/usr/include/lemon/maps.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_MAPS_H
#define LEMON_MAPS_H
#include <iterator>
#include <functional>
#include <vector>
#include <map>
#include <lemon/core.h>
///\file
///\ingroup maps
///\brief Miscellaneous property maps
namespace lemon {
/// \addtogroup maps
/// @{
/// Base class of maps.
/// Base class of maps. It provides the necessary type definitions
/// required by the map %concepts.
template<typename K, typename V>
class MapBase {
public:
/// \brief The key type of the map.
typedef K Key;
/// \brief The value type of the map.
/// (The type of objects associated with the keys).
typedef V Value;
};
/// Null map. (a.k.a. DoNothingMap)
/// This map can be used if you have to provide a map only for
/// its type definitions, or if you have to provide a writable map,
/// but data written to it is not required (i.e. it will be sent to
/// <tt>/dev/null</tt>).
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
///
/// \sa ConstMap
template<typename K, typename V>
class NullMap : public MapBase<K, V> {
public:
///\e
typedef K Key;
///\e
typedef V Value;
/// Gives back a default constructed element.
Value operator[](const Key&) const { return Value(); }
/// Absorbs the value.
void set(const Key&, const Value&) {}
};
/// Returns a \c NullMap class
/// This function just returns a \c NullMap class.
/// \relates NullMap
template <typename K, typename V>
NullMap<K, V> nullMap() {
return NullMap<K, V>();
}
/// Constant map.
/// This \ref concepts::ReadMap "readable map" assigns a specified
/// value to each key.
///
/// In other aspects it is equivalent to \c NullMap.
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept, but it absorbs the data written to it.
///
/// The simplest way of using this map is through the constMap()
/// function.
///
/// \sa NullMap
/// \sa IdentityMap
template<typename K, typename V>
class ConstMap : public MapBase<K, V> {
private:
V _value;
public:
///\e
typedef K Key;
///\e
typedef V Value;
/// Default constructor
/// Default constructor.
/// The value of the map will be default constructed.
ConstMap() {}
/// Constructor with specified initial value
/// Constructor with specified initial value.
/// \param v The initial value of the map.
ConstMap(const Value &v) : _value(v) {}
/// Gives back the specified value.
Value operator[](const Key&) const { return _value; }
/// Absorbs the value.
void set(const Key&, const Value&) {}
/// Sets the value that is assigned to each key.
void setAll(const Value &v) {
_value = v;
}
template<typename V1>
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
};
/// Returns a \c ConstMap class
/// This function just returns a \c ConstMap class.
/// \relates ConstMap
template<typename K, typename V>
inline ConstMap<K, V> constMap(const V &v) {
return ConstMap<K, V>(v);
}
template<typename K, typename V>
inline ConstMap<K, V> constMap() {
return ConstMap<K, V>();
}
template<typename T, T v>
struct Const {};
/// Constant map with inlined constant value.
/// This \ref concepts::ReadMap "readable map" assigns a specified
/// value to each key.
///
/// In other aspects it is equivalent to \c NullMap.
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
/// concept, but it absorbs the data written to it.
///
/// The simplest way of using this map is through the constMap()
/// function.
///
/// \sa NullMap
/// \sa IdentityMap
template<typename K, typename V, V v>
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
public:
///\e
typedef K Key;
///\e
typedef V Value;
/// Constructor.
ConstMap() {}
/// Gives back the specified value.
Value operator[](const Key&) const { return v; }
/// Absorbs the value.
void set(const Key&, const Value&) {}
};
/// Returns a \c ConstMap class with inlined constant value
/// This function just returns a \c ConstMap class with inlined
/// constant value.
/// \relates ConstMap
template<typename K, typename V, V v>
inline ConstMap<K, Const<V, v> > constMap() {
return ConstMap<K, Const<V, v> >();
}
/// Identity map.
/// This \ref concepts::ReadMap "read-only map" gives back the given
/// key as value without any modification.
///
/// \sa ConstMap
template <typename T>
class IdentityMap : public MapBase<T, T> {
public:
///\e
typedef T Key;
///\e
typedef T Value;
/// Gives back the given value without any modification.
Value operator[](const Key &k) const {
return k;
}
};
/// Returns an \c IdentityMap class
/// This function just returns an \c IdentityMap class.
/// \relates IdentityMap
template<typename T>
inline IdentityMap<T> identityMap() {
return IdentityMap<T>();
}
/// \brief Map for storing values for integer keys from the range
/// <tt>[0..size-1]</tt>.
///
/// This map is essentially a wrapper for \c std::vector. It assigns
/// values to integer keys from the range <tt>[0..size-1]</tt>.
/// It can be used together with some data structures, e.g.
/// heap types and \c UnionFind, when the used items are small
/// integers. This map conforms to the \ref concepts::ReferenceMap
/// "ReferenceMap" concept.
///
/// The simplest way of using this map is through the rangeMap()
/// function.
template <typename V>
class RangeMap : public MapBase<int, V> {
template <typename V1>
friend class RangeMap;
private:
typedef std::vector<V> Vector;
Vector _vector;
public:
/// Key type
typedef int Key;
/// Value type
typedef V Value;
/// Reference type
typedef typename Vector::reference Reference;
/// Const reference type
typedef typename Vector::const_reference ConstReference;
typedef True ReferenceMapTag;
public:
/// Constructor with specified default value.
RangeMap(int size = 0, const Value &value = Value())
: _vector(size, value) {}
/// Constructs the map from an appropriate \c std::vector.
template <typename V1>
RangeMap(const std::vector<V1>& vector)
: _vector(vector.begin(), vector.end()) {}
/// Constructs the map from another \c RangeMap.
template <typename V1>
RangeMap(const RangeMap<V1> &c)
: _vector(c._vector.begin(), c._vector.end()) {}
/// Returns the size of the map.
int size() {
return _vector.size();
}
/// Resizes the map.
/// Resizes the underlying \c std::vector container, so changes the
/// keyset of the map.
/// \param size The new size of the map. The new keyset will be the
/// range <tt>[0..size-1]</tt>.
/// \param value The default value to assign to the new keys.
void resize(int size, const Value &value = Value()) {
_vector.resize(size, value);
}
private:
RangeMap& operator=(const RangeMap&);
public:
///\e
Reference operator[](const Key &k) {
return _vector[k];
}
///\e
ConstReference operator[](const Key &k) const {
return _vector[k];
}
///\e
void set(const Key &k, const Value &v) {
_vector[k] = v;
}
};
/// Returns a \c RangeMap class
/// This function just returns a \c RangeMap class.
/// \relates RangeMap
template<typename V>
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
return RangeMap<V>(size, value);
}
/// \brief Returns a \c RangeMap class created from an appropriate
/// \c std::vector
/// This function just returns a \c RangeMap class created from an
/// appropriate \c std::vector.
/// \relates RangeMap
template<typename V>
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
return RangeMap<V>(vector);
}
/// Map type based on \c std::map
/// This map is essentially a wrapper for \c std::map with addition
/// that you can specify a default value for the keys that are not
/// stored actually. This value can be different from the default
/// contructed value (i.e. \c %Value()).
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
/// concept.
///
/// This map is useful if a default value should be assigned to most of
/// the keys and different values should be assigned only to a few
/// keys (i.e. the map is "sparse").
/// The name of this type also refers to this important usage.
///
/// Apart form that, this map can be used in many other cases since it
/// is based on \c std::map, which is a general associative container.
/// However, keep in mind that it is usually not as efficient as other
/// maps.
///
/// The simplest way of using this map is through the sparseMap()
/// function.
template <typename K, typename V, typename Comp = std::less<K> >
class SparseMap : public MapBase<K, V> {
template <typename K1, typename V1, typename C1>
friend class SparseMap;
public:
/// Key type
typedef K Key;
/// Value type
typedef V Value;
/// Reference type
typedef Value& Reference;
/// Const reference type
typedef const Value& ConstReference;
typedef True ReferenceMapTag;
private:
typedef std::map<K, V, Comp> Map;
Map _map;
Value _value;
public:
/// \brief Constructor with specified default value.
SparseMap(const Value &value = Value()) : _value(value) {}
/// \brief Constructs the map from an appropriate \c std::map, and
/// explicitly specifies a default value.
template <typename V1, typename Comp1>
SparseMap(const std::map<Key, V1, Comp1> &map,
const Value &value = Value())
: _map(map.begin(), map.end()), _value(value) {}
/// \brief Constructs the map from another \c SparseMap.
template<typename V1, typename Comp1>
SparseMap(const SparseMap<Key, V1, Comp1> &c)
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
private:
SparseMap& operator=(const SparseMap&);
public:
///\e
Reference operator[](const Key &k) {
typename Map::iterator it = _map.lower_bound(k);
if (it != _map.end() && !_map.key_comp()(k, it->first))
return it->second;
else
return _map.insert(it, std::make_pair(k, _value))->second;
}
///\e
ConstReference operator[](const Key &k) const {
typename Map::const_iterator it = _map.find(k);
if (it != _map.end())
return it->second;
else
return _value;
}
///\e
void set(const Key &k, const Value &v) {
typename Map::iterator it = _map.lower_bound(k);
if (it != _map.end() && !_map.key_comp()(k, it->first))
it->second = v;
else
_map.insert(it, std::make_pair(k, v));
}
///\e
void setAll(const Value &v) {
_value = v;
_map.clear();
}
};
/// Returns a \c SparseMap class
/// This function just returns a \c SparseMap class with specified
/// default value.
/// \relates SparseMap
template<typename K, typename V, typename Compare>
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
return SparseMap<K, V, Compare>(value);
}
template<typename K, typename V>
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
return SparseMap<K, V, std::less<K> >(value);
}
/// \brief Returns a \c SparseMap class created from an appropriate
/// \c std::map
/// This function just returns a \c SparseMap class created from an
/// appropriate \c std::map.
/// \relates SparseMap
template<typename K, typename V, typename Compare>
inline SparseMap<K, V, Compare>
sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
{
return SparseMap<K, V, Compare>(map, value);
}
/// @}
/// \addtogroup map_adaptors
/// @{
/// Composition of two maps
/// This \ref concepts::ReadMap "read-only map" returns the
/// composition of two given maps. That is to say, if \c m1 is of
/// type \c M1 and \c m2 is of \c M2, then for
/// \code
/// ComposeMap<M1, M2> cm(m1,m2);
/// \endcode
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
///
/// The \c Key type of the map is inherited from \c M2 and the
/// \c Value type is from \c M1.
/// \c M2::Value must be convertible to \c M1::Key.
