; ++j) {
            if (_forward[j] && _cost[j] < 0) {
              Value c = _upper[j];
              if (c >= MAX) return UNBOUNDED;
              excess[i] -= c;
              excess[_target[j]] += c;
            }
          }
        }
      }
      Value ex, max_cap = 0;
      for (int i = 0; i != _res_node_num; ++i) {
        ex = excess[i];
        if (ex < 0) max_cap -= ex;
      }
      for (int j = 0; j != _res_arc_num; ++j) {
        if (_upper[j] >= MAX) _upper[j] = max_cap;
      }

      // Initialize maps for Circulation and remove non-zero lower bounds
      ConstMap<Arc, Value> low(0);
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
      ValueArcMap cap(_graph), flow(_graph);
      ValueNodeMap sup(_graph);
      for (NodeIt n(_graph); n != INVALID; ++n) {
        sup[n] = _supply[_node_id[n]];
      }
      if (_has_lower) {
        for (ArcIt a(_graph); a != INVALID; ++a) {
          int j = _arc_idf[a];
          Value c = _lower[j];
          cap[a] = _upper[j] - c;
          sup[_graph.source(a)] -= c;
          sup[_graph.target(a)] += c;
        }
      } else {
        for (ArcIt a(_graph); a != INVALID; ++a) {
          cap[a] = _upper[_arc_idf[a]];
        }
      }

      // Find a feasible flow using Circulation
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
        circ(_graph, low, cap, sup);
      if (!circ.flowMap(flow).run()) return INFEASIBLE;

      // Set residual capacities and handle GEQ supply type
      if (_sum_supply < 0) {
        for (ArcIt a(_graph); a != INVALID; ++a) {
          Value fa = flow[a];
          _res_cap[_arc_idf[a]] = cap[a] - fa;
          _res_cap[_arc_idb[a]] = fa;
          sup[_graph.source(a)] -= fa;
          sup[_graph.target(a)] += fa;
        }
        for (NodeIt n(_graph); n != INVALID; ++n) {
          excess[_node_id[n]] = sup[n];
        }
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
          int u = _target[a];
          int ra = _reverse[a];
          _res_cap[a] = -_sum_supply + 1;
          _res_cap[ra] = -excess[u];
          _cost[a] = 0;
          _cost[ra] = 0;
        }
      } else {
        for (ArcIt a(_graph); a != INVALID; ++a) {
          Value fa = flow[a];
          _res_cap[_arc_idf[a]] = cap[a] - fa;
          _res_cap[_arc_idb[a]] = fa;
        }
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
          int ra = _reverse[a];
          _res_cap[a] = 1;
          _res_cap[ra] = 0;
          _cost[a] = 0;
          _cost[ra] = 0;
        }
      }

      return OPTIMAL;
    }

    // Check if the upper bound is greater than or equal to the lower bound
    // on each forward arc.
    bool checkBoundMaps() {
      for (int j = 0; j != _res_arc_num; ++j) {
        if (_forward[j] && _upper[j] < _lower[j]) return false;
      }
      return true;
    }

    // Build a StaticDigraph structure containing the current
    // residual network
    void buildResidualNetwork() {
      _arc_vec.clear();
      _cost_vec.clear();
      _id_vec.clear();
      for (int j = 0; j != _res_arc_num; ++j) {
        if (_res_cap[j] > 0) {
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
          _cost_vec.push_back(_cost[j]);
          _id_vec.push_back(j);
        }
      }
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
    }

    // Execute the algorithm and transform the results
    void start(Method method) {
      // Execute the algorithm
      switch (method) {
        case SIMPLE_CYCLE_CANCELING:
          startSimpleCycleCanceling();
          break;
        case MINIMUM_MEAN_CYCLE_CANCELING:
          startMinMeanCycleCanceling();
          break;
        case CANCEL_AND_TIGHTEN:
          startCancelAndTighten();
          break;
      }

      // Compute node potentials
      if (method != SIMPLE_CYCLE_CANCELING) {
        buildResidualNetwork();
        typename BellmanFord<StaticDigraph, CostArcMap>
          ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
        bf.distMap(_pi_map);
        bf.init(0);
        bf.start();
      }

      // Handle non-zero lower bounds
      if (_has_lower) {
        int limit = _first_out[_root];
        for (int j = 0; j != limit; ++j) {
          if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
        }
      }
    }

