/usr/include/lemon/unionfind.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_UNION_FIND_H
#define LEMON_UNION_FIND_H
//!\ingroup auxdat
//!\file
//!\brief Union-Find data structures.
//!
#include <vector>
#include <list>
#include <utility>
#include <algorithm>
#include <functional>
#include <lemon/core.h>
namespace lemon {
/// \ingroup auxdat
///
/// \brief A \e Union-Find data structure implementation
///
/// The class implements the \e Union-Find data structure.
/// The union operation uses rank heuristic, while
/// the find operation uses path compression.
/// This is a very simple but efficient implementation, providing
/// only four methods: join (union), find, insert and size.
/// For more features, see the \ref UnionFindEnum class.
///
/// It is primarily used in Kruskal algorithm for finding minimal
/// cost spanning tree in a graph.
/// \sa kruskal()
///
/// \pre You need to add all the elements by the \ref insert()
/// method.
template <typename IM>
class UnionFind {
public:
///\e
typedef IM ItemIntMap;
///\e
typedef typename ItemIntMap::Key Item;
private:
// If the items vector stores negative value for an item then
// that item is root item and it has -items[it] component size.
// Else the items[it] contains the index of the parent.
std::vector<int> items;
ItemIntMap& index;
bool rep(int idx) const {
return items[idx] < 0;
}
int repIndex(int idx) const {
int k = idx;
while (!rep(k)) {
k = items[k] ;
}
while (idx != k) {
int next = items[idx];
const_cast<int&>(items[idx]) = k;
idx = next;
}
return k;
}
public:
/// \brief Constructor
///
/// Constructor of the UnionFind class. You should give an item to
/// integer map which will be used from the data structure. If you
/// modify directly this map that may cause segmentation fault,
/// invalid data structure, or infinite loop when you use again
/// the union-find.
UnionFind(ItemIntMap& m) : index(m) {}
/// \brief Returns the index of the element's component.
///
/// The method returns the index of the element's component.
/// This is an integer between zero and the number of inserted elements.
///
int find(const Item& a) {
return repIndex(index[a]);
}
/// \brief Clears the union-find data structure
///
/// Erase each item from the data structure.
void clear() {
items.clear();
}
/// \brief Inserts a new element into the structure.
///
/// This method inserts a new element into the data structure.
///
/// The method returns the index of the new component.
int insert(const Item& a) {
int n = items.size();
items.push_back(-1);
index.set(a,n);
return n;
}
/// \brief Joining the components of element \e a and element \e b.
///
/// This is the \e union operation of the Union-Find structure.
/// Joins the component of element \e a and component of
/// element \e b. If \e a and \e b are in the same component then
/// it returns false otherwise it returns true.
bool join(const Item& a, const Item& b) {
int ka = repIndex(index[a]);
int kb = repIndex(index[b]);
if ( ka == kb )
return false;
if (items[ka] < items[kb]) {
items[ka] += items[kb];
items[kb] = ka;
} else {
items[kb] += items[ka];
items[ka] = kb;
}
return true;
}
/// \brief Returns the size of the component of element \e a.
///
/// Returns the size of the component of element \e a.
int size(const Item& a) {
int k = repIndex(index[a]);
return - items[k];
}
};
/// \ingroup auxdat
///
/// \brief A \e Union-Find data structure implementation which
/// is able to enumerate the components.
///
/// The class implements a \e Union-Find data structure
/// which is able to enumerate the components and the items in
/// a component. If you don't need this feature then perhaps it's
/// better to use the \ref UnionFind class which is more efficient.
///
/// The union operation uses rank heuristic, while
/// the find operation uses path compression.
///
/// \pre You need to add all the elements by the \ref insert()
/// method.
///
template <typename IM>
class UnionFindEnum {
public:
///\e
typedef IM ItemIntMap;
///\e
typedef typename ItemIntMap::Key Item;
private:
ItemIntMap& index;
// If the parent stores negative value for an item then that item
// is root item and it has ~(items[it].parent) component id. Else
// the items[it].parent contains the index of the parent.
//
// The \c next and \c prev provides the double-linked
// cyclic list of one component's items.
struct ItemT {
int parent;
Item item;
int next, prev;
};
std::vector<ItemT> items;
int firstFreeItem;
struct ClassT {
int size;
int firstItem;
int next, prev;
};
std::vector<ClassT> classes;
int firstClass, firstFreeClass;
int newClass() {
if (firstFreeClass == -1) {
int cdx = classes.size();
classes.push_back(ClassT());
return cdx;
} else {
int cdx = firstFreeClass;
firstFreeClass = classes[firstFreeClass].next;
return cdx;
}
}
int newItem() {
if (firstFreeItem == -1) {
int idx = items.size();
items.push_back(ItemT());
return idx;
} else {
int idx = firstFreeItem;
firstFreeItem = items[firstFreeItem].next;
return idx;
}
}
bool rep(int idx) const {
return items[idx].parent < 0;
}
int repIndex(int idx) const {
int k = idx;
while (!rep(k)) {
k = items[k].parent;
}
while (idx != k) {
int next = items[idx].parent;
const_cast<int&>(items[idx].parent) = k;
idx = next;
}
return k;
}
int classIndex(int idx) const {
return ~(items[repIndex(idx)].parent);
}
void singletonItem(int idx) {
items[idx].next = idx;
items[idx].prev = idx;
}
void laceItem(int idx, int rdx) {
items[idx].prev = rdx;
items[idx].next = items[rdx].next;
items[items[rdx].next].prev = idx;
items[rdx].next = idx;
}
void unlaceItem(int idx) {
items[items[idx].prev].next = items[idx].next;
items[items[idx].next].prev = items[idx].prev;
items[idx].next = firstFreeItem;
firstFreeItem = idx;
}
void spliceItems(int ak, int bk) {
items[items[ak].prev].next = bk;
items[items[bk].prev].next = ak;
int tmp = items[ak].prev;
items[ak].prev = items[bk].prev;
items[bk].prev = tmp;
}
void laceClass(int cls) {
if (firstClass != -1) {
classes[firstClass].prev = cls;
}
classes[cls].next = firstClass;
classes[cls].prev = -1;
firstClass = cls;
}
void unlaceClass(int cls) {
if (classes[cls].prev != -1) {
classes[classes[cls].prev].next = classes[cls].next;
} else {
firstClass = classes[cls].next;
}
if (classes[cls].next != -1) {
classes[classes[cls].next].prev = classes[cls].prev;
}
classes[cls].next = firstFreeClass;
firstFreeClass = cls;
}
public:
UnionFindEnum(ItemIntMap& _index)
: index(_index), items(), firstFreeItem(-1),
firstClass(-1), firstFreeClass(-1) {}
/// \brief Inserts the given element into a new component.