///
/// The simplest way of using this map is through the composeMap()
/// function.
///
/// \sa CombineMap
template <typename M1, typename M2>
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M2::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
typename MapTraits<M1>::ConstReturnValue
operator[](const Key &k) const { return _m1[_m2[k]]; }
};
/// Returns a \c ComposeMap class
/// This function just returns a \c ComposeMap class.
///
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
/// will be equal to <tt>m1[m2[x]]</tt>.
///
/// \relates ComposeMap
template <typename M1, typename M2>
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
return ComposeMap<M1, M2>(m1, m2);
}
/// Combination of two maps using an STL (binary) functor.
/// This \ref concepts::ReadMap "read-only map" takes two maps and a
/// binary functor and returns the combination of the two given maps
/// using the functor.
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
/// and \c f is of \c F, then for
/// \code
/// CombineMap<M1,M2,F,V> cm(m1,m2,f);
/// \endcode
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
///
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key
/// must be convertible to \c M2::Key) and the \c Value type is \c V.
/// \c M2::Value and \c M1::Value must be convertible to the
/// corresponding input parameter of \c F and the return type of \c F
/// must be convertible to \c V.
///
/// The simplest way of using this map is through the combineMap()
/// function.
///
/// \sa ComposeMap
template<typename M1, typename M2, typename F,
typename V = typename F::result_type>
class CombineMap : public MapBase<typename M1::Key, V> {
const M1 &_m1;
const M2 &_m2;
F _f;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef V Value;
/// Constructor
CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
: _m1(m1), _m2(m2), _f(f) {}
///\e
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
};
/// Returns a \c CombineMap class
/// This function just returns a \c CombineMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then
/// \code
/// combineMap(m1,m2,std::plus<double>())
/// \endcode
/// is equivalent to
/// \code
/// addMap(m1,m2)
/// \endcode
///
/// This function is specialized for adaptable binary function
/// classes and C++ functions.
///
/// \relates CombineMap
template<typename M1, typename M2, typename F, typename V>
inline CombineMap<M1, M2, F, V>
combineMap(const M1 &m1, const M2 &m2, const F &f) {
return CombineMap<M1, M2, F, V>(m1,m2,f);
}
template<typename M1, typename M2, typename F>
inline CombineMap<M1, M2, F, typename F::result_type>
combineMap(const M1 &m1, const M2 &m2, const F &f) {
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
}
template<typename M1, typename M2, typename K1, typename K2, typename V>
inline CombineMap<M1, M2, V (*)(K1, K2), V>
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
}
/// Converts an STL style (unary) functor to a map
/// This \ref concepts::ReadMap "read-only map" returns the value
/// of a given functor. Actually, it just wraps the functor and
/// provides the \c Key and \c Value typedefs.
///
/// Template parameters \c K and \c V will become its \c Key and
/// \c Value. In most cases they have to be given explicitly because
/// a functor typically does not provide \c argument_type and
/// \c result_type typedefs.
/// Parameter \c F is the type of the used functor.
///
/// The simplest way of using this map is through the functorToMap()
/// function.
///
/// \sa MapToFunctor
template<typename F,
typename K = typename F::argument_type,
typename V = typename F::result_type>
class FunctorToMap : public MapBase<K, V> {
F _f;
public:
///\e
typedef K Key;
///\e
typedef V Value;
/// Constructor
FunctorToMap(const F &f = F()) : _f(f) {}
///\e
Value operator[](const Key &k) const { return _f(k); }
};
/// Returns a \c FunctorToMap class
/// This function just returns a \c FunctorToMap class.
///
/// This function is specialized for adaptable binary function
/// classes and C++ functions.
///
/// \relates FunctorToMap
template<typename K, typename V, typename F>
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
return FunctorToMap<F, K, V>(f);
}
template <typename F>
inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
functorToMap(const F &f)
{
return FunctorToMap<F, typename F::argument_type,
typename F::result_type>(f);
}
template <typename K, typename V>
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
return FunctorToMap<V (*)(K), K, V>(f);
}
/// Converts a map to an STL style (unary) functor
/// This class converts a map to an STL style (unary) functor.
/// That is it provides an <tt>operator()</tt> to read its values.
///
/// For the sake of convenience it also works as a usual
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
/// and the \c Key and \c Value typedefs also exist.
///
/// The simplest way of using this map is through the mapToFunctor()
/// function.
///
///\sa FunctorToMap
template <typename M>
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
typedef typename M::Key argument_type;
typedef typename M::Value result_type;
/// Constructor
MapToFunctor(const M &m) : _m(m) {}
///\e
Value operator()(const Key &k) const { return _m[k]; }
///\e
Value operator[](const Key &k) const { return _m[k]; }
};
/// Returns a \c MapToFunctor class
/// This function just returns a \c MapToFunctor class.
/// \relates MapToFunctor
template<typename M>
inline MapToFunctor<M> mapToFunctor(const M &m) {
return MapToFunctor<M>(m);
}
/// \brief Map adaptor to convert the \c Value type of a map to
/// another type using the default conversion.
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
/// "readable map" to another type using the default conversion.
/// The \c Key type of it is inherited from \c M and the \c Value
/// type is \c V.
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
///
/// The simplest way of using this map is through the convertMap()
/// function.
template <typename M, typename V>
class ConvertMap : public MapBase<typename M::Key, V> {
const M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef V Value;
/// Constructor
/// Constructor.
/// \param m The underlying map.
ConvertMap(const M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return _m[k]; }
};
/// Returns a \c ConvertMap class
/// This function just returns a \c ConvertMap class.
/// \relates ConvertMap
template<typename V, typename M>
inline ConvertMap<M, V> convertMap(const M &map) {
return ConvertMap<M, V>(map);
}
/// Applies all map setting operations to two maps
/// This map has two \ref concepts::WriteMap "writable map" parameters
/// and each write request will be passed to both of them.
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read
/// operations will return the corresponding values of \c M1.
///
/// The \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible from those
/// of \c M1.
///
/// The simplest way of using this map is through the forkMap()
/// function.
template<typename M1, typename M2>
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
M1 &_m1;
M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
/// Returns the value associated with the given key in the first map.
Value operator[](const Key &k) const { return _m1[k]; }
/// Sets the value associated with the given key in both maps.
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
};
/// Returns a \c ForkMap class
/// This function just returns a \c ForkMap class.
/// \relates ForkMap
template <typename M1, typename M2>
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
return ForkMap<M1,M2>(m1,m2);
}
/// Sum of two maps
/// This \ref concepts::ReadMap "read-only map" returns the sum
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// AddMap<M1,M2> am(m1,m2);
/// \endcode
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
///
/// The simplest way of using this map is through the addMap()
/// function.
///
/// \sa SubMap, MulMap, DivMap
/// \sa ShiftMap, ShiftWriteMap
template<typename M1, typename M2>
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
};
/// Returns an \c AddMap class
/// This function just returns an \c AddMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]+m2[x]</tt>.
///
/// \relates AddMap
template<typename M1, typename M2>
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
return AddMap<M1, M2>(m1,m2);
}
/// Difference of two maps
/// This \ref concepts::ReadMap "read-only map" returns the difference
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// SubMap<M1,M2> sm(m1,m2);
/// \endcode
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
///
/// The simplest way of using this map is through the subMap()
/// function.
///
/// \sa AddMap, MulMap, DivMap
template<typename M1, typename M2>
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
};
/// Returns a \c SubMap class
/// This function just returns a \c SubMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]-m2[x]</tt>.
///
/// \relates SubMap
template<typename M1, typename M2>
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
return SubMap<M1, M2>(m1,m2);
}
/// Product of two maps
/// This \ref concepts::ReadMap "read-only map" returns the product
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// MulMap<M1,M2> mm(m1,m2);
/// \endcode
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
///
/// The simplest way of using this map is through the mulMap()
/// function.
///
/// \sa AddMap, SubMap, DivMap
/// \sa ScaleMap, ScaleWriteMap
template<typename M1, typename M2>
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
};
/// Returns a \c MulMap class
/// This function just returns a \c MulMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]*m2[x]</tt>.
///
/// \relates MulMap
template<typename M1, typename M2>
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
return MulMap<M1, M2>(m1,m2);
}
/// Quotient of two maps
/// This \ref concepts::ReadMap "read-only map" returns the quotient
/// of the values of the two given maps.
/// Its \c Key and \c Value types are inherited from \c M1.
/// The \c Key and \c Value of \c M2 must be convertible to those of
/// \c M1.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// DivMap<M1,M2> dm(m1,m2);
/// \endcode
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
///
/// The simplest way of using this map is through the divMap()
/// function.
///
/// \sa AddMap, SubMap, MulMap
template<typename M1, typename M2>
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef typename M1::Value Value;
/// Constructor
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
};
/// Returns a \c DivMap class
/// This function just returns a \c DivMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c double
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]/m2[x]</tt>.
///
/// \relates DivMap
template<typename M1, typename M2>
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
return DivMap<M1, M2>(m1,m2);
}
/// Shifts a map with a constant.
/// This \ref concepts::ReadMap "read-only map" returns the sum of
/// the given map and a constant value (i.e. it shifts the map with
/// the constant). Its \c Key and \c Value are inherited from \c M.
///
/// Actually,
/// \code
/// ShiftMap<M> sh(m,v);
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<M::Key, M::Value> cm(v);
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
/// \endcode
///
/// The simplest way of using this map is through the shiftMap()
/// function.
///
/// \sa ShiftWriteMap
template<typename M, typename C = typename M::Value>
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
C _v;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
///\e
Value operator[](const Key &k) const { return _m[k]+_v; }
};
/// Shifts a map with a constant (read-write version).
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum
/// of the given map and a constant value (i.e. it shifts the map with
/// the constant). Its \c Key and \c Value are inherited from \c M.
/// It makes also possible to write the map.
///
/// The simplest way of using this map is through the shiftWriteMap()
/// function.
///
/// \sa ShiftMap
template<typename M, typename C = typename M::Value>
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
C _v;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
///\e
Value operator[](const Key &k) const { return _m[k]+_v; }
///\e
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
};
/// Returns a \c ShiftMap class
/// This function just returns a \c ShiftMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
/// <tt>m[x]+v</tt>.
///
/// \relates ShiftMap
template<typename M, typename C>
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
return ShiftMap<M, C>(m,v);
}
/// Returns a \c ShiftWriteMap class
/// This function just returns a \c ShiftWriteMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
/// <tt>m[x]+v</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates ShiftWriteMap
template<typename M, typename C>
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
return ShiftWriteMap<M, C>(m,v);
}
/// Scales a map with a constant.
