/usr/include/lemon/howard_mmc.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_HOWARD_MMC_H
#define LEMON_HOWARD_MMC_H
/// \ingroup min_mean_cycle
///
/// \file
/// \brief Howard's algorithm for finding a minimum mean cycle.
#include <vector>
#include <limits>
#include <lemon/core.h>
#include <lemon/path.h>
#include <lemon/tolerance.h>
#include <lemon/connectivity.h>
namespace lemon {
/// \brief Default traits class of HowardMmc class.
///
/// Default traits class of HowardMmc class.
/// \tparam GR The type of the digraph.
/// \tparam CM The type of the cost map.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
#ifdef DOXYGEN
template <typename GR, typename CM>
#else
template <typename GR, typename CM,
bool integer = std::numeric_limits<typename CM::Value>::is_integer>
#endif
struct HowardMmcDefaultTraits
{
/// The type of the digraph
typedef GR Digraph;
/// The type of the cost map
typedef CM CostMap;
/// The type of the arc costs
typedef typename CostMap::Value Cost;
/// \brief The large cost type used for internal computations
///
/// The large cost type used for internal computations.
/// It is \c long \c long if the \c Cost type is integer,
/// otherwise it is \c double.
/// \c Cost must be convertible to \c LargeCost.
typedef double LargeCost;
/// The tolerance type used for internal computations
typedef lemon::Tolerance<LargeCost> Tolerance;
/// \brief The path type of the found cycles
///
/// The path type of the found cycles.
/// It must conform to the \ref lemon::concepts::Path "Path" concept
/// and it must have an \c addBack() function.
typedef lemon::Path<Digraph> Path;
};
// Default traits class for integer cost types
template <typename GR, typename CM>
struct HowardMmcDefaultTraits<GR, CM, true>
{
typedef GR Digraph;
typedef CM CostMap;
typedef typename CostMap::Value Cost;
#ifdef LEMON_HAVE_LONG_LONG
typedef long long LargeCost;
#else
typedef long LargeCost;
#endif
typedef lemon::Tolerance<LargeCost> Tolerance;
typedef lemon::Path<Digraph> Path;
};
/// \addtogroup min_mean_cycle
/// @{
/// \brief Implementation of Howard's algorithm for finding a minimum
/// mean cycle.
///
/// This class implements Howard's policy iteration algorithm for finding
/// a directed cycle of minimum mean cost in a digraph
/// \cite dasdan98minmeancycle, \cite dasdan04experimental.
/// This class provides the most efficient algorithm for the
/// minimum mean cycle problem, though the best known theoretical
/// bound on its running time is exponential.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// \tparam CM The type of the cost map. The default
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref HowardMmcDefaultTraits
/// "HowardMmcDefaultTraits<GR, CM>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
#ifdef DOXYGEN
template <typename GR, typename CM, typename TR>
#else
template < typename GR,
typename CM = typename GR::template ArcMap<int>,
typename TR = HowardMmcDefaultTraits<GR, CM> >
#endif
class HowardMmc
{
public:
/// The type of the digraph
typedef typename TR::Digraph Digraph;
/// The type of the cost map
typedef typename TR::CostMap CostMap;
/// The type of the arc costs
typedef typename TR::Cost Cost;
/// \brief The large cost type
///
/// The large cost type used for internal computations.
/// By default, it is \c long \c long if the \c Cost type is integer,
/// otherwise it is \c double.
typedef typename TR::LargeCost LargeCost;
/// The tolerance type
typedef typename TR::Tolerance Tolerance;
/// \brief The path type of the found cycles
///
/// The path type of the found cycles.
/// Using the \ref lemon::HowardMmcDefaultTraits "default traits class",
/// it is \ref lemon::Path "Path<Digraph>".
typedef typename TR::Path Path;
/// The \ref lemon::HowardMmcDefaultTraits "traits class" of the algorithm
typedef TR Traits;
/// \brief Constants for the causes of search termination.
///
/// Enum type containing constants for the different causes of search
/// termination. The \ref findCycleMean() function returns one of
/// these values.
enum TerminationCause {
/// No directed cycle can be found in the digraph.
NO_CYCLE = 0,
/// Optimal solution (minimum cycle mean) is found.