///
/// This method creates a new component consisting only of the
/// given element.
///
int insert(const Item& item) {
int idx = newItem();
index.set(item, idx);
singletonItem(idx);
items[idx].item = item;
int cdx = newClass();
items[idx].parent = ~cdx;
laceClass(cdx);
classes[cdx].size = 1;
classes[cdx].firstItem = idx;
firstClass = cdx;
return cdx;
}
/// \brief Inserts the given element into the component of the others.
///
/// This methods inserts the element \e a into the component of the
/// element \e comp.
void insert(const Item& item, int cls) {
int rdx = classes[cls].firstItem;
int idx = newItem();
index.set(item, idx);
laceItem(idx, rdx);
items[idx].item = item;
items[idx].parent = rdx;
++classes[~(items[rdx].parent)].size;
}
/// \brief Clears the union-find data structure
///
/// Erase each item from the data structure.
void clear() {
items.clear();
firstClass = -1;
firstFreeItem = -1;
}
/// \brief Finds the component of the given element.
///
/// The method returns the component id of the given element.
int find(const Item &item) const {
return ~(items[repIndex(index[item])].parent);
}
/// \brief Joining the component of element \e a and element \e b.
///
/// This is the \e union operation of the Union-Find structure.
/// Joins the component of element \e a and component of
/// element \e b. If \e a and \e b are in the same component then
/// returns -1 else returns the remaining class.
int join(const Item& a, const Item& b) {
int ak = repIndex(index[a]);
int bk = repIndex(index[b]);
if (ak == bk) {
return -1;
}
int acx = ~(items[ak].parent);
int bcx = ~(items[bk].parent);
int rcx;
if (classes[acx].size > classes[bcx].size) {
classes[acx].size += classes[bcx].size;
items[bk].parent = ak;
unlaceClass(bcx);
rcx = acx;
} else {
classes[bcx].size += classes[acx].size;
items[ak].parent = bk;
unlaceClass(acx);
rcx = bcx;
}
spliceItems(ak, bk);
return rcx;
}
/// \brief Returns the size of the class.
///
/// Returns the size of the class.
int size(int cls) const {
return classes[cls].size;
}
/// \brief Splits up the component.
///
/// Splitting the component into singleton components (component
/// of size one).
void split(int cls) {
int fdx = classes[cls].firstItem;
int idx = items[fdx].next;
while (idx != fdx) {
int next = items[idx].next;
singletonItem(idx);
int cdx = newClass();
items[idx].parent = ~cdx;
laceClass(cdx);
classes[cdx].size = 1;
classes[cdx].firstItem = idx;
idx = next;
}
items[idx].prev = idx;
items[idx].next = idx;
classes[~(items[idx].parent)].size = 1;
}
/// \brief Removes the given element from the structure.
///
/// Removes the element from its component and if the component becomes
/// empty then removes that component from the component list.
///
/// \warning It is an error to remove an element which is not in
/// the structure.
/// \warning This running time of this operation is proportional to the
/// number of the items in this class.
void erase(const Item& item) {
int idx = index[item];
int fdx = items[idx].next;
int cdx = classIndex(idx);
if (idx == fdx) {
unlaceClass(cdx);
items[idx].next = firstFreeItem;
firstFreeItem = idx;
return;
} else {
classes[cdx].firstItem = fdx;
--classes[cdx].size;
items[fdx].parent = ~cdx;
unlaceItem(idx);
idx = items[fdx].next;
while (idx != fdx) {
items[idx].parent = fdx;
idx = items[idx].next;
}
}
}
/// \brief Gives back a representant item of the component.
///
/// Gives back a representant item of the component.
Item item(int cls) const {
return items[classes[cls].firstItem].item;
}
/// \brief Removes the component of the given element from the structure.
///
/// Removes the component of the given element from the structure.
///
/// \warning It is an error to give an element which is not in the
/// structure.
void eraseClass(int cls) {
int fdx = classes[cls].firstItem;
unlaceClass(cls);
items[items[fdx].prev].next = firstFreeItem;
firstFreeItem = fdx;
}
/// \brief LEMON style iterator for the representant items.