/// This \ref concepts::ReadMap "read-only map" returns the value of
/// the given map multiplied from the left side with a constant value.
/// Its \c Key and \c Value are inherited from \c M.
///
/// Actually,
/// \code
/// ScaleMap<M> sc(m,v);
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<M::Key, M::Value> cm(v);
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
/// \endcode
///
/// The simplest way of using this map is through the scaleMap()
/// function.
///
/// \sa ScaleWriteMap
template<typename M, typename C = typename M::Value>
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
C _v;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
///\e
Value operator[](const Key &k) const { return _v*_m[k]; }
};
/// Scales a map with a constant (read-write version).
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of
/// the given map multiplied from the left side with a constant value.
/// Its \c Key and \c Value are inherited from \c M.
/// It can also be used as write map if the \c / operator is defined
/// between \c Value and \c C and the given multiplier is not zero.
///
/// The simplest way of using this map is through the scaleWriteMap()
/// function.
///
/// \sa ScaleMap
template<typename M, typename C = typename M::Value>
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
C _v;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
/// Constructor.
/// \param m The undelying map.
/// \param v The constant value.
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
///\e
Value operator[](const Key &k) const { return _v*_m[k]; }
///\e
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
};
/// Returns a \c ScaleMap class
/// This function just returns a \c ScaleMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
/// <tt>v*m[x]</tt>.
///
/// \relates ScaleMap
template<typename M, typename C>
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
return ScaleMap<M, C>(m,v);
}
/// Returns a \c ScaleWriteMap class
/// This function just returns a \c ScaleWriteMap class.
///
/// For example, if \c m is a map with \c double values and \c v is
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
/// <tt>v*m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates ScaleWriteMap
template<typename M, typename C>
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
return ScaleWriteMap<M, C>(m,v);
}
/// Negative of a map
/// This \ref concepts::ReadMap "read-only map" returns the negative
/// of the values of the given map (using the unary \c - operator).
/// Its \c Key and \c Value are inherited from \c M.
///
/// If M::Value is \c int, \c double etc., then
/// \code
/// NegMap<M> neg(m);
/// \endcode
/// is equivalent to
/// \code
/// ScaleMap<M> neg(m,-1);
/// \endcode
///
/// The simplest way of using this map is through the negMap()
/// function.
///
/// \sa NegWriteMap
template<typename M>
class NegMap : public MapBase<typename M::Key, typename M::Value> {
const M& _m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
NegMap(const M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return -_m[k]; }
};
/// Negative of a map (read-write version)
/// This \ref concepts::ReadWriteMap "read-write map" returns the
/// negative of the values of the given map (using the unary \c -
/// operator).
/// Its \c Key and \c Value are inherited from \c M.
/// It makes also possible to write the map.
///
/// If M::Value is \c int, \c double etc., then
/// \code
/// NegWriteMap<M> neg(m);
/// \endcode
/// is equivalent to
/// \code
/// ScaleWriteMap<M> neg(m,-1);
/// \endcode
///
/// The simplest way of using this map is through the negWriteMap()
/// function.
///
/// \sa NegMap
template<typename M>
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
NegWriteMap(M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return -_m[k]; }
///\e
void set(const Key &k, const Value &v) { _m.set(k, -v); }
};
/// Returns a \c NegMap class
/// This function just returns a \c NegMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
///
/// \relates NegMap
template <typename M>
inline NegMap<M> negMap(const M &m) {
return NegMap<M>(m);
}
/// Returns a \c NegWriteMap class
/// This function just returns a \c NegWriteMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates NegWriteMap
template <typename M>
inline NegWriteMap<M> negWriteMap(M &m) {
return NegWriteMap<M>(m);
}
/// Absolute value of a map
/// This \ref concepts::ReadMap "read-only map" returns the absolute
/// value of the values of the given map.
/// Its \c Key and \c Value are inherited from \c M.
/// \c Value must be comparable to \c 0 and the unary \c -
/// operator must be defined for it, of course.
///
/// The simplest way of using this map is through the absMap()
/// function.
template<typename M>
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
const M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef typename M::Value Value;
/// Constructor
AbsMap(const M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const {
Value tmp = _m[k];
return tmp >= 0 ? tmp : -tmp;
}
};
/// Returns an \c AbsMap class
/// This function just returns an \c AbsMap class.
///
/// For example, if \c m is a map with \c double values, then
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
/// negative.
///
/// \relates AbsMap
template<typename M>
inline AbsMap<M> absMap(const M &m) {
return AbsMap<M>(m);
}
/// @}
// Logical maps and map adaptors:
/// \addtogroup maps
/// @{
/// Constant \c true map.
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// each key.
///
/// Note that
/// \code
/// TrueMap<K> tm;
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<K,bool> tm(true);
/// \endcode
///
/// \sa FalseMap
/// \sa ConstMap
template <typename K>
class TrueMap : public MapBase<K, bool> {
public:
///\e
typedef K Key;
///\e
typedef bool Value;
/// Gives back \c true.
Value operator[](const Key&) const { return true; }
};
/// Returns a \c TrueMap class
/// This function just returns a \c TrueMap class.
/// \relates TrueMap
template<typename K>
inline TrueMap<K> trueMap() {
return TrueMap<K>();
}
/// Constant \c false map.
/// This \ref concepts::ReadMap "read-only map" assigns \c false to
/// each key.
///
/// Note that
/// \code
/// FalseMap<K> fm;
/// \endcode
/// is equivalent to
/// \code
/// ConstMap<K,bool> fm(false);
/// \endcode
///
/// \sa TrueMap
/// \sa ConstMap
template <typename K>
class FalseMap : public MapBase<K, bool> {
public:
///\e
typedef K Key;
///\e
typedef bool Value;
/// Gives back \c false.
Value operator[](const Key&) const { return false; }
};
/// Returns a \c FalseMap class
/// This function just returns a \c FalseMap class.
/// \relates FalseMap
template<typename K>
inline FalseMap<K> falseMap() {
return FalseMap<K>();
}
/// @}
/// \addtogroup map_adaptors
/// @{
/// Logical 'and' of two maps
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// 'and' of the values of the two given maps.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// AndMap<M1,M2> am(m1,m2);
/// \endcode
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
///
/// The simplest way of using this map is through the andMap()
/// function.
///
/// \sa OrMap
/// \sa NotMap, NotWriteMap
template<typename M1, typename M2>
class AndMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef bool Value;
/// Constructor
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
};
/// Returns an \c AndMap class
/// This function just returns an \c AndMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]&&m2[x]</tt>.
///
/// \relates AndMap
template<typename M1, typename M2>
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
return AndMap<M1, M2>(m1,m2);
}
/// Logical 'or' of two maps
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// 'or' of the values of the two given maps.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// OrMap<M1,M2> om(m1,m2);
/// \endcode
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
///
/// The simplest way of using this map is through the orMap()
/// function.
///
/// \sa AndMap
/// \sa NotMap, NotWriteMap
template<typename M1, typename M2>
class OrMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef bool Value;
/// Constructor
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
};
/// Returns an \c OrMap class
/// This function just returns an \c OrMap class.
///
/// For example, if \c m1 and \c m2 are both maps with \c bool values,
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]||m2[x]</tt>.
///
/// \relates OrMap
template<typename M1, typename M2>
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
return OrMap<M1, M2>(m1,m2);
}
/// Logical 'not' of a map
/// This \ref concepts::ReadMap "read-only map" returns the logical
/// negation of the values of the given map.
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
///
/// The simplest way of using this map is through the notMap()
/// function.
///
/// \sa NotWriteMap
template <typename M>
class NotMap : public MapBase<typename M::Key, bool> {
const M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef bool Value;
/// Constructor
NotMap(const M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return !_m[k]; }
};
/// Logical 'not' of a map (read-write version)
/// This \ref concepts::ReadWriteMap "read-write map" returns the
/// logical negation of the values of the given map.
/// Its \c Key is inherited from \c M and its \c Value is \c bool.
/// It makes also possible to write the map. When a value is set,
/// the opposite value is set to the original map.
///
/// The simplest way of using this map is through the notWriteMap()
/// function.
///
/// \sa NotMap
template <typename M>
class NotWriteMap : public MapBase<typename M::Key, bool> {
M &_m;
public:
///\e
typedef typename M::Key Key;
///\e
typedef bool Value;
/// Constructor
NotWriteMap(M &m) : _m(m) {}
///\e
Value operator[](const Key &k) const { return !_m[k]; }
///\e
void set(const Key &k, bool v) { _m.set(k, !v); }
};
/// Returns a \c NotMap class
/// This function just returns a \c NotMap class.
///
/// For example, if \c m is a map with \c bool values, then
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
///
/// \relates NotMap
template <typename M>
inline NotMap<M> notMap(const M &m) {
return NotMap<M>(m);
}
/// Returns a \c NotWriteMap class
/// This function just returns a \c NotWriteMap class.
///
/// For example, if \c m is a map with \c bool values, then
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
/// Moreover it makes also possible to write the map.
///
/// \relates NotWriteMap
template <typename M>
inline NotWriteMap<M> notWriteMap(M &m) {
return NotWriteMap<M>(m);
}
/// Combination of two maps using the \c == operator
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// the keys for which the corresponding values of the two maps are
/// equal.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// EqualMap<M1,M2> em(m1,m2);
/// \endcode
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
///
/// The simplest way of using this map is through the equalMap()
/// function.
///
/// \sa LessMap
template<typename M1, typename M2>
class EqualMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef bool Value;
/// Constructor
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
};
/// Returns an \c EqualMap class
/// This function just returns an \c EqualMap class.
///
/// For example, if \c m1 and \c m2 are maps with keys and values of
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]==m2[x]</tt>.
///
/// \relates EqualMap
template<typename M1, typename M2>
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
return EqualMap<M1, M2>(m1,m2);
}
/// Combination of two maps using the \c < operator
/// This \ref concepts::ReadMap "read-only map" assigns \c true to
/// the keys for which the corresponding value of the first map is
/// less then the value of the second map.
/// Its \c Key type is inherited from \c M1 and its \c Value type is
/// \c bool. \c M2::Key must be convertible to \c M1::Key.
///
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
/// \code
/// LessMap<M1,M2> lm(m1,m2);
/// \endcode
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
///
/// The simplest way of using this map is through the lessMap()
/// function.
