This file is indexed.

/usr/include/lemon/howard_mmc.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_HOWARD_MMC_H
#define LEMON_HOWARD_MMC_H

/// \ingroup min_mean_cycle
///
/// \file
/// \brief Howard's algorithm for finding a minimum mean cycle.

#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/path.h>
#include <lemon/tolerance.h>
#include <lemon/connectivity.h>

namespace lemon {

  /// \brief Default traits class of HowardMmc class.
  ///
  /// Default traits class of HowardMmc class.
  /// \tparam GR The type of the digraph.
  /// \tparam CM The type of the cost map.
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
#ifdef DOXYGEN
  template <typename GR, typename CM>
#else
  template <typename GR, typename CM,
    bool integer = std::numeric_limits<typename CM::Value>::is_integer>
#endif
  struct HowardMmcDefaultTraits
  {
    /// The type of the digraph
    typedef GR Digraph;
    /// The type of the cost map
    typedef CM CostMap;
    /// The type of the arc costs
    typedef typename CostMap::Value Cost;

    /// \brief The large cost type used for internal computations
    ///
    /// The large cost type used for internal computations.
    /// It is \c long \c long if the \c Cost type is integer,
    /// otherwise it is \c double.
    /// \c Cost must be convertible to \c LargeCost.
    typedef double LargeCost;

    /// The tolerance type used for internal computations
    typedef lemon::Tolerance<LargeCost> Tolerance;

    /// \brief The path type of the found cycles
    ///
    /// The path type of the found cycles.
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
    /// and it must have an \c addBack() function.
    typedef lemon::Path<Digraph> Path;
  };

  // Default traits class for integer cost types
  template <typename GR, typename CM>
  struct HowardMmcDefaultTraits<GR, CM, true>
  {
    typedef GR Digraph;
    typedef CM CostMap;
    typedef typename CostMap::Value Cost;
#ifdef LEMON_HAVE_LONG_LONG
    typedef long long LargeCost;
#else
    typedef long LargeCost;
#endif
    typedef lemon::Tolerance<LargeCost> Tolerance;
    typedef lemon::Path<Digraph> Path;
  };


  /// \addtogroup min_mean_cycle
  /// @{

  /// \brief Implementation of Howard's algorithm for finding a minimum
  /// mean cycle.
  ///
  /// This class implements Howard's policy iteration algorithm for finding
  /// a directed cycle of minimum mean cost in a digraph
  /// \cite dasdan98minmeancycle, \cite dasdan04experimental.
  /// This class provides the most efficient algorithm for the
  /// minimum mean cycle problem, though the best known theoretical
  /// bound on its running time is exponential.
  ///
  /// \tparam GR The type of the digraph the algorithm runs on.
  /// \tparam CM The type of the cost map. The default
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
  /// \tparam TR The traits class that defines various types used by the
  /// algorithm. By default, it is \ref HowardMmcDefaultTraits
  /// "HowardMmcDefaultTraits<GR, CM>".
  /// In most cases, this parameter should not be set directly,
  /// consider to use the named template parameters instead.
#ifdef DOXYGEN
  template <typename GR, typename CM, typename TR>
#else
  template < typename GR,
             typename CM = typename GR::template ArcMap<int>,
             typename TR = HowardMmcDefaultTraits<GR, CM> >
#endif
  class HowardMmc
  {
  public:

    /// The type of the digraph
    typedef typename TR::Digraph Digraph;
    /// The type of the cost map
    typedef typename TR::CostMap CostMap;
    /// The type of the arc costs
    typedef typename TR::Cost Cost;

    /// \brief The large cost type
    ///
    /// The large cost type used for internal computations.
    /// By default, it is \c long \c long if the \c Cost type is integer,
    /// otherwise it is \c double.
    typedef typename TR::LargeCost LargeCost;

    /// The tolerance type
    typedef typename TR::Tolerance Tolerance;

    /// \brief The path type of the found cycles
    ///
    /// The path type of the found cycles.
    /// Using the \ref lemon::HowardMmcDefaultTraits "default traits class",
    /// it is \ref lemon::Path "Path<Digraph>".
    typedef typename TR::Path Path;

    /// The \ref lemon::HowardMmcDefaultTraits "traits class" of the algorithm
    typedef TR Traits;

    /// \brief Constants for the causes of search termination.
    ///
    /// Enum type containing constants for the different causes of search
    /// termination. The \ref findCycleMean() function returns one of
    /// these values.
    enum TerminationCause {