///
/// ClassIt is a lemon style iterator for the components. It iterates
/// on the ids of the classes.
class ClassIt {
public:
/// \brief Constructor of the iterator
///
/// Constructor of the iterator
ClassIt(const UnionFindEnum& ufe) : unionFind(&ufe) {
cdx = unionFind->firstClass;
}
/// \brief Constructor to get invalid iterator
///
/// Constructor to get invalid iterator
ClassIt(Invalid) : unionFind(0), cdx(-1) {}
/// \brief Increment operator
///
/// It steps to the next representant item.
ClassIt& operator++() {
cdx = unionFind->classes[cdx].next;
return *this;
}
/// \brief Conversion operator
///
/// It converts the iterator to the current representant item.
operator int() const {
return cdx;
}
/// \brief Equality operator
///
/// Equality operator
bool operator==(const ClassIt& i) {
return i.cdx == cdx;
}
/// \brief Inequality operator
///
/// Inequality operator
bool operator!=(const ClassIt& i) {
return i.cdx != cdx;
}
private:
const UnionFindEnum* unionFind;
int cdx;
};
/// \brief LEMON style iterator for the items of a component.
///
/// ClassIt is a lemon style iterator for the components. It iterates
/// on the items of a class. By example if you want to iterate on
/// each items of each classes then you may write the next code.
///\code
/// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
/// std::cout << "Class: ";
/// for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
/// std::cout << toString(iit) << ' ' << std::endl;
/// }
/// std::cout << std::endl;
/// }
///\endcode
class ItemIt {
public:
/// \brief Constructor of the iterator
///
/// Constructor of the iterator. The iterator iterates
/// on the class of the \c item.
ItemIt(const UnionFindEnum& ufe, int cls) : unionFind(&ufe) {
fdx = idx = unionFind->classes[cls].firstItem;
}
/// \brief Constructor to get invalid iterator
///
/// Constructor to get invalid iterator
ItemIt(Invalid) : unionFind(0), idx(-1) {}
/// \brief Increment operator
///
/// It steps to the next item in the class.
ItemIt& operator++() {
idx = unionFind->items[idx].next;
if (idx == fdx) idx = -1;
return *this;
}
/// \brief Conversion operator
///
/// It converts the iterator to the current item.
operator const Item&() const {
return unionFind->items[idx].item;
}
/// \brief Equality operator
///
/// Equality operator
bool operator==(const ItemIt& i) {
return i.idx == idx;
}
/// \brief Inequality operator
///
/// Inequality operator
bool operator!=(const ItemIt& i) {
return i.idx != idx;
}
private:
const UnionFindEnum* unionFind;
int idx, fdx;
};
};
/// \ingroup auxdat
///
/// \brief A \e Extend-Find data structure implementation which
/// is able to enumerate the components.
///
/// The class implements an \e Extend-Find data structure which is
/// able to enumerate the components and the items in a
/// component. The data structure is a simplification of the
/// Union-Find structure, and it does not allow to merge two components.
///
/// \pre You need to add all the elements by the \ref insert()
/// method.
template <typename IM>
class ExtendFindEnum {
public:
///\e
typedef IM ItemIntMap;
///\e
typedef typename ItemIntMap::Key Item;
private:
ItemIntMap& index;
struct ItemT {
int cls;
Item item;
int next, prev;
};
std::vector<ItemT> items;
int firstFreeItem;
struct ClassT {
int firstItem;
int next, prev;
};
std::vector<ClassT> classes;
int firstClass, firstFreeClass;
int newClass() {
if (firstFreeClass != -1) {
int cdx = firstFreeClass;
firstFreeClass = classes[cdx].next;
return cdx;
} else {
classes.push_back(ClassT());
return classes.size() - 1;
}
}
int newItem() {
if (firstFreeItem != -1) {
int idx = firstFreeItem;
firstFreeItem = items[idx].next;
return idx;
} else {
items.push_back(ItemT());
return items.size() - 1;
}
}
public:
/// \brief Constructor
ExtendFindEnum(ItemIntMap& _index)
: index(_index), items(), firstFreeItem(-1),
classes(), firstClass(-1), firstFreeClass(-1) {}
/// \brief Inserts the given element into a new component.
///
/// This method creates a new component consisting only of the
/// given element.
int insert(const Item& item) {
int cdx = newClass();
classes[cdx].prev = -1;
classes[cdx].next = firstClass;
if (firstClass != -1) {
classes[firstClass].prev = cdx;
}
firstClass = cdx;
int idx = newItem();
items[idx].item = item;
items[idx].cls = cdx;
items[idx].prev = idx;
items[idx].next = idx;
classes[cdx].firstItem = idx;
index.set(item, idx);
return cdx;
}
/// \brief Inserts the given element into the given component.
///
/// This methods inserts the element \e item a into the \e cls class.
void insert(const Item& item, int cls) {
int idx = newItem();
int rdx = classes[cls].firstItem;
items[idx].item = item;
items[idx].cls = cls;
items[idx].prev = rdx;
items[idx].next = items[rdx].next;
items[items[rdx].next].prev = idx;
items[rdx].next = idx;
index.set(item, idx);
}
/// \brief Clears the union-find data structure
///
/// Erase each item from the data structure.
void clear() {
items.clear();
classes.clear();
firstClass = firstFreeClass = firstFreeItem = -1;
}
/// \brief Gives back the class of the \e item.
///
/// Gives back the class of the \e item.
int find(const Item &item) const {
return items[index[item]].cls;
}
/// \brief Gives back a representant item of the component.
///
/// Gives back a representant item of the component.
