/usr/include/lemon/nagamochi_ibaraki.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_NAGAMOCHI_IBARAKI_H
#define LEMON_NAGAMOCHI_IBARAKI_H
/// \ingroup min_cut
/// \file
/// \brief Implementation of the Nagamochi-Ibaraki algorithm.
#include <lemon/core.h>
#include <lemon/bin_heap.h>
#include <lemon/bucket_heap.h>
#include <lemon/maps.h>
#include <lemon/radix_sort.h>
#include <lemon/unionfind.h>
#include <cassert>
namespace lemon {
/// \brief Default traits class for NagamochiIbaraki class.
///
/// Default traits class for NagamochiIbaraki class.
/// \param GR The undirected graph type.
/// \param CM Type of capacity map.
template <typename GR, typename CM>
struct NagamochiIbarakiDefaultTraits {
/// The type of the capacity map.
typedef typename CM::Value Value;
/// The undirected graph type the algorithm runs on.
typedef GR Graph;
/// \brief The type of the map that stores the edge capacities.
///
/// The type of the map that stores the edge capacities.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef CM CapacityMap;
/// \brief Instantiates a CapacityMap.
///
/// This function instantiates a \ref CapacityMap.
#ifdef DOXYGEN
static CapacityMap *createCapacityMap(const Graph& graph)
#else
static CapacityMap *createCapacityMap(const Graph&)
#endif
{
LEMON_ASSERT(false, "CapacityMap is not initialized");
return 0; // ignore warnings
}
/// \brief The cross reference type used by heap.
///
/// The cross reference type used by heap.
/// Usually \c Graph::NodeMap<int>.
typedef typename Graph::template NodeMap<int> HeapCrossRef;
/// \brief Instantiates a HeapCrossRef.
///
/// This function instantiates a \ref HeapCrossRef.
/// \param g is the graph, to which we would like to define the
/// \ref HeapCrossRef.
static HeapCrossRef *createHeapCrossRef(const Graph& g) {
return new HeapCrossRef(g);
}
/// \brief The heap type used by NagamochiIbaraki algorithm.
///
/// The heap type used by NagamochiIbaraki algorithm. It has to
/// maximize the priorities.
///
/// \sa BinHeap
/// \sa NagamochiIbaraki
typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap;
/// \brief Instantiates a Heap.
///
/// This function instantiates a \ref Heap.
/// \param r is the cross reference of the heap.
static Heap *createHeap(HeapCrossRef& r) {
return new Heap(r);
}
};
/// \ingroup min_cut
///
/// \brief Calculates the minimum cut in an undirected graph.
///
/// Calculates the minimum cut in an undirected graph with the
/// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's
/// nodes into two partitions with the minimum sum of edge capacities
/// between the two partitions. The algorithm can be used to test
/// the network reliability, especially to test how many links have
/// to be destroyed in the network to split it to at least two
/// distinict subnetworks.
///
/// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with
/// \ref FibHeap "Fibonacci heap" it can be decreased to
/// \f$ O(nm+n^2\log(n)) \f$. When the edges have unit capacities,
/// \c BucketHeap can be used which yields \f$ O(nm) \f$ time
/// complexity.
///
/// \warning The value type of the capacity map should be able to
/// hold any cut value of the graph, otherwise the result can
/// overflow.
/// \note This capacity is supposed to be integer type.
#ifdef DOXYGEN
template <typename GR, typename CM, typename TR>
#else
template <typename GR,
typename CM = typename GR::template EdgeMap<int>,
typename TR = NagamochiIbarakiDefaultTraits<GR, CM> >
#endif
class NagamochiIbaraki {
public:
typedef TR Traits;
/// The type of the underlying graph.
typedef typename Traits::Graph Graph;
/// The type of the capacity map.
typedef typename Traits::CapacityMap CapacityMap;
/// The value type of the capacity map.
typedef typename Traits::CapacityMap::Value Value;
/// The heap type used by the algorithm.
typedef typename Traits::Heap Heap;
/// The cross reference type used for the heap.
typedef typename Traits::HeapCrossRef HeapCrossRef;
///\name Named template parameters
///@{
struct SetUnitCapacityTraits : public Traits {
typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap;
static CapacityMap *createCapacityMap(const Graph&) {
return new CapacityMap();
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// the capacity map to a constMap<Edge, int, 1>() instance
///
/// \ref named-templ-param "Named parameter" for setting
/// the capacity map to a constMap<Edge, int, 1>() instance
struct SetUnitCapacity
: public NagamochiIbaraki<Graph, CapacityMap,
SetUnitCapacityTraits> {
typedef NagamochiIbaraki<Graph, CapacityMap,
SetUnitCapacityTraits> Create;
};
template <class H, class CR>
struct SetHeapTraits : public Traits {
typedef CR HeapCrossRef;
typedef H Heap;
static HeapCrossRef *createHeapCrossRef(int num) {
LEMON_ASSERT(false, "HeapCrossRef is not initialized");
return 0; // ignore warnings
}
static Heap *createHeap(HeapCrossRef &) {
LEMON_ASSERT(false, "Heap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// heap and cross reference type
///
/// \ref named-templ-param "Named parameter" for setting heap and
/// cross reference type. The heap has to maximize the priorities.