///
/// \sa EqualMap
template<typename M1, typename M2>
class LessMap : public MapBase<typename M1::Key, bool> {
const M1 &_m1;
const M2 &_m2;
public:
///\e
typedef typename M1::Key Key;
///\e
typedef bool Value;
/// Constructor
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
///\e
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
};
/// Returns an \c LessMap class
/// This function just returns an \c LessMap class.
///
/// For example, if \c m1 and \c m2 are maps with keys and values of
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
/// <tt>m1[x]<m2[x]</tt>.
///
/// \relates LessMap
template<typename M1, typename M2>
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
return LessMap<M1, M2>(m1,m2);
}
namespace _maps_bits {
template <typename _Iterator, typename Enable = void>
struct IteratorTraits {
typedef typename std::iterator_traits<_Iterator>::value_type Value;
};
template <typename _Iterator>
struct IteratorTraits<_Iterator,
typename exists<typename _Iterator::container_type>::type>
{
typedef typename _Iterator::container_type::value_type Value;
};
}
/// @}
/// \addtogroup maps
/// @{
/// \brief Writable bool map for logging each \c true assigned element
///
/// A \ref concepts::WriteMap "writable" bool map for logging
/// each \c true assigned element, i.e it copies subsequently each
/// keys set to \c true to the given iterator.
/// The most important usage of it is storing certain nodes or arcs
/// that were marked \c true by an algorithm.
///
/// There are several algorithms that provide solutions through bool
/// maps and most of them assign \c true at most once for each key.
/// In these cases it is a natural request to store each \c true
/// assigned elements (in order of the assignment), which can be
/// easily done with LoggerBoolMap.
///
/// The simplest way of using this map is through the loggerBoolMap()
/// function.
///
/// \tparam IT The type of the iterator.
/// \tparam KEY The key type of the map. The default value set
/// according to the iterator type should work in most cases.
///
/// \note The container of the iterator must contain enough space
/// for the elements or the iterator should be an inserter iterator.
#ifdef DOXYGEN
template <typename IT, typename KEY>
#else
template <typename IT,
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
#endif
class LoggerBoolMap : public MapBase<KEY, bool> {
public:
///\e
typedef KEY Key;
///\e
typedef bool Value;
///\e
typedef IT Iterator;
/// Constructor
LoggerBoolMap(Iterator it)
: _begin(it), _end(it) {}
/// Gives back the given iterator set for the first key
Iterator begin() const {
return _begin;
}
/// Gives back the the 'after the last' iterator
Iterator end() const {
return _end;
}
/// The set function of the map
void set(const Key& key, Value value) {
if (value) {
*_end++ = key;
}
}
private:
Iterator _begin;
Iterator _end;
};
/// Returns a \c LoggerBoolMap class
/// This function just returns a \c LoggerBoolMap class.
///
/// The most important usage of it is storing certain nodes or arcs
/// that were marked \c true by an algorithm.
/// For example, it makes easier to store the nodes in the processing
/// order of Dfs algorithm, as the following examples show.
/// \code
/// std::vector<Node> v;
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
/// \endcode
/// \code
/// std::vector<Node> v(countNodes(g));
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
/// \endcode
///
/// \note The container of the iterator must contain enough space
/// for the elements or the iterator should be an inserter iterator.
///
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
/// it cannot be used when a readable map is needed, for example, as
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
///
/// \relates LoggerBoolMap
template<typename Iterator>
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
return LoggerBoolMap<Iterator>(it);
}
/// @}
/// \addtogroup graph_maps
/// @{
/// \brief Provides an immutable and unique id for each item in a graph.
///
/// IdMap provides a unique and immutable id for each item of the
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
/// - \b unique: different items get different ids,
/// - \b immutable: the id of an item does not change (even if you
/// delete other nodes).
///
/// Using this map you get access (i.e. can read) the inner id values of
/// the items stored in the graph, which is returned by the \c id()
/// function of the graph. This map can be inverted with its member
/// class \c InverseMap or with the \c operator()() member.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
///
/// \see RangeIdMap
template <typename GR, typename K>
class IdMap : public MapBase<K, int> {
public:
/// The graph type of IdMap.
typedef GR Graph;
typedef GR Digraph;
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
typedef K Item;
/// The key type of IdMap (\c Node, \c Arc or \c Edge).
typedef K Key;
/// The value type of IdMap.
typedef int Value;
/// \brief Constructor.
///
/// Constructor of the map.
explicit IdMap(const Graph& graph) : _graph(&graph) {}
/// \brief Gives back the \e id of the item.
///
/// Gives back the immutable and unique \e id of the item.
int operator[](const Item& item) const { return _graph->id(item);}
/// \brief Gives back the \e item by its id.
///
/// Gives back the \e item by its id.
Item operator()(int id) { return _graph->fromId(id, Item()); }
private:
const Graph* _graph;
public:
/// \brief The inverse map type of IdMap.
///
/// The inverse map type of IdMap. The subscript operator gives back
/// an item by its id.
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
/// \see inverse()
class InverseMap {
public:
/// \brief Constructor.
///
/// Constructor for creating an id-to-item map.
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
/// \brief Constructor.
///
/// Constructor for creating an id-to-item map.
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
/// \brief Gives back an item by its id.
///
/// Gives back an item by its id.
Item operator[](int id) const { return _graph->fromId(id, Item());}
private:
const Graph* _graph;
};
/// \brief Gives back the inverse of the map.
///
/// Gives back the inverse of the IdMap.
InverseMap inverse() const { return InverseMap(*_graph);}
};
/// \brief Returns an \c IdMap class.
///
/// This function just returns an \c IdMap class.
/// \relates IdMap
template <typename K, typename GR>
inline IdMap<GR, K> idMap(const GR& graph) {
return IdMap<GR, K>(graph);
}
/// \brief General cross reference graph map type.
/// This class provides simple invertable graph maps.
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
/// and if a key is set to a new value, then stores it in the inverse map.
/// The graph items can be accessed by their values either using
/// \c InverseMap or \c operator()(), and the values of the map can be
/// accessed with an STL compatible forward iterator (\c ValueIt).
///
/// This map is intended to be used when all associated values are
/// different (the map is actually invertable) or there are only a few
/// items with the same value.
/// Otherwise consider to use \c IterableValueMap, which is more
/// suitable and more efficient for such cases. It provides iterators
/// to traverse the items with the same associated value, but
/// it does not have \c InverseMap.
///
/// This type is not reference map, so it cannot be modified with
/// the subscript operator.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
/// \tparam V The value type of the map.
///
/// \see IterableValueMap
template <typename GR, typename K, typename V>
class CrossRefMap
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
private:
typedef typename ItemSetTraits<GR, K>::
template Map<V>::Type Map;
typedef std::multimap<V, K> Container;
Container _inv_map;
public:
/// The graph type of CrossRefMap.
typedef GR Graph;
typedef GR Digraph;
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
typedef K Item;
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
typedef K Key;
/// The value type of CrossRefMap.
typedef V Value;
/// \brief Constructor.
///
/// Construct a new CrossRefMap for the given graph.
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
/// \brief Forward iterator for values.
///
/// This iterator is an STL compatible forward
/// iterator on the values of the map. The values can
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
/// They are considered with multiplicity, so each value is
/// traversed for each item it is assigned to.
class ValueIt
: public std::iterator<std::forward_iterator_tag, Value> {
friend class CrossRefMap;
private:
ValueIt(typename Container::const_iterator _it)
: it(_it) {}
public:
/// Constructor
ValueIt() {}
/// \e
ValueIt& operator++() { ++it; return *this; }
/// \e
ValueIt operator++(int) {
ValueIt tmp(*this);
operator++();
return tmp;
}
/// \e
const Value& operator*() const { return it->first; }
/// \e
const Value* operator->() const { return &(it->first); }
/// \e
bool operator==(ValueIt jt) const { return it == jt.it; }
/// \e
bool operator!=(ValueIt jt) const { return it != jt.it; }
private:
typename Container::const_iterator it;
};
/// Alias for \c ValueIt
typedef ValueIt ValueIterator;
/// \brief Returns an iterator to the first value.
///
/// Returns an STL compatible iterator to the
/// first value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
/// range.
ValueIt beginValue() const {
return ValueIt(_inv_map.begin());
}
/// \brief Returns an iterator after the last value.
///
/// Returns an STL compatible iterator after the
/// last value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
/// range.
ValueIt endValue() const {
return ValueIt(_inv_map.end());
}
/// \brief Sets the value associated with the given key.
///
/// Sets the value associated with the given key.
void set(const Key& key, const Value& val) {
Value oldval = Map::operator[](key);
typename Container::iterator it;
for (it = _inv_map.equal_range(oldval).first;
it != _inv_map.equal_range(oldval).second; ++it) {
if (it->second == key) {
_inv_map.erase(it);
break;
}
}
_inv_map.insert(std::make_pair(val, key));
Map::set(key, val);
}
/// \brief Returns the value associated with the given key.
///
/// Returns the value associated with the given key.
typename MapTraits<Map>::ConstReturnValue
operator[](const Key& key) const {
return Map::operator[](key);
}
/// \brief Gives back an item by its value.
///
/// This function gives back an item that is assigned to
/// the given value or \c INVALID if no such item exists.
/// If there are more items with the same associated value,
/// only one of them is returned.
Key operator()(const Value& val) const {
typename Container::const_iterator it = _inv_map.find(val);
return it != _inv_map.end() ? it->second : INVALID;
}
/// \brief Returns the number of items with the given value.
///
/// This function returns the number of items with the given value
/// associated with it.
int count(const Value &val) const {
return _inv_map.count(val);
}
protected:
/// \brief Erase the key from the map and the inverse map.
///
/// Erase the key from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const Key& key) {
Value val = Map::operator[](key);
typename Container::iterator it;
for (it = _inv_map.equal_range(val).first;
it != _inv_map.equal_range(val).second; ++it) {
if (it->second == key) {
_inv_map.erase(it);
break;
}
}
Map::erase(key);
}
/// \brief Erase more keys from the map and the inverse map.
///
/// Erase more keys from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
Value val = Map::operator[](keys[i]);
typename Container::iterator it;
for (it = _inv_map.equal_range(val).first;
it != _inv_map.equal_range(val).second; ++it) {
if (it->second == keys[i]) {
_inv_map.erase(it);
break;
}
}
}
Map::erase(keys);
}
/// \brief Clear the keys from the map and the inverse map.
///
/// Clear the keys from the map and the inverse map. It is called by the
/// \c AlterationNotifier.
virtual void clear() {
_inv_map.clear();
Map::clear();
}
public:
/// \brief The inverse map type of CrossRefMap.