Item item(int cls) const {
return items[classes[cls].firstItem].item;
}
/// \brief Removes the given element from the structure.
///
/// Removes the element from its component and if the component becomes
/// empty then removes that component from the component list.
///
/// \warning It is an error to remove an element which is not in
/// the structure.
void erase(const Item &item) {
int idx = index[item];
int cdx = items[idx].cls;
if (idx == items[idx].next) {
if (classes[cdx].prev != -1) {
classes[classes[cdx].prev].next = classes[cdx].next;
} else {
firstClass = classes[cdx].next;
}
if (classes[cdx].next != -1) {
classes[classes[cdx].next].prev = classes[cdx].prev;
}
classes[cdx].next = firstFreeClass;
firstFreeClass = cdx;
} else {
classes[cdx].firstItem = items[idx].next;
items[items[idx].next].prev = items[idx].prev;
items[items[idx].prev].next = items[idx].next;
}
items[idx].next = firstFreeItem;
firstFreeItem = idx;
}
/// \brief Removes the component of the given element from the structure.
///
/// Removes the component of the given element from the structure.
///
/// \warning It is an error to give an element which is not in the
/// structure.
void eraseClass(int cdx) {
int idx = classes[cdx].firstItem;
items[items[idx].prev].next = firstFreeItem;
firstFreeItem = idx;
if (classes[cdx].prev != -1) {
classes[classes[cdx].prev].next = classes[cdx].next;
} else {
firstClass = classes[cdx].next;
}
if (classes[cdx].next != -1) {
classes[classes[cdx].next].prev = classes[cdx].prev;
}
classes[cdx].next = firstFreeClass;
firstFreeClass = cdx;
}
/// \brief LEMON style iterator for the classes.
///
/// ClassIt is a lemon style iterator for the components. It iterates
/// on the ids of classes.
class ClassIt {
public:
/// \brief Constructor of the iterator
///
/// Constructor of the iterator
ClassIt(const ExtendFindEnum& ufe) : extendFind(&ufe) {
cdx = extendFind->firstClass;
}
/// \brief Constructor to get invalid iterator
///
/// Constructor to get invalid iterator
ClassIt(Invalid) : extendFind(0), cdx(-1) {}
/// \brief Increment operator
///
/// It steps to the next representant item.
ClassIt& operator++() {
cdx = extendFind->classes[cdx].next;
return *this;
}
/// \brief Conversion operator
///
/// It converts the iterator to the current class id.
operator int() const {
return cdx;
}
/// \brief Equality operator
///
/// Equality operator
bool operator==(const ClassIt& i) {
return i.cdx == cdx;
}
/// \brief Inequality operator
///
/// Inequality operator
bool operator!=(const ClassIt& i) {
return i.cdx != cdx;
}
private:
const ExtendFindEnum* extendFind;
int cdx;
};
/// \brief LEMON style iterator for the items of a component.
///
/// ClassIt is a lemon style iterator for the components. It iterates
/// on the items of a class. By example if you want to iterate on
/// each items of each classes then you may write the next code.
///\code
/// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
/// std::cout << "Class: ";
/// for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
/// std::cout << toString(iit) << ' ' << std::endl;
/// }
/// std::cout << std::endl;
/// }
///\endcode
class ItemIt {
public:
/// \brief Constructor of the iterator
///
/// Constructor of the iterator. The iterator iterates
/// on the class of the \c item.
ItemIt(const ExtendFindEnum& ufe, int cls) : extendFind(&ufe) {
fdx = idx = extendFind->classes[cls].firstItem;
}
/// \brief Constructor to get invalid iterator
///
/// Constructor to get invalid iterator
ItemIt(Invalid) : extendFind(0), idx(-1) {}
/// \brief Increment operator
///
/// It steps to the next item in the class.
ItemIt& operator++() {
idx = extendFind->items[idx].next;
if (fdx == idx) idx = -1;
return *this;
}
/// \brief Conversion operator
///
/// It converts the iterator to the current item.
operator const Item&() const {
return extendFind->items[idx].item;
}
/// \brief Equality operator
///
/// Equality operator
bool operator==(const ItemIt& i) {
return i.idx == idx;
}
/// \brief Inequality operator
///
/// Inequality operator
bool operator!=(const ItemIt& i) {
return i.idx != idx;
}
private:
const ExtendFindEnum* extendFind;
int idx, fdx;
};
};
/// \ingroup auxdat
///
/// \brief A \e Union-Find data structure implementation which
/// is able to store a priority for each item and retrieve the minimum of
/// each class.
///
/// A \e Union-Find data structure implementation which is able to
/// store a priority for each item and retrieve the minimum of each
/// class. In addition, it supports the joining and splitting the
/// components. If you don't need this feature then you makes
/// better to use the \ref UnionFind class which is more efficient.
///
/// The union-find data strcuture based on a (2, 16)-tree with a
/// tournament minimum selection on the internal nodes. The insert
/// operation takes O(1), the find, set, decrease and increase takes
/// O(log(n)), where n is the number of nodes in the current
/// component. The complexity of join and split is O(log(n)*k),
/// where n is the sum of the number of the nodes and k is the
/// number of joined components or the number of the components
/// after the split.
