This file is indexed.

/usr/include/lemon/edmonds_karp.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_EDMONDS_KARP_H
#define LEMON_EDMONDS_KARP_H

/// \file
/// \ingroup max_flow
/// \brief Implementation of the Edmonds-Karp algorithm.

#include <lemon/tolerance.h>
#include <vector>

namespace lemon {

  /// \brief Default traits class of EdmondsKarp class.
  ///
  /// Default traits class of EdmondsKarp class.
  /// \param GR Digraph type.
  /// \param CAP Type of capacity map.
  template <typename GR, typename CAP>
  struct EdmondsKarpDefaultTraits {

    /// \brief The digraph type the algorithm runs on.
    typedef GR Digraph;

    /// \brief The type of the map that stores the arc capacities.
    ///
    /// The type of the map that stores the arc capacities.
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    typedef CAP CapacityMap;

    /// \brief The type of the flow values.
    typedef typename CapacityMap::Value Value;

    /// \brief The type of the map that stores the flow values.
    ///
    /// The type of the map that stores the flow values.
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
#ifdef DOXYGEN
    typedef GR::ArcMap<Value> FlowMap;
#else
    typedef typename Digraph::template ArcMap<Value> FlowMap;
#endif

    /// \brief Instantiates a FlowMap.
    ///
    /// This function instantiates a \ref FlowMap.
    /// \param digraph The digraph for which we would like to define
    /// the flow map.
    static FlowMap* createFlowMap(const Digraph& digraph) {
      return new FlowMap(digraph);
    }

    /// \brief The tolerance used by the algorithm
    ///
    /// The tolerance used by the algorithm to handle inexact computation.
    typedef lemon::Tolerance<Value> Tolerance;

  };

  /// \ingroup max_flow
  ///
  /// \brief Edmonds-Karp algorithms class.
  ///
  /// This class provides an implementation of the \e Edmonds-Karp \e
  /// algorithm producing a \ref max_flow "flow of maximum value" in a
  /// digraph \cite clrs01algorithms, \cite amo93networkflows,
  /// \cite edmondskarp72theoretical.
  /// The Edmonds-Karp algorithm is slower than the Preflow
  /// algorithm, but it has an advantage of the step-by-step execution
  /// control with feasible flow solutions. The \e source node, the \e
  /// target node, the \e capacity of the arcs and the \e starting \e
  /// flow value of the arcs should be passed to the algorithm
  /// through the constructor.
  ///
  /// The time complexity of the algorithm is \f$ O(nm^2) \f$ in
  /// worst case. Always try the Preflow algorithm instead of this if
  /// you just want to compute the optimal flow.
  ///
  /// \tparam GR The type of the digraph the algorithm runs on.
  /// \tparam CAP The type of the capacity map. The default map
  /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm. By default, it is \ref EdmondsKarpDefaultTraits
  /// "EdmondsKarpDefaultTraits<GR, CAP>".
  /// In most cases, this parameter should not be set directly,
  /// consider to use the named template parameters instead.

#ifdef DOXYGEN
  template <typename GR, typename CAP, typename TR>
#else
  template <typename GR,
            typename CAP = typename GR::template ArcMap<int>,
            typename TR = EdmondsKarpDefaultTraits<GR, CAP> >
#endif
  class EdmondsKarp {
  public:

    /// \brief The \ref lemon::EdmondsKarpDefaultTraits "traits class"
    /// of the algorithm.
    typedef TR Traits;
    /// The type of the digraph the algorithm runs on.
    typedef typename Traits::Digraph Digraph;
    /// The type of the capacity map.
    typedef typename Traits::CapacityMap CapacityMap;
    /// The type of the flow values.
    typedef typename Traits::Value Value;

    /// The type of the flow map.
    typedef typename Traits::FlowMap FlowMap;
    /// The type of the tolerance.
    typedef typename Traits::Tolerance Tolerance;

  private:

    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
    typedef typename Digraph::template NodeMap<Arc> PredMap;

    const Digraph& _graph;
    const CapacityMap* _capacity;

    Node _source, _target;

    FlowMap* _flow;
    bool _local_flow;

    PredMap* _pred;
    std::vector<Node> _queue;

    Tolerance _tolerance;
    Value _flow_value;

    void createStructures() {
      if (!_flow) {
        _flow = Traits::createFlowMap(_graph);
        _local_flow = true;
      }
      if (!_pred) {
        _pred = new PredMap(_graph);
      }
      _queue.resize(countNodes(_graph));
    }

    void destroyStructures() {
      if (_local_flow) {
        delete _flow;
      }
      if (_pred) {
        delete _pred;
      }
    }

  public:

    typedef EdmondsKarp Create;