///
/// The inverse map type of CrossRefMap. The subscript operator gives
/// back an item by its value.
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
/// \see inverse()
class InverseMap {
public:
/// \brief Constructor
///
/// Constructor of the InverseMap.
explicit InverseMap(const CrossRefMap& inverted)
: _inverted(inverted) {}
/// The value type of the InverseMap.
typedef typename CrossRefMap::Key Value;
/// The key type of the InverseMap.
typedef typename CrossRefMap::Value Key;
/// \brief Subscript operator.
///
/// Subscript operator. It gives back an item
/// that is assigned to the given value or \c INVALID
/// if no such item exists.
Value operator[](const Key& key) const {
return _inverted(key);
}
private:
const CrossRefMap& _inverted;
};
/// \brief Gives back the inverse of the map.
///
/// Gives back the inverse of the CrossRefMap.
InverseMap inverse() const {
return InverseMap(*this);
}
};
/// \brief Provides continuous and unique id for the
/// items of a graph.
///
/// RangeIdMap provides a unique and continuous
/// id for each item of a given type (\c Node, \c Arc or
/// \c Edge) in a graph. This id is
/// - \b unique: different items get different ids,
/// - \b continuous: the range of the ids is the set of integers
/// between 0 and \c n-1, where \c n is the number of the items of
/// this type (\c Node, \c Arc or \c Edge).
/// - So, the ids can change when deleting an item of the same type.
///
/// Thus this id is not (necessarily) the same as what can get using
/// the \c id() function of the graph or \ref IdMap.
/// This map can be inverted with its member class \c InverseMap,
/// or with the \c operator()() member.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
///
/// \see IdMap
template <typename GR, typename K>
class RangeIdMap
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
public:
/// The graph type of RangeIdMap.
typedef GR Graph;
typedef GR Digraph;
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
typedef K Item;
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
typedef K Key;
/// The value type of RangeIdMap.
typedef int Value;
/// \brief Constructor.
///
/// Constructor.
explicit RangeIdMap(const Graph& gr) : Map(gr) {
Item it;
const typename Map::Notifier* nf = Map::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Map::set(it, _inv_map.size());
_inv_map.push_back(it);
}
}
protected:
/// \brief Adds a new key to the map.
///
/// Add a new key to the map. It is called by the
/// \c AlterationNotifier.
virtual void add(const Item& item) {
Map::add(item);
Map::set(item, _inv_map.size());
_inv_map.push_back(item);
}
/// \brief Add more new keys to the map.
///
/// Add more new keys to the map. It is called by the
/// \c AlterationNotifier.
virtual void add(const std::vector<Item>& items) {
Map::add(items);
for (int i = 0; i < int(items.size()); ++i) {
Map::set(items[i], _inv_map.size());
_inv_map.push_back(items[i]);
}
}
/// \brief Erase the key from the map.
///
/// Erase the key from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const Item& item) {
Map::set(_inv_map.back(), Map::operator[](item));
_inv_map[Map::operator[](item)] = _inv_map.back();
_inv_map.pop_back();
Map::erase(item);
}
/// \brief Erase more keys from the map.
///
/// Erase more keys from the map. It is called by the
/// \c AlterationNotifier.
virtual void erase(const std::vector<Item>& items) {
for (int i = 0; i < int(items.size()); ++i) {
Map::set(_inv_map.back(), Map::operator[](items[i]));
_inv_map[Map::operator[](items[i])] = _inv_map.back();
_inv_map.pop_back();
}
Map::erase(items);
}
/// \brief Build the unique map.
///
/// Build the unique map. It is called by the
/// \c AlterationNotifier.
virtual void build() {
Map::build();
Item it;
const typename Map::Notifier* nf = Map::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Map::set(it, _inv_map.size());
_inv_map.push_back(it);
}
}
/// \brief Clear the keys from the map.
///
/// Clear the keys from the map. It is called by the
/// \c AlterationNotifier.
virtual void clear() {
_inv_map.clear();
Map::clear();
}
public:
/// \brief Returns the maximal value plus one.
///
/// Returns the maximal value plus one in the map.
unsigned int size() const {
return _inv_map.size();
}
/// \brief Swaps the position of the two items in the map.
///
/// Swaps the position of the two items in the map.
void swap(const Item& p, const Item& q) {
int pi = Map::operator[](p);
int qi = Map::operator[](q);
Map::set(p, qi);
_inv_map[qi] = p;
Map::set(q, pi);
_inv_map[pi] = q;
}
/// \brief Gives back the \e range \e id of the item
///
/// Gives back the \e range \e id of the item.
int operator[](const Item& item) const {
return Map::operator[](item);
}
/// \brief Gives back the item belonging to a \e range \e id
///
/// Gives back the item belonging to the given \e range \e id.
Item operator()(int id) const {
return _inv_map[id];
}
private:
typedef std::vector<Item> Container;
Container _inv_map;
public:
/// \brief The inverse map type of RangeIdMap.
///
/// The inverse map type of RangeIdMap. The subscript operator gives
/// back an item by its \e range \e id.
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
class InverseMap {
public:
/// \brief Constructor
///
/// Constructor of the InverseMap.
explicit InverseMap(const RangeIdMap& inverted)
: _inverted(inverted) {}
/// The value type of the InverseMap.
typedef typename RangeIdMap::Key Value;
/// The key type of the InverseMap.
typedef typename RangeIdMap::Value Key;
/// \brief Subscript operator.
///
/// Subscript operator. It gives back the item
/// that the given \e range \e id currently belongs to.
Value operator[](const Key& key) const {
return _inverted(key);
}
/// \brief Size of the map.
///
/// Returns the size of the map.
unsigned int size() const {
return _inverted.size();
}
private:
const RangeIdMap& _inverted;
};
/// \brief Gives back the inverse of the map.
///
/// Gives back the inverse of the RangeIdMap.
const InverseMap inverse() const {
return InverseMap(*this);
}
};
/// \brief Returns a \c RangeIdMap class.
///
/// This function just returns an \c RangeIdMap class.
/// \relates RangeIdMap
template <typename K, typename GR>
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
return RangeIdMap<GR, K>(graph);
}
/// \brief Dynamic iterable \c bool map.
///
/// This class provides a special graph map type which can store a
/// \c bool value for graph items (\c Node, \c Arc or \c Edge).
/// For both \c true and \c false values it is possible to iterate on
/// the keys mapped to the value.
///
/// This type is a reference map, so it can be modified with the
/// subscript operator.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
///
/// \see IterableIntMap, IterableValueMap
/// \see CrossRefMap
template <typename GR, typename K>
class IterableBoolMap
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
private:
typedef GR Graph;
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
std::vector<K> _array;
int _sep;
public:
/// Indicates that the map is reference map.
typedef True ReferenceMapTag;
/// The key type
typedef K Key;
/// The value type
typedef bool Value;
/// The const reference type.
typedef const Value& ConstReference;
private:
int position(const Key& key) const {
return Parent::operator[](key);
}
public:
/// \brief Reference to the value of the map.
///
/// This class is similar to the \c bool type. It can be converted to
/// \c bool and it provides the same operators.
class Reference {
friend class IterableBoolMap;
private:
Reference(IterableBoolMap& map, const Key& key)
: _key(key), _map(map) {}
public:
Reference& operator=(const Reference& value) {
_map.set(_key, static_cast<bool>(value));
return *this;
}
operator bool() const {
return static_cast<const IterableBoolMap&>(_map)[_key];
}
Reference& operator=(bool value) {
_map.set(_key, value);
return *this;
}
Reference& operator&=(bool value) {
_map.set(_key, _map[_key] & value);
return *this;
}
Reference& operator|=(bool value) {
_map.set(_key, _map[_key] | value);
return *this;
}
Reference& operator^=(bool value) {
_map.set(_key, _map[_key] ^ value);
return *this;
}
private:
Key _key;
IterableBoolMap& _map;
};
/// \brief Constructor of the map with a default value.
///
/// Constructor of the map with a default value.
explicit IterableBoolMap(const Graph& graph, bool def = false)
: Parent(graph) {
typename Parent::Notifier* nf = Parent::notifier();
Key it;
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, _array.size());
_array.push_back(it);
}
_sep = (def ? _array.size() : 0);
}
/// \brief Const subscript operator of the map.
///
/// Const subscript operator of the map.
bool operator[](const Key& key) const {
return position(key) < _sep;
}
/// \brief Subscript operator of the map.
///
/// Subscript operator of the map.
Reference operator[](const Key& key) {
return Reference(*this, key);
}
/// \brief Set operation of the map.
///
/// Set operation of the map.
void set(const Key& key, bool value) {
int pos = position(key);
if (value) {
if (pos < _sep) return;
Key tmp = _array[_sep];
_array[_sep] = key;
Parent::set(key, _sep);
_array[pos] = tmp;
Parent::set(tmp, pos);
++_sep;
} else {
if (pos >= _sep) return;
--_sep;
Key tmp = _array[_sep];
_array[_sep] = key;
Parent::set(key, _sep);
_array[pos] = tmp;
Parent::set(tmp, pos);
}
}
/// \brief Set all items.
///
/// Set all items in the map.
/// \note Constant time operation.
void setAll(bool value) {
_sep = (value ? _array.size() : 0);
}
/// \brief Returns the number of the keys mapped to \c true.
///
/// Returns the number of the keys mapped to \c true.
int trueNum() const {
return _sep;
}
/// \brief Returns the number of the keys mapped to \c false.
///
/// Returns the number of the keys mapped to \c false.
int falseNum() const {
return _array.size() - _sep;
}
/// \brief Iterator for the keys mapped to \c true.
///
/// Iterator for the keys mapped to \c true. It works
/// like a graph item iterator, it can be converted to
/// the key type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid key, it will be equal to
/// \c INVALID.
class TrueIt : public Key {
public:
typedef Key Parent;
/// \brief Creates an iterator.
///
/// Creates an iterator. It iterates on the
/// keys mapped to \c true.
/// \param map The IterableBoolMap.
explicit TrueIt(const IterableBoolMap& map)
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
_map(&map) {}
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
TrueIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Increment operator.
///
/// Increment operator.
TrueIt& operator++() {
int pos = _map->position(*this);
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
return *this;
}
private:
const IterableBoolMap* _map;
};
/// \brief Iterator for the keys mapped to \c false.
///
/// Iterator for the keys mapped to \c false. It works
/// like a graph item iterator, it can be converted to
/// the key type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid key, it will be equal to
/// \c INVALID.
class FalseIt : public Key {
public:
typedef Key Parent;
/// \brief Creates an iterator.