///
/// \pre You need to add all the elements by the \ref insert()
/// method.
template <typename V, typename IM, typename Comp = std::less<V> >
class HeapUnionFind {
public:
///\e
typedef V Value;
///\e
typedef typename IM::Key Item;
///\e
typedef IM ItemIntMap;
///\e
typedef Comp Compare;
private:
static const int cmax = 16;
ItemIntMap& index;
struct ClassNode {
int parent;
int depth;
int left, right;
int next, prev;
};
int first_class;
int first_free_class;
std::vector<ClassNode> classes;
int newClass() {
if (first_free_class < 0) {
int id = classes.size();
classes.push_back(ClassNode());
return id;
} else {
int id = first_free_class;
first_free_class = classes[id].next;
return id;
}
}
void deleteClass(int id) {
classes[id].next = first_free_class;
first_free_class = id;
}
struct ItemNode {
int parent;
Item item;
Value prio;
int next, prev;
int left, right;
int size;
};
int first_free_node;
std::vector<ItemNode> nodes;
int newNode() {
if (first_free_node < 0) {
int id = nodes.size();
nodes.push_back(ItemNode());
return id;
} else {
int id = first_free_node;
first_free_node = nodes[id].next;
return id;
}
}
void deleteNode(int id) {
nodes[id].next = first_free_node;
first_free_node = id;
}
Comp comp;
int findClass(int id) const {
int kd = id;
while (kd >= 0) {
kd = nodes[kd].parent;
}
return ~kd;
}
int leftNode(int id) const {
int kd = ~(classes[id].parent);
for (int i = 0; i < classes[id].depth; ++i) {
kd = nodes[kd].left;
}
return kd;
}
int nextNode(int id) const {
int depth = 0;
while (id >= 0 && nodes[id].next == -1) {
id = nodes[id].parent;
++depth;
}
if (id < 0) {
return -1;
}
id = nodes[id].next;
while (depth--) {
id = nodes[id].left;
}
return id;
}
void setPrio(int id) {
int jd = nodes[id].left;
nodes[id].prio = nodes[jd].prio;
nodes[id].item = nodes[jd].item;
jd = nodes[jd].next;
while (jd != -1) {
if (comp(nodes[jd].prio, nodes[id].prio)) {
nodes[id].prio = nodes[jd].prio;
nodes[id].item = nodes[jd].item;
}
jd = nodes[jd].next;
}
}
void push(int id, int jd) {
nodes[id].size = 1;
nodes[id].left = nodes[id].right = jd;
nodes[jd].next = nodes[jd].prev = -1;
nodes[jd].parent = id;
}
void pushAfter(int id, int jd) {
int kd = nodes[id].parent;
if (nodes[id].next != -1) {
nodes[nodes[id].next].prev = jd;
if (kd >= 0) {
nodes[kd].size += 1;
}
} else {
if (kd >= 0) {
nodes[kd].right = jd;
nodes[kd].size += 1;
}
}
nodes[jd].next = nodes[id].next;
nodes[jd].prev = id;
nodes[id].next = jd;
nodes[jd].parent = kd;
}
void pushRight(int id, int jd) {
nodes[id].size += 1;
nodes[jd].prev = nodes[id].right;
nodes[jd].next = -1;
nodes[nodes[id].right].next = jd;
nodes[id].right = jd;
nodes[jd].parent = id;
}
void popRight(int id) {
nodes[id].size -= 1;
int jd = nodes[id].right;
nodes[nodes[jd].prev].next = -1;
nodes[id].right = nodes[jd].prev;
}
void splice(int id, int jd) {
nodes[id].size += nodes[jd].size;
nodes[nodes[id].right].next = nodes[jd].left;
nodes[nodes[jd].left].prev = nodes[id].right;
int kd = nodes[jd].left;
while (kd != -1) {
nodes[kd].parent = id;
kd = nodes[kd].next;
}
nodes[id].right = nodes[jd].right;
}
void split(int id, int jd) {
int kd = nodes[id].parent;
nodes[kd].right = nodes[id].prev;
nodes[nodes[id].prev].next = -1;
nodes[jd].left = id;
nodes[id].prev = -1;
int num = 0;
while (id != -1) {
nodes[id].parent = jd;
nodes[jd].right = id;
id = nodes[id].next;
++num;
}
nodes[kd].size -= num;
nodes[jd].size = num;
}
void pushLeft(int id, int jd) {
nodes[id].size += 1;
nodes[jd].next = nodes[id].left;
nodes[jd].prev = -1;
nodes[nodes[id].left].prev = jd;
nodes[id].left = jd;
nodes[jd].parent = id;
}
void popLeft(int id) {
nodes[id].size -= 1;
int jd = nodes[id].left;
nodes[nodes[jd].next].prev = -1;
nodes[id].left = nodes[jd].next;
}
void repairLeft(int id) {
int jd = ~(classes[id].parent);
while (nodes[jd].left != -1) {
int kd = nodes[jd].left;
if (nodes[jd].size == 1) {
if (nodes[jd].parent < 0) {
classes[id].parent = ~kd;
classes[id].depth -= 1;
nodes[kd].parent = ~id;
deleteNode(jd);
jd = kd;
} else {
int pd = nodes[jd].parent;
if (nodes[nodes[jd].next].size < cmax) {