    // Execute the "Simple Cycle Canceling" method
    void startSimpleCycleCanceling() {
      // Constants for computing the iteration limits
      const int BF_FIRST_LIMIT  = 2;
      const double BF_LIMIT_FACTOR = 1.5;

      typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
      typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
      typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
      typedef typename BellmanFord<ResDigraph, CostArcMap>
        ::template SetDistMap<CostNodeMap>
        ::template SetPredMap<PredMap>::Create BF;

      // Build the residual network
      _arc_vec.clear();
      _cost_vec.clear();
      for (int j = 0; j != _res_arc_num; ++j) {
        _arc_vec.push_back(IntPair(_source[j], _target[j]));
        _cost_vec.push_back(_cost[j]);
      }
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());

      FilterMap filter_map(_res_cap);
      ResDigraph rgr(_sgr, filter_map);
      std::vector<int> cycle;
      std::vector<StaticDigraph::Arc> pred(_res_arc_num);
      PredMap pred_map(pred);
      BF bf(rgr, _cost_map);
      bf.distMap(_pi_map).predMap(pred_map);

      int length_bound = BF_FIRST_LIMIT;
      bool optimal = false;
      while (!optimal) {
        bf.init(0);
        int iter_num = 0;
        bool cycle_found = false;
        while (!cycle_found) {
          // Perform some iterations of the Bellman-Ford algorithm
          int curr_iter_num = iter_num + length_bound <= _node_num ?
            length_bound : _node_num - iter_num;
          iter_num += curr_iter_num;
          int real_iter_num = curr_iter_num;
          for (int i = 0; i < curr_iter_num; ++i) {
            if (bf.processNextWeakRound()) {
              real_iter_num = i;
              break;
            }
          }
          if (real_iter_num < curr_iter_num) {
            // Optimal flow is found
            optimal = true;
            break;
          } else {
            // Search for node disjoint negative cycles
            std::vector<int> state(_res_node_num, 0);
            int id = 0;
            for (int u = 0; u != _res_node_num; ++u) {
              if (state[u] != 0) continue;
              ++id;
              int v = u;
              for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
                   -1 : rgr.id(rgr.source(pred[v]))) {
                state[v] = id;
              }
              if (v != -1 && state[v] == id) {
                // A negative cycle is found
                cycle_found = true;
                cycle.clear();
                StaticDigraph::Arc a = pred[v];
                Value d, delta = _res_cap[rgr.id(a)];
                cycle.push_back(rgr.id(a));
                while (rgr.id(rgr.source(a)) != v) {
                  a = pred_map[rgr.source(a)];
                  d = _res_cap[rgr.id(a)];
                  if (d < delta) delta = d;
                  cycle.push_back(rgr.id(a));
                }

                // Augment along the cycle
                for (int i = 0; i < int(cycle.size()); ++i) {
                  int j = cycle[i];
                  _res_cap[j] -= delta;
                  _res_cap[_reverse[j]] += delta;
                }
              }
            }
          }

          // Increase iteration limit if no cycle is found
          if (!cycle_found) {
            length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
          }
        }
      }
    }

    // Execute the "Minimum Mean Cycle Canceling" method
    void startMinMeanCycleCanceling() {
      typedef Path<StaticDigraph> SPath;
      typedef typename SPath::ArcIt SPathArcIt;
      typedef typename HowardMmc<StaticDigraph, CostArcMap>
        ::template SetPath<SPath>::Create HwMmc;
      typedef typename HartmannOrlinMmc<StaticDigraph, CostArcMap>
        ::template SetPath<SPath>::Create HoMmc;

      const double HW_ITER_LIMIT_FACTOR = 1.0;
      const int HW_ITER_LIMIT_MIN_VALUE = 5;

      const int hw_iter_limit =
          std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
                   HW_ITER_LIMIT_MIN_VALUE);