      /// No directed cycle can be found in the digraph.
      NO_CYCLE = 0,

      /// Optimal solution (minimum cycle mean) is found.
      OPTIMAL = 1,

      /// The iteration count limit is reached.
      ITERATION_LIMIT
    };

  private:

    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);

    // The digraph the algorithm runs on
    const Digraph &_gr;
    // The cost of the arcs
    const CostMap &_cost;

    // Data for the found cycles
    bool _curr_found, _best_found;
    LargeCost _curr_cost, _best_cost;
    int _curr_size, _best_size;
    Node _curr_node, _best_node;

    Path *_cycle_path;
    bool _local_path;

    // Internal data used by the algorithm
    typename Digraph::template NodeMap<Arc> _policy;
    typename Digraph::template NodeMap<bool> _reached;
    typename Digraph::template NodeMap<int> _level;
    typename Digraph::template NodeMap<LargeCost> _dist;

    // Data for storing the strongly connected components
    int _comp_num;
    typename Digraph::template NodeMap<int> _comp;
    std::vector<std::vector<Node> > _comp_nodes;
    std::vector<Node>* _nodes;
    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;

    // Queue used for BFS search
    std::vector<Node> _queue;
    int _qfront, _qback;

    Tolerance _tolerance;

    // Infinite constant
    const LargeCost INF;

  public:

    /// \name Named Template Parameters
    /// @{

    template <typename T>
    struct SetLargeCostTraits : public Traits {
      typedef T LargeCost;
      typedef lemon::Tolerance<T> Tolerance;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c LargeCost type.
    ///
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
    /// type. It is used for internal computations in the algorithm.
    template <typename T>
    struct SetLargeCost
      : public HowardMmc<GR, CM, SetLargeCostTraits<T> > {
      typedef HowardMmc<GR, CM, SetLargeCostTraits<T> > Create;
    };

    template <typename T>
    struct SetPathTraits : public Traits {
      typedef T Path;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c %Path type.
    ///
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
    /// type of the found cycles.
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
    /// and it must have an \c addBack() function.
    template <typename T>
    struct SetPath
      : public HowardMmc<GR, CM, SetPathTraits<T> > {
      typedef HowardMmc<GR, CM, SetPathTraits<T> > Create;
    };

    /// @}

  protected:

    HowardMmc() {}

  public:

    /// \brief Constructor.
    ///
    /// The constructor of the class.
    ///
    /// \param digraph The digraph the algorithm runs on.
    /// \param cost The costs of the arcs.
    HowardMmc( const Digraph &digraph,
               const CostMap &cost ) :
      _gr(digraph), _cost(cost), _best_found(false),
      _best_cost(0), _best_size(1), _cycle_path(NULL), _local_path(false),
      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
      _comp(digraph), _in_arcs(digraph),
      INF(std::numeric_limits<LargeCost>::has_infinity ?
          std::numeric_limits<LargeCost>::infinity() :
          std::numeric_limits<LargeCost>::max())
    {}

    /// Destructor.
    ~HowardMmc() {
      if (_local_path) delete _cycle_path;
    }

    /// \brief Set the path structure for storing the found cycle.
    ///
    /// This function sets an external path structure for storing the
    /// found cycle.
    ///
    /// If you don't call this function before calling \ref run() or
    /// \ref findCycleMean(), a local \ref Path "path" structure
    /// will be allocated. The destuctor deallocates this automatically
    /// allocated object, of course.
    ///
    /// \note The algorithm calls only the \ref lemon::Path::addBack()
    /// "addBack()" function of the given path structure.
    ///
    /// \return <tt>(*this)</tt>
    HowardMmc& cycle(Path &path) {
      if (_local_path) {
        delete _cycle_path;
        _local_path = false;
      }
      _cycle_path = &path;
      return *this;
    }

    /// \brief Set the tolerance used by the algorithm.
    ///
    /// This function sets the tolerance object used by the algorithm.
    ///
    /// \return <tt>(*this)</tt>
    HowardMmc& tolerance(const Tolerance& tolerance) {
      _tolerance = tolerance;
      return *this;
    }

    /// \brief Return a const reference to the tolerance.
    ///
    /// This function returns a const reference to the tolerance object
    /// used by the algorithm.
    const Tolerance& tolerance() const {
      return _tolerance;
    }

    /// \name Execution control
    /// The simplest way to execute the algorithm is to call the \ref run()
    /// function.\n
    /// If you only need the minimum mean cost, you may call
    /// \ref findCycleMean().