pushLeft(nodes[jd].next, nodes[jd].left);
if (less(jd, nodes[jd].next) ||
nodes[jd].item == nodes[pd].item) {
nodes[nodes[jd].next].prio = nodes[jd].prio;
nodes[nodes[jd].next].item = nodes[jd].item;
}
popLeft(pd);
deleteNode(jd);
jd = pd;
} else {
int ld = nodes[nodes[jd].next].left;
popLeft(nodes[jd].next);
pushRight(jd, ld);
if (less(ld, nodes[jd].left) ||
nodes[ld].item == nodes[pd].item) {
nodes[jd].item = nodes[ld].item;
nodes[jd].prio = nodes[ld].prio;
}
if (nodes[nodes[jd].next].item == nodes[ld].item) {
setPrio(nodes[jd].next);
}
jd = nodes[jd].left;
}
}
} else {
jd = nodes[jd].left;
}
}
}
void repairRight(int id) {
int jd = ~(classes[id].parent);
while (nodes[jd].right != -1) {
int kd = nodes[jd].right;
if (nodes[jd].size == 1) {
if (nodes[jd].parent < 0) {
classes[id].parent = ~kd;
classes[id].depth -= 1;
nodes[kd].parent = ~id;
deleteNode(jd);
jd = kd;
} else {
int pd = nodes[jd].parent;
if (nodes[nodes[jd].prev].size < cmax) {
pushRight(nodes[jd].prev, nodes[jd].right);
if (less(jd, nodes[jd].prev) ||
nodes[jd].item == nodes[pd].item) {
nodes[nodes[jd].prev].prio = nodes[jd].prio;
nodes[nodes[jd].prev].item = nodes[jd].item;
}
popRight(pd);
deleteNode(jd);
jd = pd;
} else {
int ld = nodes[nodes[jd].prev].right;
popRight(nodes[jd].prev);
pushLeft(jd, ld);
if (less(ld, nodes[jd].right) ||
nodes[ld].item == nodes[pd].item) {
nodes[jd].item = nodes[ld].item;
nodes[jd].prio = nodes[ld].prio;
}
if (nodes[nodes[jd].prev].item == nodes[ld].item) {
setPrio(nodes[jd].prev);
}
jd = nodes[jd].right;
}
}
} else {
jd = nodes[jd].right;
}
}
}
bool less(int id, int jd) const {
return comp(nodes[id].prio, nodes[jd].prio);
}
public:
/// \brief Returns true when the given class is alive.
///
/// Returns true when the given class is alive, ie. the class is
/// not nested into other class.
bool alive(int cls) const {
return classes[cls].parent < 0;
}
/// \brief Returns true when the given class is trivial.
///
/// Returns true when the given class is trivial, ie. the class
/// contains just one item directly.
bool trivial(int cls) const {
return classes[cls].left == -1;
}
/// \brief Constructs the union-find.
///
/// Constructs the union-find.
/// \brief _index The index map of the union-find. The data
/// structure uses internally for store references.
HeapUnionFind(ItemIntMap& _index)
: index(_index), first_class(-1),
first_free_class(-1), first_free_node(-1) {}
/// \brief Clears the union-find data structure
///
/// Erase each item from the data structure.
void clear() {
nodes.clear();
classes.clear();
first_free_node = first_free_class = first_class = -1;
}
/// \brief Insert a new node into a new component.
///
/// Insert a new node into a new component.
/// \param item The item of the new node.
/// \param prio The priority of the new node.
/// \return The class id of the one-item-heap.
int insert(const Item& item, const Value& prio) {
int id = newNode();
nodes[id].item = item;
nodes[id].prio = prio;
nodes[id].size = 0;
nodes[id].prev = -1;
nodes[id].next = -1;
nodes[id].left = -1;
nodes[id].right = -1;
nodes[id].item = item;
index[item] = id;
int class_id = newClass();
classes[class_id].parent = ~id;
classes[class_id].depth = 0;
classes[class_id].left = -1;
classes[class_id].right = -1;
if (first_class != -1) {
classes[first_class].prev = class_id;
}
classes[class_id].next = first_class;
classes[class_id].prev = -1;
first_class = class_id;
nodes[id].parent = ~class_id;
return class_id;
}
/// \brief The class of the item.
///
/// \return The alive class id of the item, which is not nested into
/// other classes.
///
/// The time complexity is O(log(n)).
int find(const Item& item) const {
return findClass(index[item]);
}
/// \brief Joins the classes.
///
/// The current function joins the given classes. The parameter is
/// an STL range which should be contains valid class ids. The
/// time complexity is O(log(n)*k) where n is the overall number
/// of the joined nodes and k is the number of classes.
/// \return The class of the joined classes.
/// \pre The range should contain at least two class ids.