OPTIMAL = 1,
/// The iteration count limit is reached.
ITERATION_LIMIT
};
private:
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
// The digraph the algorithm runs on
const Digraph &_gr;
// The cost of the arcs
const CostMap &_cost;
// Data for the found cycles
bool _curr_found, _best_found;
LargeCost _curr_cost, _best_cost;
int _curr_size, _best_size;
Node _curr_node, _best_node;
Path *_cycle_path;
bool _local_path;
// Internal data used by the algorithm
typename Digraph::template NodeMap<Arc> _policy;
typename Digraph::template NodeMap<bool> _reached;
typename Digraph::template NodeMap<int> _level;
typename Digraph::template NodeMap<LargeCost> _dist;
// Data for storing the strongly connected components
int _comp_num;
typename Digraph::template NodeMap<int> _comp;
std::vector<std::vector<Node> > _comp_nodes;
std::vector<Node>* _nodes;
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
// Queue used for BFS search
std::vector<Node> _queue;
int _qfront, _qback;
Tolerance _tolerance;
// Infinite constant
const LargeCost INF;
public:
/// \name Named Template Parameters
/// @{
template <typename T>
struct SetLargeCostTraits : public Traits {
typedef T LargeCost;
typedef lemon::Tolerance<T> Tolerance;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c LargeCost type.
///
/// \ref named-templ-param "Named parameter" for setting \c LargeCost
/// type. It is used for internal computations in the algorithm.
template <typename T>
struct SetLargeCost
: public HowardMmc<GR, CM, SetLargeCostTraits<T> > {
typedef HowardMmc<GR, CM, SetLargeCostTraits<T> > Create;
};
template <typename T>
struct SetPathTraits : public Traits {
typedef T Path;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c %Path type.
///
/// \ref named-templ-param "Named parameter" for setting the \c %Path
/// type of the found cycles.
/// It must conform to the \ref lemon::concepts::Path "Path" concept
/// and it must have an \c addBack() function.
template <typename T>
struct SetPath
: public HowardMmc<GR, CM, SetPathTraits<T> > {
typedef HowardMmc<GR, CM, SetPathTraits<T> > Create;
};
/// @}
protected:
HowardMmc() {}
public:
/// \brief Constructor.
///
/// The constructor of the class.
///
/// \param digraph The digraph the algorithm runs on.
/// \param cost The costs of the arcs.
HowardMmc( const Digraph &digraph,
const CostMap &cost ) :
_gr(digraph), _cost(cost), _best_found(false),
_best_cost(0), _best_size(1), _cycle_path(NULL), _local_path(false),
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
_comp(digraph), _in_arcs(digraph),
INF(std::numeric_limits<LargeCost>::has_infinity ?
std::numeric_limits<LargeCost>::infinity() :
std::numeric_limits<LargeCost>::max())
{}
/// Destructor.
~HowardMmc() {
if (_local_path) delete _cycle_path;
}
/// \brief Set the path structure for storing the found cycle.
///
/// This function sets an external path structure for storing the
/// found cycle.
///
/// If you don't call this function before calling \ref run() or
/// \ref findCycleMean(), a local \ref Path "path" structure
/// will be allocated. The destuctor deallocates this automatically
/// allocated object, of course.
///
/// \note The algorithm calls only the \ref lemon::Path::addBack()
/// "addBack()" function of the given path structure.
///
/// \return <tt>(*this)</tt>
HowardMmc& cycle(Path &path) {
if (_local_path) {
delete _cycle_path;
_local_path = false;
}
_cycle_path = &path;
return *this;
}
/// \brief Set the tolerance used by the algorithm.
///
/// This function sets the tolerance object used by the algorithm.
///
/// \return <tt>(*this)</tt>
HowardMmc& tolerance(const Tolerance& tolerance) {
_tolerance = tolerance;
return *this;
}
/// \brief Return a const reference to the tolerance.
///
/// This function returns a const reference to the tolerance object
/// used by the algorithm.
const Tolerance& tolerance() const {
return _tolerance;
}
/// \name Execution control
/// The simplest way to execute the algorithm is to call the \ref run()
/// function.\n
/// If you only need the minimum mean cost, you may call
/// \ref findCycleMean().
