This file is indexed.

/usr/include/lemon/suurballe.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_SUURBALLE_H
#define LEMON_SUURBALLE_H

///\ingroup shortest_path
///\file
///\brief An algorithm for finding arc-disjoint paths between two
/// nodes having minimum total length.

#include <vector>
#include <limits>
#include <lemon/bin_heap.h>
#include <lemon/path.h>
#include <lemon/list_graph.h>
#include <lemon/dijkstra.h>
#include <lemon/maps.h>

namespace lemon {

  /// \brief Default traits class of Suurballe algorithm.
  ///
  /// Default traits class of Suurballe algorithm.
  /// \tparam GR The digraph type the algorithm runs on.
  /// \tparam LEN The type of the length map.
  /// The default value is <tt>GR::ArcMap<int></tt>.
#ifdef DOXYGEN
  template <typename GR, typename LEN>
#else
  template < typename GR,
             typename LEN = typename GR::template ArcMap<int> >
#endif
  struct SuurballeDefaultTraits
  {
    /// The type of the digraph.
    typedef GR Digraph;
    /// The type of the length map.
    typedef LEN LengthMap;
    /// The type of the lengths.
    typedef typename LEN::Value Length;
    /// The type of the flow map.
    typedef typename GR::template ArcMap<int> FlowMap;
    /// The type of the potential map.
    typedef typename GR::template NodeMap<Length> PotentialMap;

    /// \brief The path type
    ///
    /// The type used for storing the found arc-disjoint paths.
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
    /// and it must have an \c addBack() function.
    typedef lemon::Path<Digraph> Path;

    /// The cross reference type used for the heap.
    typedef typename GR::template NodeMap<int> HeapCrossRef;

    /// \brief The heap type used for internal Dijkstra computations.
    ///
    /// The type of the heap used for internal Dijkstra computations.
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept
    /// and its priority type must be \c Length.
    typedef BinHeap<Length, HeapCrossRef> Heap;
  };

  /// \addtogroup shortest_path
  /// @{

  /// \brief Algorithm for finding arc-disjoint paths between two nodes
  /// having minimum total length.
  ///
  /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
  /// finding arc-disjoint paths having minimum total length (cost)
  /// from a given source node to a given target node in a digraph.
  ///
  /// Note that this problem is a special case of the \ref min_cost_flow
  /// "minimum cost flow problem". This implementation is actually an
  /// efficient specialized version of the \ref CapacityScaling
  /// "successive shortest path" algorithm directly for this problem.
  /// Therefore this class provides query functions for flow values and
  /// node potentials (the dual solution) just like the minimum cost flow
  /// algorithms.
  ///
  /// \tparam GR The digraph type the algorithm runs on.
  /// \tparam LEN The type of the length map.
  /// The default value is <tt>GR::ArcMap<int></tt>.
  ///
  /// \warning Length values should be \e non-negative.
  ///
  /// \note For finding \e node-disjoint paths, this algorithm can be used
  /// along with the \ref SplitNodes adaptor.
#ifdef DOXYGEN
  template <typename GR, typename LEN, typename TR>
#else
  template < typename GR,
             typename LEN = typename GR::template ArcMap<int>,
             typename TR = SuurballeDefaultTraits<GR, LEN> >
#endif
  class Suurballe
  {
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);

    typedef ConstMap<Arc, int> ConstArcMap;
    typedef typename GR::template NodeMap<Arc> PredMap;

  public:

    /// The type of the digraph.
    typedef typename TR::Digraph Digraph;
    /// The type of the length map.
    typedef typename TR::LengthMap LengthMap;
    /// The type of the lengths.
    typedef typename TR::Length Length;

    /// The type of the flow map.
    typedef typename TR::FlowMap FlowMap;
    /// The type of the potential map.
    typedef typename TR::PotentialMap PotentialMap;
    /// The type of the path structures.
    typedef typename TR::Path Path;
    /// The cross reference type used for the heap.
    typedef typename TR::HeapCrossRef HeapCrossRef;
    /// The heap type used for internal Dijkstra computations.
    typedef typename TR::Heap Heap;

    /// The \ref lemon::SuurballeDefaultTraits "traits class" of the algorithm.
    typedef TR Traits;

  private:

    // ResidualDijkstra is a special implementation of the
    // Dijkstra algorithm for finding shortest paths in the
    // residual network with respect to the reduced arc lengths
    // and modifying the node potentials according to the
    // distance of the nodes.
    class ResidualDijkstra
    {
    private:

      const Digraph &_graph;
      const LengthMap &_length;
      const FlowMap &_flow;
      PotentialMap &_pi;
      PredMap &_pred;
      Node _s;
      Node _t;

      PotentialMap _dist;
      std::vector<Node> _proc_nodes;

    public:

      // Constructor
      ResidualDijkstra(Suurballe &srb) :
        _graph(srb._graph), _length(srb._length),
        _flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred),
        _s(srb._s), _t(srb._t), _dist(_graph) {}

      // Run the algorithm and return true if a path is found
      // from the source node to the target node.
      bool run(int cnt) {
        return cnt == 0 ? startFirst() : start();
      }

    private:

      // Execute the algorithm for the first time (the flow and potential
      // functions have to be identically zero).
      bool startFirst() {
        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
        Heap heap(heap_cross_ref);
        heap.push(_s, 0);
        _pred[_s] = INVALID;
        _proc_nodes.clear();

        // Process nodes
        while (!heap.empty() && heap.top() != _t) {
          Node u = heap.top(), v;
          Length d = heap.prio(), dn;
          _dist[u] = heap.prio();
          _proc_nodes.push_back(u);
          heap.pop();

          // Traverse outgoing arcs
          for (OutArcIt e(_graph, u); e != INVALID; ++e) {
            v = _graph.target(e);
            switch(heap.state(v)) {
              case Heap::PRE_HEAP:
                heap.push(v, d + _length[e]);
                _pred[v] = e;
                break;
              case Heap::IN_HEAP:
                dn = d + _length[e];
                if (dn < heap[v]) {
                  heap.decrease(v, dn);
                  _pred[v] = e;
                }
                break;
              case Heap::POST_HEAP:
                break;
            }
          }
        }
        if (heap.empty()) return false;

        // Update potentials of processed nodes
        Length t_dist = heap.prio();
        for (int i = 0; i < int(_proc_nodes.size()); ++i)
          _pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist;
        return true;
      }

      // Execute the algorithm.
      bool start() {
        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
        Heap heap(heap_cross_ref);
        heap.push(_s, 0);
        _pred[_s] = INVALID;
        _proc_nodes.clear();

        // Process nodes
        while (!heap.empty() && heap.top() != _t) {
          Node u = heap.top(), v;
          Length d = heap.prio() + _pi[u], dn;
          _dist[u] = heap.prio();
          _proc_nodes.push_back(u);
          heap.pop();

          // Traverse outgoing arcs
          for (OutArcIt e(_graph, u); e != INVALID; ++e) {
            if (_flow[e] == 0) {
              v = _graph.target(e);
              switch(heap.state(v)) {
                case Heap::PRE_HEAP:
                  heap.push(v, d + _length[e] - _pi[v]);
                  _pred[v] = e;
                  break;
                case Heap::IN_HEAP:
                  dn = d + _length[e] - _pi[v];
                  if (dn < heap[v]) {
                    heap.decrease(v, dn);
                    _pred[v] = e;
                  }
                  break;
                case Heap::POST_HEAP:
                  break;
              }
            }
          }

          // Traverse incoming arcs
          for (InArcIt e(_graph, u); e != INVALID; ++e) {
            if (_flow[e] == 1) {
              v = _graph.source(e);
              switch(heap.state(v)) {
                case Heap::PRE_HEAP:
                  heap.push(v, d - _length[e] - _pi[v]);
                  _pred[v] = e;
                  break;
                case Heap::IN_HEAP:
                  dn = d - _length[e] - _pi[v];
                  if (dn < heap[v]) {
                    heap.decrease(v, dn);
                    _pred[v] = e;
                  }
                  break;
                case Heap::POST_HEAP:
                  break;
              }
            }
          }
        }
        if (heap.empty()) return false;

        // Update potentials of processed nodes
        Length t_dist = heap.prio();
        for (int i = 0; i < int(_proc_nodes.size()); ++i)
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
        return true;
      }

    }; //class ResidualDijkstra

  public:

    /// \name Named Template Parameters
    /// @{

    template <typename T>
    struct SetFlowMapTraits : public Traits {
      typedef T FlowMap;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c FlowMap type.
    ///
    /// \ref named-templ-param "Named parameter" for setting
    /// \c FlowMap type.
    template <typename T>
    struct SetFlowMap
      : public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
      typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create;
    };

    template <typename T>
    struct SetPotentialMapTraits : public Traits {
      typedef T PotentialMap;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c PotentialMap type.
    ///
    /// \ref named-templ-param "Named parameter" for setting
    /// \c PotentialMap type.
    template <typename T>
    struct SetPotentialMap
      : public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
      typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create;
    };

    template <typename T>
    struct SetPathTraits : public Traits {
      typedef T Path;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c %Path type.
    ///
    /// \ref named-templ-param "Named parameter" for setting \c %Path type.
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
    /// and it must have an \c addBack() function.
    template <typename T>
    struct SetPath
      : public Suurballe<GR, LEN, SetPathTraits<T> > {
      typedef Suurballe<GR, LEN, SetPathTraits<T> > Create;
    };

    template <typename H, typename CR>
    struct SetHeapTraits : public Traits {
      typedef H Heap;
      typedef CR HeapCrossRef;
    };

    /// \brief \ref named-templ-param "Named parameter" for setting
    /// \c Heap and \c HeapCrossRef types.
    ///
    /// \ref named-templ-param "Named parameter" for setting \c Heap
    /// and \c HeapCrossRef types with automatic allocation.
    /// They will be used for internal Dijkstra computations.
    /// The heap type must conform to the \ref lemon::concepts::Heap "Heap"
    /// concept and its priority type must be \c Length.
    template <typename H,
              typename CR = typename Digraph::template NodeMap<int> >
    struct SetHeap
      : public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
      typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create;
    };

    /// @}

  private:

    // The digraph the algorithm runs on
    const Digraph &_graph;
    // The length map
    const LengthMap &_length;

    // Arc map of the current flow
    FlowMap *_flow;
    bool _local_flow;
    // Node map of the current potentials
    PotentialMap *_potential;
    bool _local_potential;

    // The source node
    Node _s;
    // The target node
    Node _t;

    // Container to store the found paths
    std::vector<Path> _paths;
    int _path_num;

    // The pred arc map
    PredMap _pred;

    // Data for full init
    PotentialMap *_init_dist;
    PredMap *_init_pred;
    bool _full_init;

  protected:

    Suurballe() {}

  public:

    /// \brief Constructor.
    ///
    /// Constructor.
    ///
    /// \param graph The digraph the algorithm runs on.
    /// \param length The length (cost) values of the arcs.
    Suurballe( const Digraph &graph,
               const LengthMap &length ) :
      _graph(graph), _length(length), _flow(0), _local_flow(false),
      _potential(0), _local_potential(false), _pred(graph),
      _init_dist(0), _init_pred(0)
    {}

    /// Destructor.
    ~Suurballe() {
      if (_local_flow) delete _flow;
      if (_local_potential) delete _potential;
      delete _init_dist;
      delete _init_pred;
    }

    /// \brief Set the flow map.
    ///
    /// This function sets the flow map.
    /// If it is not used before calling \ref run() or \ref init(),
    /// an instance will be allocated automatically. The destructor
    /// deallocates this automatically allocated map, of course.
    ///
    /// The found flow contains only 0 and 1 values, since it is the
    /// union of the found arc-disjoint paths.
    ///
    /// \return <tt>(*this)</tt>
    Suurballe& flowMap(FlowMap &map) {
      if (_local_flow) {
        delete _flow;
        _local_flow = false;
      }
      _flow = &map;
      return *this;
    }

    /// \brief Set the potential map.
    ///
    /// This function sets the potential map.
    /// If it is not used before calling \ref run() or \ref init(),
    /// an instance will be allocated automatically. The destructor
    /// deallocates this automatically allocated map, of course.
    ///
    /// The node potentials provide the dual solution of the underlying
    /// \ref min_cost_flow "minimum cost flow problem".
    ///
    /// \return <tt>(*this)</tt>
    Suurballe& potentialMap(PotentialMap &map) {
      if (_local_potential) {
        delete _potential;
        _local_potential = false;
      }
      _potential = &map;
      return *this;
    }

    /// \name Execution Control
    /// The simplest way to execute the algorithm is to call the run()
    /// function.\n
    /// If you need to execute the algorithm many times using the same
    /// source node, then you may call fullInit() once and start()
    /// for each target node.\n
    /// If you only need the flow that is the union of the found
    /// arc-disjoint paths, then you may call findFlow() instead of
    /// start().