    /// @{

    /// \brief Run the algorithm.
    ///
    /// This function runs the algorithm.
    /// It can be called more than once (e.g. if the underlying digraph
    /// and/or the arc costs have been modified).
    ///
    /// \return \c true if a directed cycle exists in the digraph.
    ///
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
    /// \code
    ///   return mmc.findCycleMean() && mmc.findCycle();
    /// \endcode
    bool run() {
      return findCycleMean() && findCycle();
    }

    /// \brief Find the minimum cycle mean (or an upper bound).
    ///
    /// This function finds the minimum mean cost of the directed
    /// cycles in the digraph (or an upper bound for it).
    ///
    /// By default, the function finds the exact minimum cycle mean,
    /// but an optional limit can also be specified for the number of
    /// iterations performed during the search process.
    /// The return value indicates if the optimal solution is found
    /// or the iteration limit is reached. In the latter case, an
    /// approximate solution is provided, which corresponds to a directed
    /// cycle whose mean cost is relatively small, but not necessarily
    /// minimal.
    ///
    /// \param limit  The maximum allowed number of iterations during
    /// the search process. Its default value implies that the algorithm
    /// runs until it finds the exact optimal solution.
    ///
    /// \return The termination cause of the search process.
    /// For more information, see \ref TerminationCause.
    TerminationCause findCycleMean(int limit =
                                   std::numeric_limits<int>::max()) {
      // Initialize and find strongly connected components
      init();
      findComponents();

      // Find the minimum cycle mean in the components
      int iter_count = 0;
      bool iter_limit_reached = false;
      for (int comp = 0; comp < _comp_num; ++comp) {
        // Find the minimum mean cycle in the current component
        if (!buildPolicyGraph(comp)) continue;
        while (true) {
          if (++iter_count > limit) {
            iter_limit_reached = true;
            break;
          }
          findPolicyCycle();
          if (!computeNodeDistances()) break;
        }

        // Update the best cycle (global minimum mean cycle)
        if ( _curr_found && (!_best_found ||
             _curr_cost * _best_size < _best_cost * _curr_size) ) {
          _best_found = true;
          _best_cost = _curr_cost;
          _best_size = _curr_size;
          _best_node = _curr_node;
        }

        if (iter_limit_reached) break;
      }

      if (iter_limit_reached) {
        return ITERATION_LIMIT;
      } else {
        return _best_found ? OPTIMAL : NO_CYCLE;
      }
    }

    /// \brief Find a minimum mean directed cycle.
    ///
    /// This function finds a directed cycle of minimum mean cost
    /// in the digraph using the data computed by findCycleMean().
    ///
    /// \return \c true if a directed cycle exists in the digraph.
    ///
    /// \pre \ref findCycleMean() must be called before using this function.
    bool findCycle() {
      if (!_best_found) return false;
      _cycle_path->addBack(_policy[_best_node]);
      for ( Node v = _best_node;
            (v = _gr.target(_policy[v])) != _best_node; ) {
        _cycle_path->addBack(_policy[v]);
      }
      return true;
    }

    /// @}

    /// \name Query Functions
    /// The results of the algorithm can be obtained using these
    /// functions.\n
    /// The algorithm should be executed before using them.

    /// @{

    /// \brief Return the total cost of the found cycle.
    ///
    /// This function returns the total cost of the found cycle.
    ///
    /// \pre \ref run() or \ref findCycleMean() must be called before
    /// using this function.
    Cost cycleCost() const {
      return static_cast<Cost>(_best_cost);
    }

    /// \brief Return the number of arcs on the found cycle.
    ///
    /// This function returns the number of arcs on the found cycle.
    ///
    /// \pre \ref run() or \ref findCycleMean() must be called before
    /// using this function.
    int cycleSize() const {
      return _best_size;
    }

    /// \brief Return the mean cost of the found cycle.
    ///
    /// This function returns the mean cost of the found cycle.
    ///
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
    /// following code.
    /// \code
    ///   return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
    /// \endcode
    ///
    /// \pre \ref run() or \ref findCycleMean() must be called before
    /// using this function.
    double cycleMean() const {
      return static_cast<double>(_best_cost) / _best_size;
    }

    /// \brief Return the found cycle.
    ///
    /// This function returns a const reference to the path structure
    /// storing the found cycle.
    ///
    /// \pre \ref run() or \ref findCycle() must be called before using
    /// this function.
    const Path& cycle() const {
      return *_cycle_path;
    }

    ///@}

  private:

    // Initialize
    void init() {
      if (!_cycle_path) {
        _local_path = true;
        _cycle_path = new Path;
      }
      _queue.resize(countNodes(_gr));
      _best_found = false;
      _best_cost = 0;
      _best_size = 1;
      _cycle_path->clear();
    }

