This file is indexed.

/usr/include/lemon/fib_heap.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2009
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_FIB_HEAP_H
#define LEMON_FIB_HEAP_H

///\file
///\ingroup heaps
///\brief Fibonacci heap implementation.

#include <vector>
#include <utility>
#include <functional>
#include <lemon/math.h>

namespace lemon {

  /// \ingroup heaps
  ///
  /// \brief Fibonacci heap data structure.
  ///
  /// This class implements the \e Fibonacci \e heap data structure.
  /// It fully conforms to the \ref concepts::Heap "heap concept".
  ///
  /// The methods \ref increase() and \ref erase() are not efficient in a
  /// Fibonacci heap. In case of many calls of these operations, it is
  /// better to use other heap structure, e.g. \ref BinHeap "binary heap".
  ///
  /// \tparam PR Type of the priorities of the items.
  /// \tparam IM A read-writable item map with \c int values, used
  /// internally to handle the cross references.
  /// \tparam CMP A functor class for comparing the priorities.
  /// The default is \c std::less<PR>.
#ifdef DOXYGEN
  template <typename PR, typename IM, typename CMP>
#else
  template <typename PR, typename IM, typename CMP = std::less<PR> >
#endif
  class FibHeap {
  public:

    /// Type of the item-int map.
    typedef IM ItemIntMap;
    /// Type of the priorities.
    typedef PR Prio;
    /// Type of the items stored in the heap.
    typedef typename ItemIntMap::Key Item;
    /// Type of the item-priority pairs.
    typedef std::pair<Item,Prio> Pair;
    /// Functor type for comparing the priorities.
    typedef CMP Compare;

  private:
    class Store;

    std::vector<Store> _data;
    int _minimum;
    ItemIntMap &_iim;
    Compare _comp;
    int _num;

  public:

    /// \brief Type to represent the states of the items.
    ///
    /// Each item has a state associated to it. It can be "in heap",
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    /// heap's point of view, but may be useful to the user.
    ///
    /// The item-int map must be initialized in such way that it assigns
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    enum State {
      IN_HEAP = 0,    ///< = 0.
      PRE_HEAP = -1,  ///< = -1.
      POST_HEAP = -2  ///< = -2.
    };

    /// \brief Constructor.
    ///
    /// Constructor.
    /// \param map A map that assigns \c int values to the items.
    /// It is used internally to handle the cross references.
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
    explicit FibHeap(ItemIntMap &map)
      : _minimum(0), _iim(map), _num() {}

    /// \brief Constructor.
    ///
    /// Constructor.
    /// \param map A map that assigns \c int values to the items.
    /// It is used internally to handle the cross references.
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
    /// \param comp The function object used for comparing the priorities.
    FibHeap(ItemIntMap &map, const Compare &comp)
      : _minimum(0), _iim(map), _comp(comp), _num() {}

    /// \brief The number of items stored in the heap.
    ///
    /// This function returns the number of items stored in the heap.
    int size() const { return _num; }

    /// \brief Check if the heap is empty.
    ///
    /// This function returns \c true if the heap is empty.
    bool empty() const { return _num==0; }

    /// \brief Make the heap empty.
    ///
    /// This functon makes the heap empty.
    /// It does not change the cross reference map. If you want to reuse
    /// a heap that is not surely empty, you should first clear it and
    /// then you should set the cross reference map to \c PRE_HEAP
    /// for each item.
    void clear() {
      _data.clear(); _minimum = 0; _num = 0;
    }

    /// \brief Insert an item into the heap with the given priority.
    ///
    /// This function inserts the given item into the heap with the
    /// given priority.
    /// \param item The item to insert.
    /// \param prio The priority of the item.
    /// \pre \e item must not be stored in the heap.
    void push (const Item& item, const Prio& prio) {
      int i=_iim[item];
      if ( i < 0 ) {
        int s=_data.size();
        _iim.set( item, s );
        Store st;
        st.name=item;
        _data.push_back(st);
        i=s;
      } else {
        _data[i].parent=_data[i].child=-1;
        _data[i].degree=0;
        _data[i].in=true;
        _data[i].marked=false;
      }

      if ( _num ) {
        _data[_data[_minimum].right_neighbor].left_neighbor=i;
        _data[i].right_neighbor=_data[_minimum].right_neighbor;
        _data[_minimum].right_neighbor=i;
        _data[i].left_neighbor=_minimum;
        if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
      } else {
        _data[i].right_neighbor=_data[i].left_neighbor=i;
        _minimum=i;
      }
      _data[i].prio=prio;
      ++_num;
    }