///
/// Creates an iterator. It iterates on the
/// keys mapped to \c false.
/// \param map The IterableBoolMap.
explicit FalseIt(const IterableBoolMap& map)
: Parent(map._sep < int(map._array.size()) ?
map._array.back() : INVALID), _map(&map) {}
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
FalseIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Increment operator.
///
/// Increment operator.
FalseIt& operator++() {
int pos = _map->position(*this);
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
return *this;
}
private:
const IterableBoolMap* _map;
};
/// \brief Iterator for the keys mapped to a given value.
///
/// Iterator for the keys mapped to a given value. It works
/// like a graph item iterator, it can be converted to
/// the key type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid key, it will be equal to
/// \c INVALID.
class ItemIt : public Key {
public:
typedef Key Parent;
/// \brief Creates an iterator with a value.
///
/// Creates an iterator with a value. It iterates on the
/// keys mapped to the given value.
/// \param map The IterableBoolMap.
/// \param value The value.
ItemIt(const IterableBoolMap& map, bool value)
: Parent(value ?
(map._sep > 0 ?
map._array[map._sep - 1] : INVALID) :
(map._sep < int(map._array.size()) ?
map._array.back() : INVALID)), _map(&map) {}
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Increment operator.
///
/// Increment operator.
ItemIt& operator++() {
int pos = _map->position(*this);
int _sep = pos >= _map->_sep ? _map->_sep : 0;
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
return *this;
}
private:
const IterableBoolMap* _map;
};
protected:
virtual void add(const Key& key) {
Parent::add(key);
Parent::set(key, _array.size());
_array.push_back(key);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
Parent::set(keys[i], _array.size());
_array.push_back(keys[i]);
}
}
virtual void erase(const Key& key) {
int pos = position(key);
if (pos < _sep) {
--_sep;
Parent::set(_array[_sep], pos);
_array[pos] = _array[_sep];
Parent::set(_array.back(), _sep);
_array[_sep] = _array.back();
_array.pop_back();
} else {
Parent::set(_array.back(), pos);
_array[pos] = _array.back();
_array.pop_back();
}
Parent::erase(key);
}
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
int pos = position(keys[i]);
if (pos < _sep) {
--_sep;
Parent::set(_array[_sep], pos);
_array[pos] = _array[_sep];
Parent::set(_array.back(), _sep);
_array[_sep] = _array.back();
_array.pop_back();
} else {
Parent::set(_array.back(), pos);
_array[pos] = _array.back();
_array.pop_back();
}
}
Parent::erase(keys);
}
virtual void build() {
Parent::build();
typename Parent::Notifier* nf = Parent::notifier();
Key it;
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, _array.size());
_array.push_back(it);
}
_sep = 0;
}
virtual void clear() {
_array.clear();
_sep = 0;
Parent::clear();
}
};
namespace _maps_bits {
template <typename Item>
struct IterableIntMapNode {
IterableIntMapNode() : value(-1) {}
IterableIntMapNode(int _value) : value(_value) {}
Item prev, next;
int value;
};
}
/// \brief Dynamic iterable integer map.
///
/// This class provides a special graph map type which can store an
/// integer value for graph items (\c Node, \c Arc or \c Edge).
/// For each non-negative value it is possible to iterate on the keys
/// mapped to the value.
///
/// This map is intended to be used with small integer values, for which
/// it is efficient, and supports iteration only for non-negative values.
/// If you need large values and/or iteration for negative integers,
/// consider to use \ref IterableValueMap instead.
///
/// This type is a reference map, so it can be modified with the
/// subscript operator.
///
/// \note The size of the data structure depends on the largest
/// value in the map.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
///
/// \see IterableBoolMap, IterableValueMap
/// \see CrossRefMap
template <typename GR, typename K>
class IterableIntMap
: protected ItemSetTraits<GR, K>::
template Map<_maps_bits::IterableIntMapNode<K> >::Type {
public:
typedef typename ItemSetTraits<GR, K>::
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
/// The key type
typedef K Key;
/// The value type
typedef int Value;
/// The graph type
typedef GR Graph;
/// \brief Constructor of the map.
///
/// Constructor of the map. It sets all values to -1.
explicit IterableIntMap(const Graph& graph)
: Parent(graph) {}
/// \brief Constructor of the map with a given value.
///
/// Constructor of the map with a given value.
explicit IterableIntMap(const Graph& graph, int value)
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
if (value >= 0) {
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
lace(it);
}
}
}
private:
void unlace(const Key& key) {
typename Parent::Value& node = Parent::operator[](key);
if (node.value < 0) return;
if (node.prev != INVALID) {
Parent::operator[](node.prev).next = node.next;
} else {
_first[node.value] = node.next;
}
if (node.next != INVALID) {
Parent::operator[](node.next).prev = node.prev;
}
while (!_first.empty() && _first.back() == INVALID) {
_first.pop_back();
}
}
void lace(const Key& key) {
typename Parent::Value& node = Parent::operator[](key);
if (node.value < 0) return;
if (node.value >= int(_first.size())) {
_first.resize(node.value + 1, INVALID);
}
node.prev = INVALID;
node.next = _first[node.value];
if (node.next != INVALID) {
Parent::operator[](node.next).prev = key;
}
_first[node.value] = key;
}
public:
/// Indicates that the map is reference map.
typedef True ReferenceMapTag;
/// \brief Reference to the value of the map.
///
/// This class is similar to the \c int type. It can
/// be converted to \c int and it has the same operators.
class Reference {
friend class IterableIntMap;
private:
Reference(IterableIntMap& map, const Key& key)
: _key(key), _map(map) {}
public:
Reference& operator=(const Reference& value) {
_map.set(_key, static_cast<const int&>(value));
return *this;
}
operator const int&() const {
return static_cast<const IterableIntMap&>(_map)[_key];
}
Reference& operator=(int value) {
_map.set(_key, value);
return *this;
}
Reference& operator++() {
_map.set(_key, _map[_key] + 1);
return *this;
}
int operator++(int) {
int value = _map[_key];
_map.set(_key, value + 1);
return value;
}
Reference& operator--() {
_map.set(_key, _map[_key] - 1);
return *this;
}
int operator--(int) {
int value = _map[_key];
_map.set(_key, value - 1);
return value;
}
Reference& operator+=(int value) {
_map.set(_key, _map[_key] + value);
return *this;
}
Reference& operator-=(int value) {
_map.set(_key, _map[_key] - value);
return *this;
}
Reference& operator*=(int value) {
_map.set(_key, _map[_key] * value);
return *this;
}
Reference& operator/=(int value) {
_map.set(_key, _map[_key] / value);
return *this;
}
Reference& operator%=(int value) {
_map.set(_key, _map[_key] % value);
return *this;
}
Reference& operator&=(int value) {
_map.set(_key, _map[_key] & value);
return *this;
}
Reference& operator|=(int value) {
_map.set(_key, _map[_key] | value);
return *this;
}
Reference& operator^=(int value) {
_map.set(_key, _map[_key] ^ value);
return *this;
}
Reference& operator<<=(int value) {
_map.set(_key, _map[_key] << value);
return *this;
}
Reference& operator>>=(int value) {
_map.set(_key, _map[_key] >> value);
return *this;
}
private:
Key _key;
IterableIntMap& _map;
};
/// The const reference type.
typedef const Value& ConstReference;
/// \brief Gives back the maximal value plus one.
///
/// Gives back the maximal value plus one.
int size() const {
return _first.size();
}
/// \brief Set operation of the map.
///
/// Set operation of the map.
void set(const Key& key, const Value& value) {
unlace(key);
Parent::operator[](key).value = value;
lace(key);
}
/// \brief Const subscript operator of the map.
///
/// Const subscript operator of the map.
const Value& operator[](const Key& key) const {
return Parent::operator[](key).value;
}
/// \brief Subscript operator of the map.
///
/// Subscript operator of the map.
Reference operator[](const Key& key) {
return Reference(*this, key);
}
/// \brief Iterator for the keys with the same value.
///
/// Iterator for the keys with the same value. It works
/// like a graph item iterator, it can be converted to
/// the item type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid item, it will be equal to
/// \c INVALID.
class ItemIt : public Key {
public:
typedef Key Parent;
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Creates an iterator with a value.
///
/// Creates an iterator with a value. It iterates on the
/// keys mapped to the given value.
/// \param map The IterableIntMap.
/// \param value The value.
ItemIt(const IterableIntMap& map, int value) : _map(&map) {
if (value < 0 || value >= int(_map->_first.size())) {
Parent::operator=(INVALID);
} else {
Parent::operator=(_map->_first[value]);
}
}
/// \brief Increment operator.
///
/// Increment operator.
ItemIt& operator++() {
Parent::operator=(_map->IterableIntMap::Parent::
operator[](static_cast<Parent&>(*this)).next);
return *this;
}
private:
const IterableIntMap* _map;
};
protected:
virtual void erase(const Key& key) {
unlace(key);
Parent::erase(key);
}
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
unlace(keys[i]);
}
Parent::erase(keys);
}
virtual void clear() {
_first.clear();
Parent::clear();
}
private:
std::vector<Key> _first;
};
namespace _maps_bits {
template <typename Item, typename Value>
struct IterableValueMapNode {
IterableValueMapNode(Value _value = Value()) : value(_value) {}
Item prev, next;
Value value;
};
}
/// \brief Dynamic iterable map for comparable values.
///
/// This class provides a special graph map type which can store a
/// comparable value for graph items (\c Node, \c Arc or \c Edge).
/// For each value it is possible to iterate on the keys mapped to
/// the value (\c ItemIt), and the values of the map can be accessed
/// with an STL compatible forward iterator (\c ValueIt).
/// The map stores a linked list for each value, which contains
/// the items mapped to the value, and the used values are stored
/// in balanced binary tree (\c std::map).
///
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes
/// specialized for \c bool and \c int values, respectively.
///
/// This type is not reference map, so it cannot be modified with
/// the subscript operator.
///
/// \tparam GR The graph type.
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
/// \c GR::Edge).
/// \tparam V The value type of the map. It can be any comparable
/// value type.
///
/// \see IterableBoolMap, IterableIntMap
/// \see CrossRefMap
template <typename GR, typename K, typename V>
class IterableValueMap
: protected ItemSetTraits<GR, K>::
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
public:
typedef typename ItemSetTraits<GR, K>::
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
/// The key type
typedef K Key;
/// The value type
typedef V Value;
/// The graph type
typedef GR Graph;
public:
/// \brief Constructor of the map with a given value.
