This file is indexed.

/usr/include/liggghts/cohesion_model_washino_capillary_viscous.h is in libliggghts-dev 3.7.0+repack1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
/* ----------------------------------------------------------------------
    This is the

    ██╗     ██╗ ██████╗  ██████╗  ██████╗ ██╗  ██╗████████╗███████╗
    ██║     ██║██╔════╝ ██╔════╝ ██╔════╝ ██║  ██║╚══██╔══╝██╔════╝
    ██║     ██║██║  ███╗██║  ███╗██║  ███╗███████║   ██║   ███████╗
    ██║     ██║██║   ██║██║   ██║██║   ██║██╔══██║   ██║   ╚════██║
    ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║  ██║   ██║   ███████║
    ╚══════╝╚═╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝   ╚═╝   ╚══════╝®

    DEM simulation engine, released by
    DCS Computing Gmbh, Linz, Austria
    http://www.dcs-computing.com, office@dcs-computing.com

    LIGGGHTS® is part of CFDEM®project:
    http://www.liggghts.com | http://www.cfdem.com

    Core developer and main author:
    Christoph Kloss, christoph.kloss@dcs-computing.com

    LIGGGHTS® is open-source, distributed under the terms of the GNU Public
    License, version 2 or later. It is distributed in the hope that it will
    be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have
    received a copy of the GNU General Public License along with LIGGGHTS®.
    If not, see http://www.gnu.org/licenses . See also top-level README
    and LICENSE files.

    LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH,
    the producer of the LIGGGHTS® software and the CFDEM®coupling software
    See http://www.cfdem.com/terms-trademark-policy for details.

-------------------------------------------------------------------------
    Contributing author and copyright for this file:
    (if no contributing author is listed, this file has been contributed
    by the core developer)

    Copyright 2014-     DCS Computing GmbH, Linz
------------------------------------------------------------------------- */

#ifdef COHESION_MODEL
COHESION_MODEL(COHESION_WASHINO_CAPILLARY_VISCOUS,washino/capillary/viscous,7)
#else

#ifndef COHESION_MODEL_WASHINO_CAPILLARY_VISCOUS_H_
#define COHESION_MODEL_WASHINO_CAPILLARY_VISCOUS_H_

#include "contact_models.h"
#include "cohesion_model_base.h"
#include <math.h>
#include "math_extra_liggghts.h"
#include "global_properties.h"
#include "fix_property_atom.h"
#include "neighbor.h"
#include "mesh_module_liquidtransfer.h"

namespace MODEL_PARAMS
{
    inline static ScalarProperty* createliquidContentInitialWashino(PropertyRegistry & registry, const char * caller, bool sanity_checks)
    {
      ScalarProperty* surfaceLiquidContentInitialScalar = MODEL_PARAMS::createScalarProperty(registry, "surfaceLiquidContentInitial", caller);
      return surfaceLiquidContentInitialScalar;
    }

    inline static ScalarProperty* createMinSeparationDistanceRatioWashino(PropertyRegistry & registry, const char * caller, bool sanity_checks)
    {
      ScalarProperty* minSeparationDistanceRatioScalar = MODEL_PARAMS::createScalarProperty(registry, "minSeparationDistanceRatio", caller);
      return minSeparationDistanceRatioScalar;
    }

    inline static ScalarProperty* createMaxSeparationDistanceRatioWashino(PropertyRegistry & registry, const char * caller, bool sanity_checks)
    {
      ScalarProperty* maxSeparationDistanceRatioScalar = MODEL_PARAMS::createScalarProperty(registry, "maxSeparationDistanceRatio", caller);
      return maxSeparationDistanceRatioScalar;
    }

    inline static ScalarProperty* createFluidViscosityWashino(PropertyRegistry & registry, const char * caller, bool sanity_checks)
    {
      ScalarProperty* fluidViscosityScalar = MODEL_PARAMS::createScalarProperty(registry, "fluidViscosity", caller);
      return fluidViscosityScalar;
    }

    inline static VectorProperty* createMaxLiquidContent(PropertyRegistry & registry, const char * caller, bool sanity_checks)
    {
        return createPerTypeProperty(registry, "maxLiquidContent", caller, sanity_checks, 0.0, 1.0);
    }

    inline static ScalarProperty* createLbVolumeFraction(PropertyRegistry & registry, const char * caller, bool sanity_checks)
    {
        return createScalarProperty(registry, "lbVolumeFraction", caller, sanity_checks, 0.0, 1.0);
    }