    /// \brief Return the item having minimum priority.
    ///
    /// This function returns the item having minimum priority.
    /// \pre The heap must be non-empty.
    Item top() const { return _data[_minimum].name; }

    /// \brief The minimum priority.
    ///
    /// This function returns the minimum priority.
    /// \pre The heap must be non-empty.
    Prio prio() const { return _data[_minimum].prio; }

    /// \brief Remove the item having minimum priority.
    ///
    /// This function removes the item having minimum priority.
    /// \pre The heap must be non-empty.
    void pop() {
      /*The first case is that there are only one root.*/
      if ( _data[_minimum].left_neighbor==_minimum ) {
        _data[_minimum].in=false;
        if ( _data[_minimum].degree!=0 ) {
          makeRoot(_data[_minimum].child);
          _minimum=_data[_minimum].child;
          balance();
        }
      } else {
        int right=_data[_minimum].right_neighbor;
        unlace(_minimum);
        _data[_minimum].in=false;
        if ( _data[_minimum].degree > 0 ) {
          int left=_data[_minimum].left_neighbor;
          int child=_data[_minimum].child;
          int last_child=_data[child].left_neighbor;

          makeRoot(child);

          _data[left].right_neighbor=child;
          _data[child].left_neighbor=left;
          _data[right].left_neighbor=last_child;
          _data[last_child].right_neighbor=right;
        }
        _minimum=right;
        balance();
      } // the case where there are more roots
      --_num;
    }

    /// \brief Remove the given item from the heap.
    ///
    /// This function removes the given item from the heap if it is
    /// already stored.
    /// \param item The item to delete.
    /// \pre \e item must be in the heap.
    void erase (const Item& item) {
      int i=_iim[item];

      if ( i >= 0 && _data[i].in ) {
        if ( _data[i].parent!=-1 ) {
          int p=_data[i].parent;
          cut(i,p);
          cascade(p);
        }
        _minimum=i;     //As if its prio would be -infinity
        pop();
      }
    }

    /// \brief The priority of the given item.
    ///
    /// This function returns the priority of the given item.
    /// \param item The item.
    /// \pre \e item must be in the heap.
    Prio operator[](const Item& item) const {
      return _data[_iim[item]].prio;
    }

    /// \brief Set the priority of an item or insert it, if it is
    /// not stored in the heap.
    ///
    /// This method sets the priority of the given item if it is
    /// already stored in the heap. Otherwise it inserts the given
    /// item into the heap with the given priority.
    /// \param item The item.
    /// \param prio The priority.
    void set (const Item& item, const Prio& prio) {
      int i=_iim[item];
      if ( i >= 0 && _data[i].in ) {
        if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
        if ( _comp(_data[i].prio, prio) ) increase(item, prio);
      } else push(item, prio);
    }

    /// \brief Decrease the priority of an item to the given value.
    ///
    /// This function decreases the priority of an item to the given value.
    /// \param item The item.
    /// \param prio The priority.
    /// \pre \e item must be stored in the heap with priority at least \e prio.
    void decrease (const Item& item, const Prio& prio) {
      int i=_iim[item];
      _data[i].prio=prio;
      int p=_data[i].parent;

      if ( p!=-1 && _comp(prio, _data[p].prio) ) {
        cut(i,p);
        cascade(p);
      }
      if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
    }

    /// \brief Increase the priority of an item to the given value.
    ///
    /// This function increases the priority of an item to the given value.
    /// \param item The item.
    /// \param prio The priority.
    /// \pre \e item must be stored in the heap with priority at most \e prio.
    void increase (const Item& item, const Prio& prio) {
      erase(item);
      push(item, prio);
    }