///
/// Constructor of the map with a given value.
explicit IterableValueMap(const Graph& graph,
const Value& value = Value())
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
lace(it);
}
}
protected:
void unlace(const Key& key) {
typename Parent::Value& node = Parent::operator[](key);
if (node.prev != INVALID) {
Parent::operator[](node.prev).next = node.next;
} else {
if (node.next != INVALID) {
_first[node.value] = node.next;
} else {
_first.erase(node.value);
}
}
if (node.next != INVALID) {
Parent::operator[](node.next).prev = node.prev;
}
}
void lace(const Key& key) {
typename Parent::Value& node = Parent::operator[](key);
typename std::map<Value, Key>::iterator it = _first.find(node.value);
if (it == _first.end()) {
node.prev = node.next = INVALID;
_first.insert(std::make_pair(node.value, key));
} else {
node.prev = INVALID;
node.next = it->second;
if (node.next != INVALID) {
Parent::operator[](node.next).prev = key;
}
it->second = key;
}
}
public:
/// \brief Forward iterator for values.
///
/// This iterator is an STL compatible forward
/// iterator on the values of the map. The values can
/// be accessed in the <tt>[beginValue, endValue)</tt> range.
class ValueIt
: public std::iterator<std::forward_iterator_tag, Value> {
friend class IterableValueMap;
private:
ValueIt(typename std::map<Value, Key>::const_iterator _it)
: it(_it) {}
public:
/// Constructor
ValueIt() {}
/// \e
ValueIt& operator++() { ++it; return *this; }
/// \e
ValueIt operator++(int) {
ValueIt tmp(*this);
operator++();
return tmp;
}
/// \e
const Value& operator*() const { return it->first; }
/// \e
const Value* operator->() const { return &(it->first); }
/// \e
bool operator==(ValueIt jt) const { return it == jt.it; }
/// \e
bool operator!=(ValueIt jt) const { return it != jt.it; }
private:
typename std::map<Value, Key>::const_iterator it;
};
/// \brief Returns an iterator to the first value.
///
/// Returns an STL compatible iterator to the
/// first value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
/// range.
ValueIt beginValue() const {
return ValueIt(_first.begin());
}
/// \brief Returns an iterator after the last value.
///
/// Returns an STL compatible iterator after the
/// last value of the map. The values of the
/// map can be accessed in the <tt>[beginValue, endValue)</tt>
/// range.
ValueIt endValue() const {
return ValueIt(_first.end());
}
/// \brief Set operation of the map.
///
/// Set operation of the map.
void set(const Key& key, const Value& value) {
unlace(key);
Parent::operator[](key).value = value;
lace(key);
}
/// \brief Const subscript operator of the map.
///
/// Const subscript operator of the map.
const Value& operator[](const Key& key) const {
return Parent::operator[](key).value;
}
/// \brief Iterator for the keys with the same value.
///
/// Iterator for the keys with the same value. It works
/// like a graph item iterator, it can be converted to
/// the item type of the map, incremented with \c ++ operator, and
/// if the iterator leaves the last valid item, it will be equal to
/// \c INVALID.
class ItemIt : public Key {
public:
typedef Key Parent;
/// \brief Invalid constructor \& conversion.
///
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
ItemIt(Invalid) : Parent(INVALID), _map(0) {}
/// \brief Creates an iterator with a value.
///
/// Creates an iterator with a value. It iterates on the
/// keys which have the given value.
/// \param map The IterableValueMap
/// \param value The value
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
typename std::map<Value, Key>::const_iterator it =
map._first.find(value);
if (it == map._first.end()) {
Parent::operator=(INVALID);
} else {
Parent::operator=(it->second);
}
}
/// \brief Increment operator.
///
/// Increment Operator.
ItemIt& operator++() {
Parent::operator=(_map->IterableValueMap::Parent::
operator[](static_cast<Parent&>(*this)).next);
return *this;
}
private:
const IterableValueMap* _map;
};
protected:
virtual void add(const Key& key) {
Parent::add(key);
lace(key);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
lace(keys[i]);
}
}
virtual void erase(const Key& key) {
unlace(key);
Parent::erase(key);
}
virtual void erase(const std::vector<Key>& keys) {
for (int i = 0; i < int(keys.size()); ++i) {
unlace(keys[i]);
}
Parent::erase(keys);
}
virtual void build() {
Parent::build();
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
lace(it);
}
}
virtual void clear() {
_first.clear();
Parent::clear();
}
private:
std::map<Value, Key> _first;
};
/// \brief Map of the source nodes of arcs in a digraph.
///
/// SourceMap provides access for the source node of each arc in a digraph,
/// which is returned by the \c source() function of the digraph.
/// \tparam GR The digraph type.
/// \see TargetMap
template <typename GR>
class SourceMap {
public:
/// The key type (the \c Arc type of the digraph).
typedef typename GR::Arc Key;
/// The value type (the \c Node type of the digraph).
typedef typename GR::Node Value;
/// \brief Constructor
///
/// Constructor.
/// \param digraph The digraph that the map belongs to.
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
/// \brief Returns the source node of the given arc.
///
/// Returns the source node of the given arc.
Value operator[](const Key& arc) const {
return _graph.source(arc);
}
private:
const GR& _graph;
};
/// \brief Returns a \c SourceMap class.
///
/// This function just returns an \c SourceMap class.
/// \relates SourceMap
template <typename GR>
inline SourceMap<GR> sourceMap(const GR& graph) {
return SourceMap<GR>(graph);
}
/// \brief Map of the target nodes of arcs in a digraph.
///
/// TargetMap provides access for the target node of each arc in a digraph,
/// which is returned by the \c target() function of the digraph.
/// \tparam GR The digraph type.
/// \see SourceMap
template <typename GR>
class TargetMap {
public:
/// The key type (the \c Arc type of the digraph).
typedef typename GR::Arc Key;
/// The value type (the \c Node type of the digraph).
typedef typename GR::Node Value;
/// \brief Constructor
///
/// Constructor.
/// \param digraph The digraph that the map belongs to.
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
/// \brief Returns the target node of the given arc.
///
/// Returns the target node of the given arc.
Value operator[](const Key& e) const {
return _graph.target(e);
}
private:
const GR& _graph;
};
/// \brief Returns a \c TargetMap class.
///
/// This function just returns a \c TargetMap class.
/// \relates TargetMap
template <typename GR>
inline TargetMap<GR> targetMap(const GR& graph) {
return TargetMap<GR>(graph);
}
/// \brief Map of the "forward" directed arc view of edges in a graph.
///
/// ForwardMap provides access for the "forward" directed arc view of
/// each edge in a graph, which is returned by the \c direct() function
/// of the graph with \c true parameter.
/// \tparam GR The graph type.
/// \see BackwardMap
template <typename GR>
class ForwardMap {
public:
/// The key type (the \c Edge type of the digraph).
typedef typename GR::Edge Key;
/// The value type (the \c Arc type of the digraph).
typedef typename GR::Arc Value;
/// \brief Constructor
///
/// Constructor.
/// \param graph The graph that the map belongs to.
explicit ForwardMap(const GR& graph) : _graph(graph) {}
/// \brief Returns the "forward" directed arc view of the given edge.
///
/// Returns the "forward" directed arc view of the given edge.
Value operator[](const Key& key) const {
return _graph.direct(key, true);
}
private:
const GR& _graph;
};
/// \brief Returns a \c ForwardMap class.
///
/// This function just returns an \c ForwardMap class.
/// \relates ForwardMap
template <typename GR>
inline ForwardMap<GR> forwardMap(const GR& graph) {
return ForwardMap<GR>(graph);
}
/// \brief Map of the "backward" directed arc view of edges in a graph.
///
/// BackwardMap provides access for the "backward" directed arc view of
/// each edge in a graph, which is returned by the \c direct() function
/// of the graph with \c false parameter.
/// \tparam GR The graph type.
/// \see ForwardMap
template <typename GR>
class BackwardMap {
public:
/// The key type (the \c Edge type of the digraph).
typedef typename GR::Edge Key;
/// The value type (the \c Arc type of the digraph).
typedef typename GR::Arc Value;
/// \brief Constructor
///
/// Constructor.
/// \param graph The graph that the map belongs to.
explicit BackwardMap(const GR& graph) : _graph(graph) {}
/// \brief Returns the "backward" directed arc view of the given edge.
///
/// Returns the "backward" directed arc view of the given edge.
Value operator[](const Key& key) const {
return _graph.direct(key, false);
}
private:
const GR& _graph;
};
/// \brief Returns a \c BackwardMap class
/// This function just returns a \c BackwardMap class.
/// \relates BackwardMap
template <typename GR>
inline BackwardMap<GR> backwardMap(const GR& graph) {
return BackwardMap<GR>(graph);
}
/// \brief Map of the in-degrees of nodes in a digraph.
///
/// This map returns the in-degree of a node. Once it is constructed,
/// the degrees are stored in a standard \c NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
///
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
/// may provide alternative ways to modify the digraph.
/// The correct behavior of InDegMap is not guarantied if these additional
/// features are used. For example, the functions
/// \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
///
/// \sa OutDegMap
template <typename GR>
class InDegMap
: protected ItemSetTraits<GR, typename GR::Arc>
::ItemNotifier::ObserverBase {
public:
/// The graph type of InDegMap
typedef GR Graph;
typedef GR Digraph;
/// The key type
typedef typename Digraph::Node Key;
/// The value type
typedef int Value;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
private:
class AutoNodeMap
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
public:
typedef typename ItemSetTraits<Digraph, Key>::
template Map<int>::Type Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
Parent::add(key);
Parent::set(key, 0);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
Parent::set(keys[i], 0);
}
}
virtual void build() {
Parent::build();
Key it;
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, 0);
}
}
};
public:
/// \brief Constructor.
///
/// Constructor for creating an in-degree map.
explicit InDegMap(const Digraph& graph)
: _digraph(graph), _deg(graph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
}
}
/// \brief Gives back the in-degree of a Node.
///
/// Gives back the in-degree of a Node.
int operator[](const Key& key) const {
return _deg[key];
}
protected:
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.target(arc)];
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.target(arcs[i])];
}
}
virtual void erase(const Arc& arc) {
--_deg[_digraph.target(arc)];
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.target(arcs[i])];
}
}
virtual void build() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countInArcs(_digraph, it);
}
}
virtual void clear() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = 0;
}
}
private:
const Digraph& _digraph;
AutoNodeMap _deg;
};
/// \brief Map of the out-degrees of nodes in a digraph.