    ///\name Named template parameters

    ///@{

    template <typename T>
    struct SetFlowMapTraits : public Traits {
      typedef T FlowMap;
      static FlowMap *createFlowMap(const Digraph&) {
        LEMON_ASSERT(false, "FlowMap is not initialized");
        return 0;
      }
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// FlowMap type
    ///
    /// \ref named-templ-param "Named parameter" for setting FlowMap
    /// type
    template <typename T>
    struct SetFlowMap
      : public EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > {
      typedef EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > Create;
    };

    /// @}

  protected:

    EdmondsKarp() {}

  public:

    /// \brief The constructor of the class.
    ///
    /// The constructor of the class.
    /// \param digraph The digraph the algorithm runs on.
    /// \param capacity The capacity of the arcs.
    /// \param source The source node.
    /// \param target The target node.
    EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity,
                Node source, Node target)
      : _graph(digraph), _capacity(&capacity), _source(source), _target(target),
        _flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value()
    {
      LEMON_ASSERT(_source != _target,
                   "Flow source and target are the same nodes.");
    }

    /// \brief Destructor.
    ///
    /// Destructor.
    ~EdmondsKarp() {
      destroyStructures();
    }

    /// \brief Sets the capacity map.
    ///
    /// Sets the capacity map.
    /// \return <tt>(*this)</tt>
    EdmondsKarp& capacityMap(const CapacityMap& map) {
      _capacity = &map;
      return *this;
    }

    /// \brief Sets the flow map.
    ///
    /// Sets the flow map.
    /// If you don't use this function before calling \ref run() or
    /// \ref init(), an instance will be allocated automatically.
    /// The destructor deallocates this automatically allocated map,
    /// of course.
    /// \return <tt>(*this)</tt>
    EdmondsKarp& flowMap(FlowMap& map) {
      if (_local_flow) {
        delete _flow;
        _local_flow = false;
      }
      _flow = &map;
      return *this;
    }

    /// \brief Sets the source node.
    ///
    /// Sets the source node.
    /// \return <tt>(*this)</tt>
    EdmondsKarp& source(const Node& node) {
      _source = node;
      return *this;
    }

    /// \brief Sets the target node.
    ///
    /// Sets the target node.
    /// \return <tt>(*this)</tt>
    EdmondsKarp& target(const Node& node) {
      _target = node;
      return *this;
    }

    /// \brief Sets the tolerance used by algorithm.
    ///
    /// Sets the tolerance used by algorithm.
    /// \return <tt>(*this)</tt>
    EdmondsKarp& tolerance(const Tolerance& tolerance) {
      _tolerance = tolerance;
      return *this;
    }

    /// \brief Returns a const reference to the tolerance.
    ///
    /// Returns a const reference to the tolerance object used by
    /// the algorithm.
    const Tolerance& tolerance() const {
      return _tolerance;
    }

    /// \name Execution control
    /// The simplest way to execute the algorithm is to use \ref run().\n
    /// If you need better control on the initial solution or the execution,
    /// you have to call one of the \ref init() functions first, then
    /// \ref start() or multiple times the \ref augment() function.

    ///@{

    /// \brief Initializes the algorithm.
    ///
    /// Initializes the internal data structures and sets the initial
    /// flow to zero on each arc.
    void init() {
      createStructures();
      for (ArcIt it(_graph); it != INVALID; ++it) {
        _flow->set(it, 0);
      }
      _flow_value = 0;
    }

    /// \brief Initializes the algorithm using the given flow map.
    ///
    /// Initializes the internal data structures and sets the initial
    /// flow to the given \c flowMap. The \c flowMap should
    /// contain a feasible flow, i.e. at each node excluding the source
    /// and the target, the incoming flow should be equal to the
    /// outgoing flow.
    template <typename FlowMap>
    void init(const FlowMap& flowMap) {
      createStructures();
      for (ArcIt e(_graph); e != INVALID; ++e) {
        _flow->set(e, flowMap[e]);
      }
      _flow_value = 0;
      for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
        _flow_value += (*_flow)[jt];
      }
      for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
        _flow_value -= (*_flow)[jt];
      }
    }

    /// \brief Initializes the algorithm using the given flow map.
    ///
    /// Initializes the internal data structures and sets the initial
    /// flow to the given \c flowMap. The \c flowMap should
    /// contain a feasible flow, i.e. at each node excluding the source
    /// and the target, the incoming flow should be equal to the
    /// outgoing flow.
    /// \return \c false when the given \c flowMap does not contain a
    /// feasible flow.
    template <typename FlowMap>
    bool checkedInit(const FlowMap& flowMap) {
      createStructures();
      for (ArcIt e(_graph); e != INVALID; ++e) {
        _flow->set(e, flowMap[e]);
      }
      for (NodeIt it(_graph); it != INVALID; ++it) {
        if (it == _source || it == _target) continue;
        Value outFlow = 0;
        for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) {
          outFlow += (*_flow)[jt];
        }
        Value inFlow = 0;
        for (InArcIt jt(_graph, it); jt != INVALID; ++jt) {
          inFlow += (*_flow)[jt];
        }
        if (_tolerance.different(outFlow, inFlow)) {
          return false;
        }
      }
      for (ArcIt it(_graph); it != INVALID; ++it) {
        if (_tolerance.less((*_flow)[it], 0)) return false;
        if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
      }
      _flow_value = 0;
      for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
        _flow_value += (*_flow)[jt];
      }
      for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
        _flow_value -= (*_flow)[jt];
      }
      return true;
    }