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
/// It can be called more than once (e.g. if the underlying digraph
/// and/or the arc costs have been modified).
///
/// \return \c true if a directed cycle exists in the digraph.
///
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
/// \code
/// return mmc.findCycleMean() && mmc.findCycle();
/// \endcode
bool run() {
return findCycleMean() && findCycle();
}
/// \brief Find the minimum cycle mean (or an upper bound).
///
/// This function finds the minimum mean cost of the directed
/// cycles in the digraph (or an upper bound for it).
///
/// By default, the function finds the exact minimum cycle mean,
/// but an optional limit can also be specified for the number of
/// iterations performed during the search process.
/// The return value indicates if the optimal solution is found
/// or the iteration limit is reached. In the latter case, an
/// approximate solution is provided, which corresponds to a directed
/// cycle whose mean cost is relatively small, but not necessarily
/// minimal.
///
/// \param limit The maximum allowed number of iterations during
/// the search process. Its default value implies that the algorithm
/// runs until it finds the exact optimal solution.
///
/// \return The termination cause of the search process.
/// For more information, see \ref TerminationCause.
TerminationCause findCycleMean(int limit =
std::numeric_limits<int>::max()) {
// Initialize and find strongly connected components
init();
findComponents();
// Find the minimum cycle mean in the components
int iter_count = 0;
bool iter_limit_reached = false;
for (int comp = 0; comp < _comp_num; ++comp) {
// Find the minimum mean cycle in the current component
if (!buildPolicyGraph(comp)) continue;
while (true) {
if (++iter_count > limit) {
iter_limit_reached = true;
break;
}
findPolicyCycle();
if (!computeNodeDistances()) break;
}
// Update the best cycle (global minimum mean cycle)
if ( _curr_found && (!_best_found ||
_curr_cost * _best_size < _best_cost * _curr_size) ) {
_best_found = true;
_best_cost = _curr_cost;
_best_size = _curr_size;
_best_node = _curr_node;
}
if (iter_limit_reached) break;
}
if (iter_limit_reached) {
return ITERATION_LIMIT;
} else {
return _best_found ? OPTIMAL : NO_CYCLE;
}
}
/// \brief Find a minimum mean directed cycle.
///
/// This function finds a directed cycle of minimum mean cost
/// in the digraph using the data computed by findCycleMean().
///
/// \return \c true if a directed cycle exists in the digraph.
///
/// \pre \ref findCycleMean() must be called before using this function.
bool findCycle() {
if (!_best_found) return false;
_cycle_path->addBack(_policy[_best_node]);
for ( Node v = _best_node;
(v = _gr.target(_policy[v])) != _best_node; ) {
_cycle_path->addBack(_policy[v]);
}
return true;
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// The algorithm should be executed before using them.
/// @{
/// \brief Return the total cost of the found cycle.
///
/// This function returns the total cost of the found cycle.
///
/// \pre \ref run() or \ref findCycleMean() must be called before
/// using this function.
Cost cycleCost() const {
return static_cast<Cost>(_best_cost);
}
/// \brief Return the number of arcs on the found cycle.
///
/// This function returns the number of arcs on the found cycle.
///
/// \pre \ref run() or \ref findCycleMean() must be called before
/// using this function.
int cycleSize() const {
return _best_size;
}
/// \brief Return the mean cost of the found cycle.
///
/// This function returns the mean cost of the found cycle.
///
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
/// following code.
/// \code
/// return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
/// \endcode
///
/// \pre \ref run() or \ref findCycleMean() must be called before
/// using this function.
double cycleMean() const {
return static_cast<double>(_best_cost) / _best_size;
}
/// \brief Return the found cycle.
///
/// This function returns a const reference to the path structure
/// storing the found cycle.