      SPath cycle;
      HwMmc hw_mmc(_sgr, _cost_map);
      hw_mmc.cycle(cycle);
      buildResidualNetwork();
      while (true) {

        typename HwMmc::TerminationCause hw_tc =
            hw_mmc.findCycleMean(hw_iter_limit);
        if (hw_tc == HwMmc::ITERATION_LIMIT) {
          // Howard's algorithm reached the iteration limit, start a
          // strongly polynomial algorithm instead
          HoMmc ho_mmc(_sgr, _cost_map);
          ho_mmc.cycle(cycle);
          // Find a minimum mean cycle (Hartmann-Orlin algorithm)
          if (!(ho_mmc.findCycleMean() && ho_mmc.cycleCost() < 0)) break;
          ho_mmc.findCycle();
        } else {
          // Find a minimum mean cycle (Howard algorithm)
          if (!(hw_tc == HwMmc::OPTIMAL && hw_mmc.cycleCost() < 0)) break;
          hw_mmc.findCycle();
        }

        // Compute delta value
        Value delta = INF;
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
          Value d = _res_cap[_id_vec[_sgr.id(a)]];
          if (d < delta) delta = d;
        }

        // Augment along the cycle
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
          int j = _id_vec[_sgr.id(a)];
          _res_cap[j] -= delta;
          _res_cap[_reverse[j]] += delta;
        }

        // Rebuild the residual network
        buildResidualNetwork();
      }
    }

    // Execute the "Cancel-and-Tighten" method
    void startCancelAndTighten() {
      // Constants for the min mean cycle computations
      const double LIMIT_FACTOR = 1.0;
      const int MIN_LIMIT = 5;
      const double HW_ITER_LIMIT_FACTOR = 1.0;
      const int HW_ITER_LIMIT_MIN_VALUE = 5;

      const int hw_iter_limit =
          std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
                   HW_ITER_LIMIT_MIN_VALUE);

      // Contruct auxiliary data vectors
      DoubleVector pi(_res_node_num, 0.0);
      IntVector level(_res_node_num);
      BoolVector reached(_res_node_num);
      BoolVector processed(_res_node_num);
      IntVector pred_node(_res_node_num);
      IntVector pred_arc(_res_node_num);
      std::vector<int> stack(_res_node_num);
      std::vector<int> proc_vector(_res_node_num);

      // Initialize epsilon
      double epsilon = 0;
      for (int a = 0; a != _res_arc_num; ++a) {
        if (_res_cap[a] > 0 && -_cost[a] > epsilon)
          epsilon = -_cost[a];
      }

      // Start phases
      Tolerance<double> tol;
      tol.epsilon(1e-6);
      int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
      if (limit < MIN_LIMIT) limit = MIN_LIMIT;
      int iter = limit;
      while (epsilon * _res_node_num >= 1) {
        // Find and cancel cycles in the admissible network using DFS
        for (int u = 0; u != _res_node_num; ++u) {
          reached[u] = false;
          processed[u] = false;
        }
        int stack_head = -1;
        int proc_head = -1;
        for (int start = 0; start != _res_node_num; ++start) {
          if (reached[start]) continue;

          // New start node
          reached[start] = true;
          pred_arc[start] = -1;
          pred_node[start] = -1;

          // Find the first admissible outgoing arc
          double p = pi[start];
          int a = _first_out[start];
          int last_out = _first_out[start+1];
          for (; a != last_out && (_res_cap[a] == 0 ||
               !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
          if (a == last_out) {
            processed[start] = true;
            proc_vector[++proc_head] = start;
            continue;
          }
          stack[++stack_head] = a;

          while (stack_head >= 0) {
            int sa = stack[stack_head];
            int u = _source[sa];
            int v = _target[sa];

            if (!reached[v]) {
              // A new node is reached
              reached[v] = true;
              pred_node[v] = u;
              pred_arc[v] = sa;
              p = pi[v];
              a = _first_out[v];
              last_out = _first_out[v+1];
              for (; a != last_out && (_res_cap[a] == 0 ||
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
              stack[++stack_head] = a == last_out ? -1 : a;
            } else {
              if (!processed[v]) {
                // A cycle is found
                int n, w = u;
                Value d, delta = _res_cap[sa];
                for (n = u; n != v; n = pred_node[n]) {
                  d = _res_cap[pred_arc[n]];
                  if (d <= delta) {
                    delta = d;
                    w = pred_node[n];
                  }
                }

                // Augment along the cycle
                _res_cap[sa] -= delta;
                _res_cap[_reverse[sa]] += delta;
                for (n = u; n != v; n = pred_node[n]) {
                  int pa = pred_arc[n];
                  _res_cap[pa] -= delta;
                  _res_cap[_reverse[pa]] += delta;
                }
                for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
                  --stack_head;
                  reached[n] = false;
                }
                u = w;
              }
              v = u;