    /// \brief Return the state of an item.
    ///
    /// This method returns \c PRE_HEAP if the given item has never
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
    /// and \c POST_HEAP otherwise.
    /// In the latter case it is possible that the item will get back
    /// to the heap again.
    /// \param item The item.
    State state(const Item &item) const {
      int i=_iim[item];
      if( i>=0 ) {
        if ( _data[i].in ) i=0;
        else i=-2;
      }
      return State(i);
    }

    /// \brief Set the state of an item in the heap.
    ///
    /// This function sets the state of the given item in the heap.
    /// It can be used to manually clear the heap when it is important
    /// to achive better time complexity.
    /// \param i The item.
    /// \param st The state. It should not be \c IN_HEAP.
    void state(const Item& i, State st) {
      switch (st) {
      case POST_HEAP:
      case PRE_HEAP:
        if (state(i) == IN_HEAP) {
          erase(i);
        }
        _iim[i] = st;
        break;
      case IN_HEAP:
        break;
      }
    }

  private:

    void balance() {

      int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;

      std::vector<int> A(maxdeg,-1);

      /*
       *Recall that now minimum does not point to the minimum prio element.
       *We set minimum to this during balance().
       */
      int anchor=_data[_minimum].left_neighbor;
      int next=_minimum;
      bool end=false;

      do {
        int active=next;
        if ( anchor==active ) end=true;
        int d=_data[active].degree;
        next=_data[active].right_neighbor;

        while (A[d]!=-1) {
          if( _comp(_data[active].prio, _data[A[d]].prio) ) {
            fuse(active,A[d]);
          } else {
            fuse(A[d],active);
            active=A[d];
          }
          A[d]=-1;
          ++d;
        }
        A[d]=active;
      } while ( !end );


      while ( _data[_minimum].parent >=0 )
        _minimum=_data[_minimum].parent;
      int s=_minimum;
      int m=_minimum;
      do {
        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
        s=_data[s].right_neighbor;
      } while ( s != m );
    }

    void makeRoot(int c) {
      int s=c;
      do {
        _data[s].parent=-1;
        s=_data[s].right_neighbor;
      } while ( s != c );
    }

    void cut(int a, int b) {
      /*
       *Replacing a from the children of b.
       */
      --_data[b].degree;

      if ( _data[b].degree !=0 ) {
        int child=_data[b].child;
        if ( child==a )
          _data[b].child=_data[child].right_neighbor;
        unlace(a);
      }


      /*Lacing a to the roots.*/
      int right=_data[_minimum].right_neighbor;
      _data[_minimum].right_neighbor=a;
      _data[a].left_neighbor=_minimum;
      _data[a].right_neighbor=right;
      _data[right].left_neighbor=a;

      _data[a].parent=-1;
      _data[a].marked=false;
    }

    void cascade(int a) {
      if ( _data[a].parent!=-1 ) {
        int p=_data[a].parent;

        if ( _data[a].marked==false ) _data[a].marked=true;
        else {
          cut(a,p);
          cascade(p);
        }
      }
    }

    void fuse(int a, int b) {
      unlace(b);

      /*Lacing b under a.*/
      _data[b].parent=a;

      if (_data[a].degree==0) {
        _data[b].left_neighbor=b;
        _data[b].right_neighbor=b;
        _data[a].child=b;
      } else {
        int child=_data[a].child;
        int last_child=_data[child].left_neighbor;
        _data[child].left_neighbor=b;
        _data[b].right_neighbor=child;
        _data[last_child].right_neighbor=b;
        _data[b].left_neighbor=last_child;
      }

      ++_data[a].degree;

      _data[b].marked=false;
    }

    /*
     *It is invoked only if a has siblings.
     */
    void unlace(int a) {
      int leftn=_data[a].left_neighbor;
      int rightn=_data[a].right_neighbor;
      _data[leftn].right_neighbor=rightn;
      _data[rightn].left_neighbor=leftn;
    }


    class Store {
      friend class FibHeap;

      Item name;
      int parent;
      int left_neighbor;
      int right_neighbor;
      int child;
      int degree;
      bool marked;
      bool in;
      Prio prio;

      Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
    };
  };

} //namespace lemon

#endif //LEMON_FIB_HEAP_H