template <class H, class CR = RangeMap<int> >
struct SetHeap
: public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > {
typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> >
Create;
};
template <class H, class CR>
struct SetStandardHeapTraits : public Traits {
typedef CR HeapCrossRef;
typedef H Heap;
static HeapCrossRef *createHeapCrossRef(int size) {
return new HeapCrossRef(size);
}
static Heap *createHeap(HeapCrossRef &crossref) {
return new Heap(crossref);
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// heap and cross reference type with automatic allocation
///
/// \ref named-templ-param "Named parameter" for setting heap and
/// cross reference type with automatic allocation. They should
/// have standard constructor interfaces to be able to
/// automatically created by the algorithm (i.e. the graph should
/// be passed to the constructor of the cross reference and the
/// cross reference should be passed to the constructor of the
/// heap). However, external heap and cross reference objects
/// could also be passed to the algorithm using the \ref heap()
/// function before calling \ref run() or \ref init(). The heap
/// has to maximize the priorities.
/// \sa SetHeap
template <class H, class CR = RangeMap<int> >
struct SetStandardHeap
: public NagamochiIbaraki<Graph, CapacityMap,
SetStandardHeapTraits<H, CR> > {
typedef NagamochiIbaraki<Graph, CapacityMap,
SetStandardHeapTraits<H, CR> > Create;
};
///@}
private:
const Graph &_graph;
const CapacityMap *_capacity;
bool _local_capacity; // unit capacity
struct ArcData {
typename Graph::Node target;
int prev, next;
};
struct EdgeData {
Value capacity;
Value cut;
};
struct NodeData {
int first_arc;
typename Graph::Node prev, next;
int curr_arc;
typename Graph::Node last_rep;
Value sum;
};
typename Graph::template NodeMap<NodeData> *_nodes;
std::vector<ArcData> _arcs;
std::vector<EdgeData> _edges;
typename Graph::Node _first_node;
int _node_num;
Value _min_cut;
HeapCrossRef *_heap_cross_ref;
bool _local_heap_cross_ref;
Heap *_heap;
bool _local_heap;
typedef typename Graph::template NodeMap<typename Graph::Node> NodeList;
NodeList *_next_rep;
typedef typename Graph::template NodeMap<bool> MinCutMap;
MinCutMap *_cut_map;
void createStructures() {
if (!_nodes) {
_nodes = new (typename Graph::template NodeMap<NodeData>)(_graph);
}
if (!_capacity) {
_local_capacity = true;
_capacity = Traits::createCapacityMap(_graph);
}
if (!_heap_cross_ref) {
_local_heap_cross_ref = true;
_heap_cross_ref = Traits::createHeapCrossRef(_graph);
}
if (!_heap) {
_local_heap = true;
_heap = Traits::createHeap(*_heap_cross_ref);
}
if (!_next_rep) {
_next_rep = new NodeList(_graph);
}
if (!_cut_map) {
_cut_map = new MinCutMap(_graph);
}
}
protected:
//This is here to avoid a gcc-3.3 compilation error.
//It should never be called.
NagamochiIbaraki() {}
public:
typedef NagamochiIbaraki Create;
/// \brief Constructor.
///
/// \param graph The graph the algorithm runs on.
/// \param capacity The capacity map used by the algorithm.
NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity)
: _graph(graph), _capacity(&capacity), _local_capacity(false),
_nodes(0), _arcs(), _edges(), _min_cut(),
_heap_cross_ref(0), _local_heap_cross_ref(false),
_heap(0), _local_heap(false),
_next_rep(0), _cut_map(0) {}
/// \brief Constructor.
///
/// This constructor can be used only when the Traits class
/// defines how can the local capacity map be instantiated.
/// If the SetUnitCapacity used the algorithm automatically
/// constructs the capacity map.
///
///\param graph The graph the algorithm runs on.
NagamochiIbaraki(const Graph& graph)
: _graph(graph), _capacity(0), _local_capacity(false),
_nodes(0), _arcs(), _edges(), _min_cut(),
_heap_cross_ref(0), _local_heap_cross_ref(false),
_heap(0), _local_heap(false),
_next_rep(0), _cut_map(0) {}
/// \brief Destructor.
///
/// Destructor.