              // Find the next admissible outgoing arc
              p = pi[v];
              a = stack[stack_head] + 1;
              last_out = _first_out[v+1];
              for (; a != last_out && (_res_cap[a] == 0 ||
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
              stack[stack_head] = a == last_out ? -1 : a;
            }

            while (stack_head >= 0 && stack[stack_head] == -1) {
              processed[v] = true;
              proc_vector[++proc_head] = v;
              if (--stack_head >= 0) {
                // Find the next admissible outgoing arc
                v = _source[stack[stack_head]];
                p = pi[v];
                a = stack[stack_head] + 1;
                last_out = _first_out[v+1];
                for (; a != last_out && (_res_cap[a] == 0 ||
                     !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
                stack[stack_head] = a == last_out ? -1 : a;
              }
            }
          }
        }

        // Tighten potentials and epsilon
        if (--iter > 0) {
          for (int u = 0; u != _res_node_num; ++u) {
            level[u] = 0;
          }
          for (int i = proc_head; i > 0; --i) {
            int u = proc_vector[i];
            double p = pi[u];
            int l = level[u] + 1;
            int last_out = _first_out[u+1];
            for (int a = _first_out[u]; a != last_out; ++a) {
              int v = _target[a];
              if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
                  l > level[v]) level[v] = l;
            }
          }

          // Modify potentials
          double q = std::numeric_limits<double>::max();
          for (int u = 0; u != _res_node_num; ++u) {
            int lu = level[u];
            double p, pu = pi[u];
            int last_out = _first_out[u+1];
            for (int a = _first_out[u]; a != last_out; ++a) {
              if (_res_cap[a] == 0) continue;
              int v = _target[a];
              int ld = lu - level[v];
              if (ld > 0) {
                p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
                if (p < q) q = p;
              }
            }
          }
          for (int u = 0; u != _res_node_num; ++u) {
            pi[u] -= q * level[u];
          }

          // Modify epsilon
          epsilon = 0;
          for (int u = 0; u != _res_node_num; ++u) {
            double curr, pu = pi[u];
            int last_out = _first_out[u+1];
            for (int a = _first_out[u]; a != last_out; ++a) {
              if (_res_cap[a] == 0) continue;
              curr = _cost[a] + pu - pi[_target[a]];
              if (-curr > epsilon) epsilon = -curr;
            }
          }
        } else {
          typedef HowardMmc<StaticDigraph, CostArcMap> HwMmc;
          typedef HartmannOrlinMmc<StaticDigraph, CostArcMap> HoMmc;
          typedef typename BellmanFord<StaticDigraph, CostArcMap>
            ::template SetDistMap<CostNodeMap>::Create BF;

          // Set epsilon to the minimum cycle mean
          Cost cycle_cost = 0;
          int cycle_size = 1;
          buildResidualNetwork();
          HwMmc hw_mmc(_sgr, _cost_map);
          if (hw_mmc.findCycleMean(hw_iter_limit) == HwMmc::ITERATION_LIMIT) {
            // Howard's algorithm reached the iteration limit, start a
            // strongly polynomial algorithm instead
            HoMmc ho_mmc(_sgr, _cost_map);
            ho_mmc.findCycleMean();
            epsilon = -ho_mmc.cycleMean();
            cycle_cost = ho_mmc.cycleCost();
            cycle_size = ho_mmc.cycleSize();
          } else {
            // Set epsilon
            epsilon = -hw_mmc.cycleMean();
            cycle_cost = hw_mmc.cycleCost();
            cycle_size = hw_mmc.cycleSize();
          }

          // Compute feasible potentials for the current epsilon
          for (int i = 0; i != int(_cost_vec.size()); ++i) {
            _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
          }
          BF bf(_sgr, _cost_map);
          bf.distMap(_pi_map);
          bf.init(0);
          bf.start();
          for (int u = 0; u != _res_node_num; ++u) {
            pi[u] = static_cast<double>(_pi[u]) / cycle_size;
          }

          iter = limit;
        }
      }
    }

  }; //class CycleCanceling

  ///@}

} //namespace lemon

#endif //LEMON_CYCLE_CANCELING_H