}

namespace LIGGGHTS {

namespace ContactModels {

  template<>
  class CohesionModel<COHESION_WASHINO_CAPILLARY_VISCOUS> : public CohesionModelBase {

  public:
    CohesionModel(LAMMPS * lmp, IContactHistorySetup * hsetup,class ContactModelBase *cmb) :
      CohesionModelBase(lmp, hsetup, cmb),
      surfaceLiquidContentInitial(0.0),
      surfaceTension(0.0),
      contactAngle(0),
      minSeparationDistanceRatio(0.0),
      maxSeparationDistanceRatio(0.0),
      fluidViscosity(0.),
      ln1overMinSeparationDistanceRatio(0.0),
      maxLiquidContent(0),
      volumeFraction(0.05),
      history_offset(0),
      fix_surfaceliquidcontent(0),
      fix_liquidflux(0),
      fix_ste(0),
      limit_lqc_flag_(false),
      mod_lb_vol_flag_(false)
    {
      history_offset = hsetup->add_history_value("contflag", "0");
      
    }

    void registerSettings(Settings & settings)
    {
        settings.registerOnOff("limitLiquidContent", limit_lqc_flag_, false);
        settings.registerOnOff("modifyLbVolume", mod_lb_vol_flag_, false);
        settings.registerOnOff("tangential_reduce",tangentialReduce_,false);
    }

    inline void postSettings(IContactHistorySetup * hsetup, ContactModelBase *cmb) {}

    void connectToProperties(PropertyRegistry & registry) {
      registry.registerProperty("surfaceLiquidContentInitial", &MODEL_PARAMS::createliquidContentInitialWashino);
      registry.registerProperty("surfaceTension", &MODEL_PARAMS::createSurfaceTension);
      registry.registerProperty("fluidViscosity", &MODEL_PARAMS::createFluidViscosityWashino);
      registry.registerProperty("contactAngle", &MODEL_PARAMS::createContactAngle);
      registry.registerProperty("minSeparationDistanceRatio", &MODEL_PARAMS::createMinSeparationDistanceRatioWashino);
      registry.registerProperty("maxSeparationDistanceRatio", &MODEL_PARAMS::createMaxSeparationDistanceRatioWashino);

      registry.connect("surfaceLiquidContentInitial", surfaceLiquidContentInitial,"cohesion_model washino/capillary/viscous");
      registry.connect("surfaceTension", surfaceTension,"cohesion_model washino/capillary/viscous");
      registry.connect("fluidViscosity", fluidViscosity,"cohesion_model washino/capillary/viscous");
      registry.connect("contactAngle", contactAngle,"cohesion_model washino/capillary/viscous");
      registry.connect("minSeparationDistanceRatio", minSeparationDistanceRatio,"cohesion_model washino/capillary/viscous");
      
      registry.connect("maxSeparationDistanceRatio", maxSeparationDistanceRatio,"cohesion_model washino/capillary/viscous");

      ln1overMinSeparationDistanceRatio = log(1./minSeparationDistanceRatio);

      // if limit_lqc_flag_ need additional material property
      if (limit_lqc_flag_) {
          registry.registerProperty("maxLiquidContent", &MODEL_PARAMS::createMaxLiquidContent);
          registry.connect("maxLiquidContent", maxLiquidContent, "cohesion_model washino/capillary/viscous");
      }

      // if mod_lb_vol_flag_ need additional property
      if (mod_lb_vol_flag_) {
          registry.registerProperty("lbVolumeFraction", &MODEL_PARAMS::createLbVolumeFraction);
          registry.connect("lbVolumeFraction", volumeFraction, "cohesion_model washino/capillary/viscous");
      }

      fix_ste = modify->find_fix_scalar_transport_equation("liquidtransfer");
      if(!fix_ste)
      {
        
        char initstr[200];
        sprintf(initstr,"%e",surfaceLiquidContentInitial);

        const char * newarg[15];
        newarg[0] = "liquidtransfer";
        newarg[1] = "all";
        newarg[2] = "transportequation/scalar";
        newarg[3] = "equation_id";
        newarg[4] = "liquidtransfer";
        newarg[5] = "quantity";
        newarg[6] = "surfaceLiquidContent";
        newarg[7] = "default_value";
        newarg[8] = initstr;
        newarg[9] = "flux_quantity";
        newarg[10] = "liquidFlux";
        newarg[11] = "source_quantity";
        newarg[12] = "liquidSource";
        newarg[13] = "capacity_quantity";
        newarg[14] = "none";
        modify->add_fix(15,const_cast<char**>(newarg));
        //fix_liquidcontent->set_all(liquidContentInitial);
      }