template <typename Iterator>
int join(Iterator begin, Iterator end) {
std::vector<int> cs;
for (Iterator it = begin; it != end; ++it) {
cs.push_back(*it);
}
int class_id = newClass();
{ // creation union-find
if (first_class != -1) {
classes[first_class].prev = class_id;
}
classes[class_id].next = first_class;
classes[class_id].prev = -1;
first_class = class_id;
classes[class_id].depth = classes[cs[0]].depth;
classes[class_id].parent = classes[cs[0]].parent;
nodes[~(classes[class_id].parent)].parent = ~class_id;
int l = cs[0];
classes[class_id].left = l;
classes[class_id].right = l;
if (classes[l].next != -1) {
classes[classes[l].next].prev = classes[l].prev;
}
classes[classes[l].prev].next = classes[l].next;
classes[l].prev = -1;
classes[l].next = -1;
classes[l].depth = leftNode(l);
classes[l].parent = class_id;
}
{ // merging of heap
int l = class_id;
for (int ci = 1; ci < int(cs.size()); ++ci) {
int r = cs[ci];
int rln = leftNode(r);
if (classes[l].depth > classes[r].depth) {
int id = ~(classes[l].parent);
for (int i = classes[r].depth + 1; i < classes[l].depth; ++i) {
id = nodes[id].right;
}
while (id >= 0 && nodes[id].size == cmax) {
int new_id = newNode();
int right_id = nodes[id].right;
popRight(id);
if (nodes[id].item == nodes[right_id].item) {
setPrio(id);
}
push(new_id, right_id);
pushRight(new_id, ~(classes[r].parent));
if (less(~classes[r].parent, right_id)) {
nodes[new_id].item = nodes[~classes[r].parent].item;
nodes[new_id].prio = nodes[~classes[r].parent].prio;
} else {
nodes[new_id].item = nodes[right_id].item;
nodes[new_id].prio = nodes[right_id].prio;
}
id = nodes[id].parent;
classes[r].parent = ~new_id;
}
if (id < 0) {
int new_parent = newNode();
nodes[new_parent].next = -1;
nodes[new_parent].prev = -1;
nodes[new_parent].parent = ~l;
push(new_parent, ~(classes[l].parent));
pushRight(new_parent, ~(classes[r].parent));
setPrio(new_parent);
classes[l].parent = ~new_parent;
classes[l].depth += 1;
} else {
pushRight(id, ~(classes[r].parent));
while (id >= 0 && less(~(classes[r].parent), id)) {
nodes[id].prio = nodes[~(classes[r].parent)].prio;
nodes[id].item = nodes[~(classes[r].parent)].item;
id = nodes[id].parent;
}
}
} else if (classes[r].depth > classes[l].depth) {
int id = ~(classes[r].parent);
for (int i = classes[l].depth + 1; i < classes[r].depth; ++i) {
id = nodes[id].left;
}
while (id >= 0 && nodes[id].size == cmax) {
int new_id = newNode();
int left_id = nodes[id].left;
popLeft(id);
if (nodes[id].prio == nodes[left_id].prio) {
setPrio(id);
}
push(new_id, left_id);
pushLeft(new_id, ~(classes[l].parent));
if (less(~classes[l].parent, left_id)) {
nodes[new_id].item = nodes[~classes[l].parent].item;
nodes[new_id].prio = nodes[~classes[l].parent].prio;
} else {
nodes[new_id].item = nodes[left_id].item;
nodes[new_id].prio = nodes[left_id].prio;
}
id = nodes[id].parent;
classes[l].parent = ~new_id;
}
if (id < 0) {
int new_parent = newNode();
nodes[new_parent].next = -1;
nodes[new_parent].prev = -1;
nodes[new_parent].parent = ~l;
push(new_parent, ~(classes[r].parent));
pushLeft(new_parent, ~(classes[l].parent));
setPrio(new_parent);
classes[r].parent = ~new_parent;
classes[r].depth += 1;
} else {
pushLeft(id, ~(classes[l].parent));
while (id >= 0 && less(~(classes[l].parent), id)) {
nodes[id].prio = nodes[~(classes[l].parent)].prio;
nodes[id].item = nodes[~(classes[l].parent)].item;
id = nodes[id].parent;
}
}
nodes[~(classes[r].parent)].parent = ~l;
classes[l].parent = classes[r].parent;
classes[l].depth = classes[r].depth;
} else {
if (classes[l].depth != 0 &&
nodes[~(classes[l].parent)].size +
nodes[~(classes[r].parent)].size <= cmax) {
splice(~(classes[l].parent), ~(classes[r].parent));
deleteNode(~(classes[r].parent));
if (less(~(classes[r].parent), ~(classes[l].parent))) {
nodes[~(classes[l].parent)].prio =
nodes[~(classes[r].parent)].prio;
nodes[~(classes[l].parent)].item =
nodes[~(classes[r].parent)].item;
}
} else {
int new_parent = newNode();
nodes[new_parent].next = nodes[new_parent].prev = -1;
push(new_parent, ~(classes[l].parent));
pushRight(new_parent, ~(classes[r].parent));
setPrio(new_parent);
classes[l].parent = ~new_parent;
classes[l].depth += 1;
nodes[new_parent].parent = ~l;
}
}
if (classes[r].next != -1) {
classes[classes[r].next].prev = classes[r].prev;
}
classes[classes[r].prev].next = classes[r].next;
classes[r].prev = classes[l].right;
classes[classes[l].right].next = r;
classes[l].right = r;
classes[r].parent = l;
classes[r].next = -1;
classes[r].depth = rln;
}
}
return class_id;
}
/// \brief Split the class to subclasses.
///
/// The current function splits the given class. The join, which
/// made the current class, stored a reference to the
/// subclasses. The \c splitClass() member restores the classes
/// and creates the heaps. The parameter is an STL output iterator
/// which will be filled with the subclass ids. The time
/// complexity is O(log(n)*k) where n is the overall number of
/// nodes in the splitted classes and k is the number of the
/// classes.
template <typename Iterator>
void split(int cls, Iterator out) {
std::vector<int> cs;
{ // splitting union-find
int id = cls;
int l = classes[id].left;
classes[l].parent = classes[id].parent;
classes[l].depth = classes[id].depth;
nodes[~(classes[l].parent)].parent = ~l;
*out++ = l;
while (l != -1) {
cs.push_back(l);
l = classes[l].next;
}
classes[classes[id].right].next = first_class;
classes[first_class].prev = classes[id].right;
first_class = classes[id].left;
if (classes[id].next != -1) {
classes[classes[id].next].prev = classes[id].prev;
}
classes[classes[id].prev].next = classes[id].next;
deleteClass(id);
}
{
for (int i = 1; i < int(cs.size()); ++i) {
int l = classes[cs[i]].depth;
while (nodes[nodes[l].parent].left == l) {
l = nodes[l].parent;
}
int r = l;
while (nodes[l].parent >= 0) {
l = nodes[l].parent;
int new_node = newNode();
nodes[new_node].prev = -1;
nodes[new_node].next = -1;
split(r, new_node);
pushAfter(l, new_node);
setPrio(l);
setPrio(new_node);
r = new_node;
}
classes[cs[i]].parent = ~r;
classes[cs[i]].depth = classes[~(nodes[l].parent)].depth;
nodes[r].parent = ~cs[i];
nodes[l].next = -1;
nodes[r].prev = -1;
repairRight(~(nodes[l].parent));
repairLeft(cs[i]);
*out++ = cs[i];
}
}
}
/// \brief Gives back the priority of the current item.