///
/// This map returns the out-degree of a node. Once it is constructed,
/// the degrees are stored in a standard \c NodeMap, so each query is done
/// in constant time. On the other hand, the values are updated automatically
/// whenever the digraph changes.
///
/// \warning Besides \c addNode() and \c addArc(), a digraph structure
/// may provide alternative ways to modify the digraph.
/// The correct behavior of OutDegMap is not guarantied if these additional
/// features are used. For example, the functions
/// \ref ListDigraph::changeSource() "changeSource()",
/// \ref ListDigraph::changeTarget() "changeTarget()" and
/// \ref ListDigraph::reverseArc() "reverseArc()"
/// of \ref ListDigraph will \e not update the degree values correctly.
///
/// \sa InDegMap
template <typename GR>
class OutDegMap
: protected ItemSetTraits<GR, typename GR::Arc>
::ItemNotifier::ObserverBase {
public:
/// The graph type of OutDegMap
typedef GR Graph;
typedef GR Digraph;
/// The key type
typedef typename Digraph::Node Key;
/// The value type
typedef int Value;
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
::ItemNotifier::ObserverBase Parent;
private:
class AutoNodeMap
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
public:
typedef typename ItemSetTraits<Digraph, Key>::
template Map<int>::Type Parent;
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
virtual void add(const Key& key) {
Parent::add(key);
Parent::set(key, 0);
}
virtual void add(const std::vector<Key>& keys) {
Parent::add(keys);
for (int i = 0; i < int(keys.size()); ++i) {
Parent::set(keys[i], 0);
}
}
virtual void build() {
Parent::build();
Key it;
typename Parent::Notifier* nf = Parent::notifier();
for (nf->first(it); it != INVALID; nf->next(it)) {
Parent::set(it, 0);
}
}
};
public:
/// \brief Constructor.
///
/// Constructor for creating an out-degree map.
explicit OutDegMap(const Digraph& graph)
: _digraph(graph), _deg(graph) {
Parent::attach(_digraph.notifier(typename Digraph::Arc()));
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
}
}
/// \brief Gives back the out-degree of a Node.
///
/// Gives back the out-degree of a Node.
int operator[](const Key& key) const {
return _deg[key];
}
protected:
typedef typename Digraph::Arc Arc;
virtual void add(const Arc& arc) {
++_deg[_digraph.source(arc)];
}
virtual void add(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
++_deg[_digraph.source(arcs[i])];
}
}
virtual void erase(const Arc& arc) {
--_deg[_digraph.source(arc)];
}
virtual void erase(const std::vector<Arc>& arcs) {
for (int i = 0; i < int(arcs.size()); ++i) {
--_deg[_digraph.source(arcs[i])];
}
}
virtual void build() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = countOutArcs(_digraph, it);
}
}
virtual void clear() {
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
_deg[it] = 0;
}
}
private:
const Digraph& _digraph;
AutoNodeMap _deg;
};
/// \brief Potential difference map
///
/// PotentialDifferenceMap returns the difference between the potentials of
/// the source and target nodes of each arc in a digraph, i.e. it returns
/// \code
/// potential[gr.target(arc)] - potential[gr.source(arc)].
/// \endcode
/// \tparam GR The digraph type.
/// \tparam POT A node map storing the potentials.
template <typename GR, typename POT>
class PotentialDifferenceMap {
public:
/// Key type
typedef typename GR::Arc Key;
/// Value type
typedef typename POT::Value Value;
/// \brief Constructor
///
/// Contructor of the map.
explicit PotentialDifferenceMap(const GR& gr,
const POT& potential)
: _digraph(gr), _potential(potential) {}
/// \brief Returns the potential difference for the given arc.
///
/// Returns the potential difference for the given arc, i.e.
/// \code
/// potential[gr.target(arc)] - potential[gr.source(arc)].
/// \endcode
Value operator[](const Key& arc) const {
return _potential[_digraph.target(arc)] -
_potential[_digraph.source(arc)];
}
private:
const GR& _digraph;
const POT& _potential;
};
/// \brief Returns a PotentialDifferenceMap.
///
/// This function just returns a PotentialDifferenceMap.
/// \relates PotentialDifferenceMap
template <typename GR, typename POT>
PotentialDifferenceMap<GR, POT>
potentialDifferenceMap(const GR& gr, const POT& potential) {
return PotentialDifferenceMap<GR, POT>(gr, potential);
}
/// \brief Copy the values of a graph map to another map.
///
/// This function copies the values of a graph map to another graph map.
/// \c To::Key must be equal or convertible to \c From::Key and
/// \c From::Value must be equal or convertible to \c To::Value.
///
/// For example, an edge map of \c int value type can be copied to
/// an arc map of \c double value type in an undirected graph, but
/// an arc map cannot be copied to an edge map.
/// Note that even a \ref ConstMap can be copied to a standard graph map,
/// but \ref mapFill() can also be used for this purpose.
///
/// \param gr The graph for which the maps are defined.
/// \param from The map from which the values have to be copied.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
/// \param to The map to which the values have to be copied.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <typename GR, typename From, typename To>
void mapCopy(const GR& gr, const From& from, To& to) {
typedef typename To::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
to.set(it, from[it]);
}
}
/// \brief Compare two graph maps.
///
/// This function compares the values of two graph maps. It returns
/// \c true if the maps assign the same value for all items in the graph.
/// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
/// and their \c Value types must be comparable using \c %operator==().
///
/// \param gr The graph for which the maps are defined.
/// \param map1 The first map.
/// \param map2 The second map.
template <typename GR, typename Map1, typename Map2>
bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
typedef typename Map2::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
if (!(map1[it] == map2[it])) return false;
}
return true;
}
/// \brief Return an item having minimum value of a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// minimum value of the given graph map.
/// If the item set is empty, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
template <typename GR, typename Map>
typename Map::Key mapMin(const GR& gr, const Map& map) {
return mapMin(gr, map, std::less<typename Map::Value>());
}
/// \brief Return an item having minimum value of a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// minimum value of the given graph map.
/// If the item set is empty, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param comp Comparison function object.
template <typename GR, typename Map, typename Comp>
typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
typedef typename Map::Key Item;
typedef typename Map::Value Value;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
ItemIt min_item(gr);
if (min_item == INVALID) return INVALID;
Value min = map[min_item];
for (ItemIt it(gr); it != INVALID; ++it) {
if (comp(map[it], min)) {
min = map[it];
min_item = it;
}
}
return min_item;
}
/// \brief Return an item having maximum value of a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// maximum value of the given graph map.
/// If the item set is empty, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
template <typename GR, typename Map>
typename Map::Key mapMax(const GR& gr, const Map& map) {
return mapMax(gr, map, std::less<typename Map::Value>());
}
/// \brief Return an item having maximum value of a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// maximum value of the given graph map.
/// If the item set is empty, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param comp Comparison function object.
template <typename GR, typename Map, typename Comp>
typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
typedef typename Map::Key Item;
typedef typename Map::Value Value;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
ItemIt max_item(gr);
if (max_item == INVALID) return INVALID;
Value max = map[max_item];
for (ItemIt it(gr); it != INVALID; ++it) {
if (comp(max, map[it])) {
max = map[it];
max_item = it;
}
}
return max_item;
}
/// \brief Return the minimum value of a graph map.
///
/// This function returns the minimum value of the given graph map.
/// The corresponding item set of the graph must not be empty.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
template <typename GR, typename Map>
typename Map::Value mapMinValue(const GR& gr, const Map& map) {
return map[mapMin(gr, map, std::less<typename Map::Value>())];
}
/// \brief Return the minimum value of a graph map.
///
/// This function returns the minimum value of the given graph map.
/// The corresponding item set of the graph must not be empty.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param comp Comparison function object.
template <typename GR, typename Map, typename Comp>
typename Map::Value
mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
return map[mapMin(gr, map, comp)];
}
/// \brief Return the maximum value of a graph map.
///
/// This function returns the maximum value of the given graph map.
/// The corresponding item set of the graph must not be empty.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
template <typename GR, typename Map>
typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
return map[mapMax(gr, map, std::less<typename Map::Value>())];
}
/// \brief Return the maximum value of a graph map.
///
/// This function returns the maximum value of the given graph map.
/// The corresponding item set of the graph must not be empty.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param comp Comparison function object.
template <typename GR, typename Map, typename Comp>
typename Map::Value
mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
return map[mapMax(gr, map, comp)];
}
/// \brief Return an item having a specified value in a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// the specified assigned value in the given graph map.
/// If no such item exists, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param val The value that have to be found.
template <typename GR, typename Map>
typename Map::Key
mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
if (map[it] == val) return it;
}
return INVALID;
}
/// \brief Return an item having value for which a certain predicate is
/// true in a graph map.
///
/// This function returns an item (\c Node, \c Arc or \c Edge) having
/// such assigned value for which the specified predicate is true
/// in the given graph map.
/// If no such item exists, it returns \c INVALID.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param pred The predicate function object.
template <typename GR, typename Map, typename Pred>
typename Map::Key
mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
if (pred(map[it])) return it;
}
return INVALID;
}
/// \brief Return the number of items having a specified value in a
/// graph map.
///
/// This function returns the number of items (\c Node, \c Arc or \c Edge)
/// having the specified assigned value in the given graph map.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param val The value that have to be counted.
template <typename GR, typename Map>
int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
int cnt = 0;
for (ItemIt it(gr); it != INVALID; ++it) {
if (map[it] == val) ++cnt;
}
return cnt;
}
/// \brief Return the number of items having values for which a certain
/// predicate is true in a graph map.
///
/// This function returns the number of items (\c Node, \c Arc or \c Edge)
/// having such assigned values for which the specified predicate is true
/// in the given graph map.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map.
/// \param pred The predicate function object.
template <typename GR, typename Map, typename Pred>
int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
int cnt = 0;
for (ItemIt it(gr); it != INVALID; ++it) {
if (pred(map[it])) ++cnt;
}
return cnt;
}
/// \brief Fill a graph map with a certain value.
///
/// This function sets the specified value for all items (\c Node,
/// \c Arc or \c Edge) in the given graph map.
///
/// \param gr The graph for which the map is defined.
/// \param map The graph map. It must conform to the
/// \ref concepts::WriteMap "WriteMap" concept.
/// \param val The value.
template <typename GR, typename Map>
void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
typedef typename Map::Key Item;
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
for (ItemIt it(gr); it != INVALID; ++it) {
map.set(it, val);
}
}
/// @}
}
#endif // LEMON_MAPS_H
|