///
/// \pre \ref run() or \ref findCycle() must be called before using
/// this function.
const Path& cycle() const {
return *_cycle_path;
}
///@}
private:
// Initialize
void init() {
if (!_cycle_path) {
_local_path = true;
_cycle_path = new Path;
}
_queue.resize(countNodes(_gr));
_best_found = false;
_best_cost = 0;
_best_size = 1;
_cycle_path->clear();
}
// Find strongly connected components and initialize _comp_nodes
// and _in_arcs
void findComponents() {
_comp_num = stronglyConnectedComponents(_gr, _comp);
_comp_nodes.resize(_comp_num);
if (_comp_num == 1) {
_comp_nodes[0].clear();
for (NodeIt n(_gr); n != INVALID; ++n) {
_comp_nodes[0].push_back(n);
_in_arcs[n].clear();
for (InArcIt a(_gr, n); a != INVALID; ++a) {
_in_arcs[n].push_back(a);
}
}
} else {
for (int i = 0; i < _comp_num; ++i)
_comp_nodes[i].clear();
for (NodeIt n(_gr); n != INVALID; ++n) {
int k = _comp[n];
_comp_nodes[k].push_back(n);
_in_arcs[n].clear();
for (InArcIt a(_gr, n); a != INVALID; ++a) {
if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
}
}
}
}
// Build the policy graph in the given strongly connected component
// (the out-degree of every node is 1)
bool buildPolicyGraph(int comp) {
_nodes = &(_comp_nodes[comp]);
if (_nodes->size() < 1 ||
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
return false;
}
for (int i = 0; i < int(_nodes->size()); ++i) {
_dist[(*_nodes)[i]] = INF;
}
Node u, v;
Arc e;
for (int i = 0; i < int(_nodes->size()); ++i) {
v = (*_nodes)[i];
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
e = _in_arcs[v][j];
u = _gr.source(e);
if (_cost[e] < _dist[u]) {
_dist[u] = _cost[e];
_policy[u] = e;
}
}
}
return true;
}
// Find the minimum mean cycle in the policy graph
void findPolicyCycle() {
for (int i = 0; i < int(_nodes->size()); ++i) {
_level[(*_nodes)[i]] = -1;
}
LargeCost ccost;
int csize;
Node u, v;
_curr_found = false;
for (int i = 0; i < int(_nodes->size()); ++i) {
u = (*_nodes)[i];
if (_level[u] >= 0) continue;
for (; _level[u] < 0; u = _gr.target(_policy[u])) {
_level[u] = i;
}
if (_level[u] == i) {
// A cycle is found
ccost = _cost[_policy[u]];
csize = 1;
for (v = u; (v = _gr.target(_policy[v])) != u; ) {
ccost += _cost[_policy[v]];
++csize;
}
if ( !_curr_found ||
(ccost * _curr_size < _curr_cost * csize) ) {
_curr_found = true;
_curr_cost = ccost;
_curr_size = csize;
_curr_node = u;
}
}
}
}
// Contract the policy graph and compute node distances
bool computeNodeDistances() {
// Find the component of the main cycle and compute node distances
// using reverse BFS
for (int i = 0; i < int(_nodes->size()); ++i) {
_reached[(*_nodes)[i]] = false;
}
_qfront = _qback = 0;
_queue[0] = _curr_node;
_reached[_curr_node] = true;
_dist[_curr_node] = 0;
Node u, v;
Arc e;
while (_qfront <= _qback) {
v = _queue[_qfront++];
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
e = _in_arcs[v][j];
u = _gr.source(e);
if (_policy[u] == e && !_reached[u]) {
_reached[u] = true;
_dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost;
_queue[++_qback] = u;
}
}
}
// Connect all other nodes to this component and compute node
// distances using reverse BFS
_qfront = 0;
while (_qback < int(_nodes->size())-1) {
v = _queue[_qfront++];
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
e = _in_arcs[v][j];
u = _gr.source(e);
if (!_reached[u]) {
_reached[u] = true;
_policy[u] = e;
_dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost;
_queue[++_qback] = u;
}
}
}
// Improve node distances
bool improved = false;
for (int i = 0; i < int(_nodes->size()); ++i) {
v = (*_nodes)[i];
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
e = _in_arcs[v][j];
u = _gr.source(e);
LargeCost delta = _dist[v] + _cost[e] * _curr_size - _curr_cost;
if (_tolerance.less(delta, _dist[u])) {
_dist[u] = delta;
_policy[u] = e;
improved = true;
}
}
}
return improved;
}
}; //class HowardMmc
///@}
} //namespace lemon
#endif //LEMON_HOWARD_MMC_H
|