///
/// Gives back the priority of the current item.
const Value& operator[](const Item& item) const {
return nodes[index[item]].prio;
}
/// \brief Sets the priority of the current item.
///
/// Sets the priority of the current item.
void set(const Item& item, const Value& prio) {
if (comp(prio, nodes[index[item]].prio)) {
decrease(item, prio);
} else if (!comp(prio, nodes[index[item]].prio)) {
increase(item, prio);
}
}
/// \brief Increase the priority of the current item.
///
/// Increase the priority of the current item.
void increase(const Item& item, const Value& prio) {
int id = index[item];
int kd = nodes[id].parent;
nodes[id].prio = prio;
while (kd >= 0 && nodes[kd].item == item) {
setPrio(kd);
kd = nodes[kd].parent;
}
}
/// \brief Increase the priority of the current item.
///
/// Increase the priority of the current item.
void decrease(const Item& item, const Value& prio) {
int id = index[item];
int kd = nodes[id].parent;
nodes[id].prio = prio;
while (kd >= 0 && less(id, kd)) {
nodes[kd].prio = prio;
nodes[kd].item = item;
kd = nodes[kd].parent;
}
}
/// \brief Gives back the minimum priority of the class.
///
/// Gives back the minimum priority of the class.
const Value& classPrio(int cls) const {
return nodes[~(classes[cls].parent)].prio;
}
/// \brief Gives back the minimum priority item of the class.
///
/// \return Gives back the minimum priority item of the class.
const Item& classTop(int cls) const {
return nodes[~(classes[cls].parent)].item;
}
/// \brief Gives back a representant item of the class.
///
/// Gives back a representant item of the class.
/// The representant is indpendent from the priorities of the
/// items.
const Item& classRep(int id) const {
int parent = classes[id].parent;
return nodes[parent >= 0 ? classes[id].depth : leftNode(id)].item;
}
/// \brief LEMON style iterator for the items of a class.
///
/// ClassIt is a lemon style iterator for the components. It iterates
/// on the items of a class. By example if you want to iterate on
/// each items of each classes then you may write the next code.
///\code
/// for (ClassIt cit(huf); cit != INVALID; ++cit) {
/// std::cout << "Class: ";
/// for (ItemIt iit(huf, cit); iit != INVALID; ++iit) {
/// std::cout << toString(iit) << ' ' << std::endl;
/// }
/// std::cout << std::endl;
/// }
///\endcode
class ItemIt {
private:
const HeapUnionFind* _huf;
int _id, _lid;
public:
/// \brief Default constructor
///
/// Default constructor
ItemIt() {}
ItemIt(const HeapUnionFind& huf, int cls) : _huf(&huf) {
int id = cls;
int parent = _huf->classes[id].parent;
if (parent >= 0) {
_id = _huf->classes[id].depth;
if (_huf->classes[id].next != -1) {
_lid = _huf->classes[_huf->classes[id].next].depth;
} else {
_lid = -1;
}
} else {
_id = _huf->leftNode(id);
_lid = -1;
}
}
/// \brief Increment operator
///
/// It steps to the next item in the class.
ItemIt& operator++() {
_id = _huf->nextNode(_id);
return *this;
}
/// \brief Conversion operator
///
/// It converts the iterator to the current item.
operator const Item&() const {
return _huf->nodes[_id].item;
}
/// \brief Equality operator
///
/// Equality operator
bool operator==(const ItemIt& i) {
return i._id == _id;
}
/// \brief Inequality operator
///
/// Inequality operator
bool operator!=(const ItemIt& i) {
return i._id != _id;
}
/// \brief Equality operator
///
/// Equality operator
bool operator==(Invalid) {
return _id == _lid;
}
/// \brief Inequality operator
///
/// Inequality operator
bool operator!=(Invalid) {
return _id != _lid;
}
};
/// \brief Class iterator
///
/// The iterator stores
class ClassIt {
private:
const HeapUnionFind* _huf;
int _id;
public:
ClassIt(const HeapUnionFind& huf)
: _huf(&huf), _id(huf.first_class) {}
ClassIt(const HeapUnionFind& huf, int cls)
: _huf(&huf), _id(huf.classes[cls].left) {}
ClassIt(Invalid) : _huf(0), _id(-1) {}
const ClassIt& operator++() {
_id = _huf->classes[_id].next;
return *this;
}
/// \brief Equality operator
///
/// Equality operator
bool operator==(const ClassIt& i) {
return i._id == _id;
}
/// \brief Inequality operator
///
/// Inequality operator
bool operator!=(const ClassIt& i) {
return i._id != _id;
}
operator int() const {
return _id;
}
};
};
//! @}
} //namespace lemon
#endif //LEMON_UNION_FIND_H
|