~NagamochiIbaraki() {
if (_local_capacity) delete _capacity;
if (_nodes) delete _nodes;
if (_local_heap) delete _heap;
if (_local_heap_cross_ref) delete _heap_cross_ref;
if (_next_rep) delete _next_rep;
if (_cut_map) delete _cut_map;
}
/// \brief Sets the heap and the cross reference used by algorithm.
///
/// Sets the heap and the cross reference used by algorithm.
/// If you don't use this function before calling \ref run(),
/// it will allocate one. The destuctor deallocates this
/// automatically allocated heap and cross reference, of course.
/// \return <tt> (*this) </tt>
NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr)
{
if (_local_heap_cross_ref) {
delete _heap_cross_ref;
_local_heap_cross_ref = false;
}
_heap_cross_ref = &cr;
if (_local_heap) {
delete _heap;
_local_heap = false;
}
_heap = &hp;
return *this;
}
/// \name Execution control
/// The simplest way to execute the algorithm is to use
/// one of the member functions called \c run().
/// \n
/// If you need more control on the execution,
/// first you must call \ref init() and then call the start()
/// or proper times the processNextPhase() member functions.
///@{
/// \brief Initializes the internal data structures.
///
/// Initializes the internal data structures.
void init() {
createStructures();
int edge_num = countEdges(_graph);
_edges.resize(edge_num);
_arcs.resize(2 * edge_num);
typename Graph::Node prev = INVALID;
_node_num = 0;
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
(*_cut_map)[n] = false;
(*_next_rep)[n] = INVALID;
(*_nodes)[n].last_rep = n;
(*_nodes)[n].first_arc = -1;
(*_nodes)[n].curr_arc = -1;
(*_nodes)[n].prev = prev;
if (prev != INVALID) {
(*_nodes)[prev].next = n;
}
(*_nodes)[n].next = INVALID;
(*_nodes)[n].sum = 0;
prev = n;
++_node_num;
}
_first_node = typename Graph::NodeIt(_graph);
int index = 0;
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) {
typename Graph::Node m = _graph.target(a);
if (!(n < m)) continue;
(*_nodes)[n].sum += (*_capacity)[a];
(*_nodes)[m].sum += (*_capacity)[a];
int c = (*_nodes)[m].curr_arc;
if (c != -1 && _arcs[c ^ 1].target == n) {
_edges[c >> 1].capacity += (*_capacity)[a];
} else {
_edges[index].capacity = (*_capacity)[a];
_arcs[index << 1].prev = -1;
if ((*_nodes)[n].first_arc != -1) {
_arcs[(*_nodes)[n].first_arc].prev = (index << 1);
}
_arcs[index << 1].next = (*_nodes)[n].first_arc;
(*_nodes)[n].first_arc = (index << 1);
_arcs[index << 1].target = m;
(*_nodes)[m].curr_arc = (index << 1);
_arcs[(index << 1) | 1].prev = -1;
if ((*_nodes)[m].first_arc != -1) {
_arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1);
}
_arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc;
(*_nodes)[m].first_arc = ((index << 1) | 1);
_arcs[(index << 1) | 1].target = n;
++index;
}
}
}
typename Graph::Node cut_node = INVALID;
_min_cut = std::numeric_limits<Value>::max();
for (typename Graph::Node n = _first_node;
n != INVALID; n = (*_nodes)[n].next) {
if ((*_nodes)[n].sum < _min_cut) {
cut_node = n;
_min_cut = (*_nodes)[n].sum;
}
}
(*_cut_map)[cut_node] = true;
if (_min_cut == 0) {
_first_node = INVALID;
}
}
public:
/// \brief Processes the next phase
///
/// Processes the next phase in the algorithm. It must be called
/// at most one less the number of the nodes in the graph.
///
///\return %True when the algorithm finished.