    /// \brief Augments the solution along a shortest path.
    ///
    /// Augments the solution along a shortest path. This function searches a
    /// shortest path between the source and the target
    /// in the residual digraph by the Bfs algoritm.
    /// Then it increases the flow on this path with the minimal residual
    /// capacity on the path. If there is no such path, it gives back
    /// false.
    /// \return \c false when the augmenting did not success, i.e. the
    /// current flow is a feasible and optimal solution.
    bool augment() {
      for (NodeIt n(_graph); n != INVALID; ++n) {
        _pred->set(n, INVALID);
      }

      int first = 0, last = 1;

      _queue[0] = _source;
      _pred->set(_source, OutArcIt(_graph, _source));

      while (first != last && (*_pred)[_target] == INVALID) {
        Node n = _queue[first++];

        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
          Value rem = (*_capacity)[e] - (*_flow)[e];
          Node t = _graph.target(e);
          if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
            _pred->set(t, e);
            _queue[last++] = t;
          }
        }
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
          Value rem = (*_flow)[e];
          Node t = _graph.source(e);
          if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
            _pred->set(t, e);
            _queue[last++] = t;
          }
        }
      }

      if ((*_pred)[_target] != INVALID) {
        Node n = _target;
        Arc e = (*_pred)[n];

        Value prem = (*_capacity)[e] - (*_flow)[e];
        n = _graph.source(e);
        while (n != _source) {
          e = (*_pred)[n];
          if (_graph.target(e) == n) {
            Value rem = (*_capacity)[e] - (*_flow)[e];
            if (rem < prem) prem = rem;
            n = _graph.source(e);
          } else {
            Value rem = (*_flow)[e];
            if (rem < prem) prem = rem;
            n = _graph.target(e);
          }
        }

        n = _target;
        e = (*_pred)[n];

        _flow->set(e, (*_flow)[e] + prem);
        n = _graph.source(e);
        while (n != _source) {
          e = (*_pred)[n];
          if (_graph.target(e) == n) {
            _flow->set(e, (*_flow)[e] + prem);
            n = _graph.source(e);
          } else {
            _flow->set(e, (*_flow)[e] - prem);
            n = _graph.target(e);
          }
        }

        _flow_value += prem;
        return true;
      } else {
        return false;
      }
    }

    /// \brief Executes the algorithm
    ///
    /// Executes the algorithm by performing augmenting phases until the
    /// optimal solution is reached.
    /// \pre One of the \ref init() functions must be called before
    /// using this function.
    void start() {
      while (augment()) {}
    }

    /// \brief Runs the algorithm.
    ///
    /// Runs the Edmonds-Karp algorithm.
    /// \note ek.run() is just a shortcut of the following code.
    ///\code
    /// ek.init();
    /// ek.start();
    ///\endcode
    void run() {
      init();
      start();
    }

    /// @}

    /// \name Query Functions
    /// The result of the Edmonds-Karp algorithm can be obtained using these
    /// functions.\n
    /// Either \ref run() or \ref start() should be called before using them.

    ///@{

    /// \brief Returns the value of the maximum flow.
    ///
    /// Returns the value of the maximum flow found by the algorithm.
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    Value flowValue() const {
      return _flow_value;
    }

    /// \brief Returns the flow value on the given arc.
    ///
    /// Returns the flow value on the given arc.
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    Value flow(const Arc& arc) const {
      return (*_flow)[arc];
    }

    /// \brief Returns a const reference to the flow map.
    ///
    /// Returns a const reference to the arc map storing the found flow.
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    const FlowMap& flowMap() const {
      return *_flow;
    }

    /// \brief Returns \c true when the node is on the source side of the
    /// minimum cut.
    ///
    /// Returns true when the node is on the source side of the found
    /// minimum cut.
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    bool minCut(const Node& node) const {
      return ((*_pred)[node] != INVALID) || node == _source;
    }

    /// \brief Gives back a minimum value cut.
    ///
    /// Sets \c cutMap to the characteristic vector of a minimum value
    /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
    /// node map with \c bool (or convertible) value type.
    ///
    /// \note This function calls \ref minCut() for each node, so it runs in
    /// O(n) time.
    ///
    /// \pre Either \ref run() or \ref init() must be called before
    /// using this function.
    template <typename CutMap>
    void minCutMap(CutMap& cutMap) const {
      for (NodeIt n(_graph); n != INVALID; ++n) {
        cutMap.set(n, (*_pred)[n] != INVALID);
      }
      cutMap.set(_source, true);
    }

    /// @}

  };

}

#endif