    /// @{

    /// \brief Run the algorithm.
    ///
    /// This function runs the algorithm.
    ///
    /// \param s The source node.
    /// \param t The target node.
    /// \param k The number of paths to be found.
    ///
    /// \return \c k if there are at least \c k arc-disjoint paths from
    /// \c s to \c t in the digraph. Otherwise it returns the number of
    /// arc-disjoint paths found.
    ///
    /// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
    /// just a shortcut of the following code.
    /// \code
    ///   s.init(s);
    ///   s.start(t, k);
    /// \endcode
    int run(const Node& s, const Node& t, int k = 2) {
      init(s);
      start(t, k);
      return _path_num;
    }

    /// \brief Initialize the algorithm.
    ///
    /// This function initializes the algorithm with the given source node.
    ///
    /// \param s The source node.
    void init(const Node& s) {
      _s = s;

      // Initialize maps
      if (!_flow) {
        _flow = new FlowMap(_graph);
        _local_flow = true;
      }
      if (!_potential) {
        _potential = new PotentialMap(_graph);
        _local_potential = true;
      }
      _full_init = false;
    }

    /// \brief Initialize the algorithm and perform Dijkstra.
    ///
    /// This function initializes the algorithm and performs a full
    /// Dijkstra search from the given source node. It makes consecutive
    /// executions of \ref start() "start(t, k)" faster, since they
    /// have to perform %Dijkstra only k-1 times.
    ///
    /// This initialization is usually worth using instead of \ref init()
    /// if the algorithm is executed many times using the same source node.
    ///
    /// \param s The source node.
    void fullInit(const Node& s) {
      // Initialize maps
      init(s);
      if (!_init_dist) {
        _init_dist = new PotentialMap(_graph);
      }
      if (!_init_pred) {
        _init_pred = new PredMap(_graph);
      }

      // Run a full Dijkstra
      typename Dijkstra<Digraph, LengthMap>
        ::template SetStandardHeap<Heap>
        ::template SetDistMap<PotentialMap>
        ::template SetPredMap<PredMap>
        ::Create dijk(_graph, _length);
      dijk.distMap(*_init_dist).predMap(*_init_pred);
      dijk.run(s);

      _full_init = true;
    }

    /// \brief Execute the algorithm.
    ///
    /// This function executes the algorithm.
    ///
    /// \param t The target node.
    /// \param k The number of paths to be found.
    ///
    /// \return \c k if there are at least \c k arc-disjoint paths from
    /// \c s to \c t in the digraph. Otherwise it returns the number of
    /// arc-disjoint paths found.
    ///
    /// \note Apart from the return value, <tt>s.start(t, k)</tt> is
    /// just a shortcut of the following code.
    /// \code
    ///   s.findFlow(t, k);
    ///   s.findPaths();
    /// \endcode
    int start(const Node& t, int k = 2) {
      findFlow(t, k);
      findPaths();
      return _path_num;
    }

    /// \brief Execute the algorithm to find an optimal flow.
    ///
    /// This function executes the successive shortest path algorithm to
    /// find a minimum cost flow, which is the union of \c k (or less)
    /// arc-disjoint paths.
    ///
    /// \param t The target node.
    /// \param k The number of paths to be found.
    ///
    /// \return \c k if there are at least \c k arc-disjoint paths from
    /// the source node to the given node \c t in the digraph.
    /// Otherwise it returns the number of arc-disjoint paths found.
    ///
    /// \pre \ref init() must be called before using this function.
    int findFlow(const Node& t, int k = 2) {
      _t = t;
      ResidualDijkstra dijkstra(*this);

      // Initialization
      for (ArcIt e(_graph); e != INVALID; ++e) {
        (*_flow)[e] = 0;
      }
      if (_full_init) {
        for (NodeIt n(_graph); n != INVALID; ++n) {
          (*_potential)[n] = (*_init_dist)[n];
        }
        Node u = _t;
        Arc e;
        while ((e = (*_init_pred)[u]) != INVALID) {
          (*_flow)[e] = 1;
          u = _graph.source(e);
        }
        _path_num = 1;
      } else {
        for (NodeIt n(_graph); n != INVALID; ++n) {
          (*_potential)[n] = 0;
        }
        _path_num = 0;
      }