    // Find strongly connected components and initialize _comp_nodes
    // and _in_arcs
    void findComponents() {
      _comp_num = stronglyConnectedComponents(_gr, _comp);
      _comp_nodes.resize(_comp_num);
      if (_comp_num == 1) {
        _comp_nodes[0].clear();
        for (NodeIt n(_gr); n != INVALID; ++n) {
          _comp_nodes[0].push_back(n);
          _in_arcs[n].clear();
          for (InArcIt a(_gr, n); a != INVALID; ++a) {
            _in_arcs[n].push_back(a);
          }
        }
      } else {
        for (int i = 0; i < _comp_num; ++i)
          _comp_nodes[i].clear();
        for (NodeIt n(_gr); n != INVALID; ++n) {
          int k = _comp[n];
          _comp_nodes[k].push_back(n);
          _in_arcs[n].clear();
          for (InArcIt a(_gr, n); a != INVALID; ++a) {
            if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
          }
        }
      }
    }

    // Build the policy graph in the given strongly connected component
    // (the out-degree of every node is 1)
    bool buildPolicyGraph(int comp) {
      _nodes = &(_comp_nodes[comp]);
      if (_nodes->size() < 1 ||
          (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
        return false;
      }
      for (int i = 0; i < int(_nodes->size()); ++i) {
        _dist[(*_nodes)[i]] = INF;
      }
      Node u, v;
      Arc e;
      for (int i = 0; i < int(_nodes->size()); ++i) {
        v = (*_nodes)[i];
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
          e = _in_arcs[v][j];
          u = _gr.source(e);
          if (_cost[e] < _dist[u]) {
            _dist[u] = _cost[e];
            _policy[u] = e;
          }
        }
      }
      return true;
    }

    // Find the minimum mean cycle in the policy graph
    void findPolicyCycle() {
      for (int i = 0; i < int(_nodes->size()); ++i) {
        _level[(*_nodes)[i]] = -1;
      }
      LargeCost ccost;
      int csize;
      Node u, v;
      _curr_found = false;
      for (int i = 0; i < int(_nodes->size()); ++i) {
        u = (*_nodes)[i];
        if (_level[u] >= 0) continue;
        for (; _level[u] < 0; u = _gr.target(_policy[u])) {
          _level[u] = i;
        }
        if (_level[u] == i) {
          // A cycle is found
          ccost = _cost[_policy[u]];
          csize = 1;
          for (v = u; (v = _gr.target(_policy[v])) != u; ) {
            ccost += _cost[_policy[v]];
            ++csize;
          }
          if ( !_curr_found ||
               (ccost * _curr_size < _curr_cost * csize) ) {
            _curr_found = true;
            _curr_cost = ccost;
            _curr_size = csize;
            _curr_node = u;
          }
        }
      }
    }

    // Contract the policy graph and compute node distances
    bool computeNodeDistances() {
      // Find the component of the main cycle and compute node distances
      // using reverse BFS
      for (int i = 0; i < int(_nodes->size()); ++i) {
        _reached[(*_nodes)[i]] = false;
      }
      _qfront = _qback = 0;
      _queue[0] = _curr_node;
      _reached[_curr_node] = true;
      _dist[_curr_node] = 0;
      Node u, v;
      Arc e;
      while (_qfront <= _qback) {
        v = _queue[_qfront++];
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
          e = _in_arcs[v][j];
          u = _gr.source(e);
          if (_policy[u] == e && !_reached[u]) {
            _reached[u] = true;
            _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost;
            _queue[++_qback] = u;
          }
        }
      }

      // Connect all other nodes to this component and compute node
      // distances using reverse BFS
      _qfront = 0;
      while (_qback < int(_nodes->size())-1) {
        v = _queue[_qfront++];
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
          e = _in_arcs[v][j];
          u = _gr.source(e);
          if (!_reached[u]) {
            _reached[u] = true;
            _policy[u] = e;
            _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost;
            _queue[++_qback] = u;
          }
        }
      }

      // Improve node distances
      bool improved = false;
      for (int i = 0; i < int(_nodes->size()); ++i) {
        v = (*_nodes)[i];
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
          e = _in_arcs[v][j];
          u = _gr.source(e);
          LargeCost delta = _dist[v] + _cost[e] * _curr_size - _curr_cost;
          if (_tolerance.less(delta, _dist[u])) {
            _dist[u] = delta;
            _policy[u] = e;
            improved = true;
          }
        }
      }
      return improved;
    }

  }; //class HowardMmc

  ///@}

} //namespace lemon

#endif //LEMON_HOWARD_MMC_H