bool processNextPhase() {
if (_first_node == INVALID) return true;
_heap->clear();
for (typename Graph::Node n = _first_node;
n != INVALID; n = (*_nodes)[n].next) {
(*_heap_cross_ref)[n] = Heap::PRE_HEAP;
}
std::vector<typename Graph::Node> order;
order.reserve(_node_num);
int sep = 0;
Value alpha = 0;
Value pmc = std::numeric_limits<Value>::max();
_heap->push(_first_node, static_cast<Value>(0));
while (!_heap->empty()) {
typename Graph::Node n = _heap->top();
Value v = _heap->prio();
_heap->pop();
for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
switch (_heap->state(_arcs[a].target)) {
case Heap::PRE_HEAP:
{
Value nv = _edges[a >> 1].capacity;
_heap->push(_arcs[a].target, nv);
_edges[a >> 1].cut = nv;
} break;
case Heap::IN_HEAP:
{
Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target];
_heap->decrease(_arcs[a].target, nv);
_edges[a >> 1].cut = nv;
} break;
case Heap::POST_HEAP:
break;
}
}
alpha += (*_nodes)[n].sum;
alpha -= 2 * v;
order.push_back(n);
if (!_heap->empty()) {
if (alpha < pmc) {
pmc = alpha;
sep = order.size();
}
}
}
if (static_cast<int>(order.size()) < _node_num) {
_first_node = INVALID;
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
(*_cut_map)[n] = false;
}
for (int i = 0; i < static_cast<int>(order.size()); ++i) {
typename Graph::Node n = order[i];
while (n != INVALID) {
(*_cut_map)[n] = true;
n = (*_next_rep)[n];
}
}
_min_cut = 0;
return true;
}
if (pmc < _min_cut) {
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
(*_cut_map)[n] = false;
}
for (int i = 0; i < sep; ++i) {
typename Graph::Node n = order[i];
while (n != INVALID) {
(*_cut_map)[n] = true;
n = (*_next_rep)[n];
}
}
_min_cut = pmc;
}
for (typename Graph::Node n = _first_node;
n != INVALID; n = (*_nodes)[n].next) {
bool merged = false;
for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
if (!(_edges[a >> 1].cut < pmc)) {
if (!merged) {
for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) {
(*_nodes)[_arcs[b].target].curr_arc = b;
}
merged = true;
}
typename Graph::Node m = _arcs[a].target;
int nb = 0;
for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) {
nb = _arcs[b].next;
if ((b ^ a) == 1) continue;
typename Graph::Node o = _arcs[b].target;
int c = (*_nodes)[o].curr_arc;
if (c != -1 && _arcs[c ^ 1].target == n) {
_edges[c >> 1].capacity += _edges[b >> 1].capacity;
(*_nodes)[n].sum += _edges[b >> 1].capacity;
if (_edges[b >> 1].cut < _edges[c >> 1].cut) {
_edges[b >> 1].cut = _edges[c >> 1].cut;
}
if (_arcs[b ^ 1].prev != -1) {
_arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next;
} else {
(*_nodes)[o].first_arc = _arcs[b ^ 1].next;
}
if (_arcs[b ^ 1].next != -1) {
_arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev;
}
} else {
if (_arcs[a].next != -1) {
_arcs[_arcs[a].next].prev = b;
}
_arcs[b].next = _arcs[a].next;
_arcs[b].prev = a;
_arcs[a].next = b;
_arcs[b ^ 1].target = n;
(*_nodes)[n].sum += _edges[b >> 1].capacity;
(*_nodes)[o].curr_arc = b;
}
}
if (_arcs[a].prev != -1) {
_arcs[_arcs[a].prev].next = _arcs[a].next;
} else {
(*_nodes)[n].first_arc = _arcs[a].next;
}
if (_arcs[a].next != -1) {
_arcs[_arcs[a].next].prev = _arcs[a].prev;
}
(*_nodes)[n].sum -= _edges[a >> 1].capacity;
(*_next_rep)[(*_nodes)[n].last_rep] = m;
(*_nodes)[n].last_rep = (*_nodes)[m].last_rep;
if ((*_nodes)[m].prev != INVALID) {
(*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next;
} else{
_first_node = (*_nodes)[m].next;
}
if ((*_nodes)[m].next != INVALID) {
(*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev;
}
--_node_num;
}
}
}
if (_node_num == 1) {
_first_node = INVALID;
return true;
}
return false;
}
/// \brief Executes the algorithm.
///
/// Executes the algorithm.
///
/// \pre init() must be called
void start() {
while (!processNextPhase()) {}
}
/// \brief Runs %NagamochiIbaraki algorithm.
///
/// This method runs the %Min cut algorithm
///
/// \note mc.run(s) is just a shortcut of the following code.
///\code
/// mc.init();
/// mc.start();
///\endcode
void run() {
init();
start();
}
///@}
/// \name Query Functions
///
/// The result of the %NagamochiIbaraki
/// algorithm can be obtained using these functions.\n
/// Before the use of these functions, either run() or start()
/// must be called.
///@{
/// \brief Returns the min cut value.
///
/// Returns the min cut value if the algorithm finished.
/// After the first processNextPhase() it is a value of a
/// valid cut in the graph.
Value minCutValue() const {
return _min_cut;
}
/// \brief Returns a min cut in a NodeMap.
///
/// It sets the nodes of one of the two partitions to true and
/// the other partition to false.
/// \param cutMap A \ref concepts::WriteMap "writable" node map with
/// \c bool (or convertible) value type.
template <typename CutMap>
Value minCutMap(CutMap& cutMap) const {
for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
cutMap.set(n, (*_cut_map)[n]);
}
return minCutValue();
}
///@}
};
}
#endif
|