      // Find shortest paths
      while (_path_num < k) {
        // Run Dijkstra
        if (!dijkstra.run(_path_num)) break;
        ++_path_num;

        // Set the flow along the found shortest path
        Node u = _t;
        Arc e;
        while ((e = _pred[u]) != INVALID) {
          if (u == _graph.target(e)) {
            (*_flow)[e] = 1;
            u = _graph.source(e);
          } else {
            (*_flow)[e] = 0;
            u = _graph.target(e);
          }
        }
      }
      return _path_num;
    }

    /// \brief Compute the paths from the flow.
    ///
    /// This function computes arc-disjoint paths from the found minimum
    /// cost flow, which is the union of them.
    ///
    /// \pre \ref init() and \ref findFlow() must be called before using
    /// this function.
    void findPaths() {
      FlowMap res_flow(_graph);
      for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];

      _paths.clear();
      _paths.resize(_path_num);
      for (int i = 0; i < _path_num; ++i) {
        Node n = _s;
        while (n != _t) {
          OutArcIt e(_graph, n);
          for ( ; res_flow[e] == 0; ++e) ;
          n = _graph.target(e);
          _paths[i].addBack(e);
          res_flow[e] = 0;
        }
      }
    }

    /// @}

    /// \name Query Functions
    /// The results of the algorithm can be obtained using these
    /// functions.
    /// \n The algorithm should be executed before using them.

    /// @{

    /// \brief Return the total length of the found paths.
    ///
    /// This function returns the total length of the found paths, i.e.
    /// the total cost of the found flow.
    /// The complexity of the function is O(m).
    ///
    /// \pre \ref run() or \ref findFlow() must be called before using
    /// this function.
    Length totalLength() const {
      Length c = 0;
      for (ArcIt e(_graph); e != INVALID; ++e)
        c += (*_flow)[e] * _length[e];
      return c;
    }

    /// \brief Return the flow value on the given arc.
    ///
    /// This function returns the flow value on the given arc.
    /// It is \c 1 if the arc is involved in one of the found arc-disjoint
    /// paths, otherwise it is \c 0.
    ///
    /// \pre \ref run() or \ref findFlow() must be called before using
    /// this function.
    int flow(const Arc& arc) const {
      return (*_flow)[arc];
    }

    /// \brief Return a const reference to an arc map storing the
    /// found flow.
    ///
    /// This function returns a const reference to an arc map storing
    /// the flow that is the union of the found arc-disjoint paths.
    ///
    /// \pre \ref run() or \ref findFlow() must be called before using
    /// this function.
    const FlowMap& flowMap() const {
      return *_flow;
    }

    /// \brief Return the potential of the given node.
    ///
    /// This function returns the potential of the given node.
    /// The node potentials provide the dual solution of the
    /// underlying \ref min_cost_flow "minimum cost flow problem".
    ///
    /// \pre \ref run() or \ref findFlow() must be called before using
    /// this function.
    Length potential(const Node& node) const {
      return (*_potential)[node];
    }

    /// \brief Return a const reference to a node map storing the
    /// found potentials (the dual solution).
    ///
    /// This function returns a const reference to a node map storing
    /// the found potentials that provide the dual solution of the
    /// underlying \ref min_cost_flow "minimum cost flow problem".
    ///
    /// \pre \ref run() or \ref findFlow() must be called before using
    /// this function.
    const PotentialMap& potentialMap() const {
      return *_potential;
    }

    /// \brief Return the number of the found paths.
    ///
    /// This function returns the number of the found paths.
    ///
    /// \pre \ref run() or \ref findFlow() must be called before using
    /// this function.
    int pathNum() const {
      return _path_num;
    }

    /// \brief Return a const reference to the specified path.
    ///
    /// This function returns a const reference to the specified path.
    ///
    /// \param i The function returns the <tt>i</tt>-th path.
    /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
    ///
    /// \pre \ref run() or \ref findPaths() must be called before using
    /// this function.
    const Path& path(int i) const {
      return _paths[i];
    }

    /// @}

  }; //class Suurballe

  ///@}

} //namespace lemon

#endif //LEMON_SUURBALLE_H