      //TODO-AM require initial liquid content of wall:
      //requires a thickness parameter

      fix_surfaceliquidcontent = static_cast<FixPropertyAtom*>(modify->find_fix_property("surfaceLiquidContent","property/atom","scalar",0,0,"cohesion_model washino/capillary/viscous"));
      fix_liquidflux = static_cast<FixPropertyAtom*>(modify->find_fix_property("liquidFlux","property/atom","scalar",0,0,"cohesion_model washino/capillary/viscous"));
      fix_ste = modify->find_fix_scalar_transport_equation("liquidtransfer");

      if(!fix_surfaceliquidcontent || !fix_liquidflux || !fix_ste)
          error->all(FLERR,"internal error");

      // error checks on coarsegraining
      if(force->cg_active())
        error->cg(FLERR,"cohesion model washino/capillary/viscous");

      if (limit_lqc_flag_) {
          const int max_type = registry.max_type();
          const double max_rad = registry.max_radius();
          const double min_rad = registry.min_radius();
          double max_dist_ratio = 0.0;
          for (int i = 1; i <= max_type; i++)
          {
              const double volL1000 = /* 2*4/3 * 1000 */ 2666.666666*M_PI*max_rad*max_rad*max_rad*maxLiquidContent[i];
              const double volBond1000 = (volL1000)*volumeFraction;
              const double contactAngleI = 0.5 * contactAngle[i] * contactAngle[i];
              const double distMax = (1. + 0.5*contactAngleI) * cbrt(volBond1000) * 0.1 /* 0.1*cbrt(1000)=1 */;
              max_dist_ratio = fmax(0.5*distMax/min_rad, max_dist_ratio); 
          }
          if (screen) fprintf(screen, "Warning: maxLiquidContent was specified, resulting in maxSeparationDistanceRatio being overwritten by %e (was %e)\n", 1.0 + max_dist_ratio, maxSeparationDistanceRatio);
          if (logfile) fprintf(logfile, "Warning: maxLiquidContent was specified, resulting in maxSeparationDistanceRatio being overwritten by %e (was %e)\n", 1.0 + max_dist_ratio, maxSeparationDistanceRatio);
          maxSeparationDistanceRatio = 1.0 + max_dist_ratio;
      }

      const char* neigharg[2];
      neigharg[0] = "contact_distance_factor";
      char arg2[30];
      sprintf(arg2,"%e",maxSeparationDistanceRatio*1.1); 
      neigharg[1] = arg2;
      neighbor->modify_params(2,const_cast<char**>(neigharg));
    }

    inline void endSurfacesIntersect(SurfacesIntersectData &sidata, ForceData&, ForceData&) {}
    void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){}
    void endPass(SurfacesIntersectData&, ForceData&, ForceData&){}

    void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, ForceData & j_forces)
    {
      const int i = sidata.i;
      const int j = sidata.j;
      const int itype = sidata.itype;
      const int jtype = sidata.jtype;

      const double radi = sidata.radi;
      const double radj = sidata.radj;
      const double r = sidata.r;
      const double dist =  sidata.is_wall ? r - radi : r - (radi + radj);
      double const *surfaceLiquidContent = fix_surfaceliquidcontent->vector_atom;

      ScalarContainer<double> *liquidContPtr = sidata.is_wall && sidata.mesh ? sidata.mesh->prop().getElementProperty< ScalarContainer<double> >("LiquidContent") : NULL;

      MeshModuleLiquidTransfer *mm_liquid_transfer = liquidContPtr ? static_cast<MeshModuleLiquidTransfer*>((static_cast<FixMeshSurface*>(sidata.fix_mesh))->get_module("liquidtransfer")) : NULL;
      const double wallThickness = liquidContPtr ? mm_liquid_transfer->get_wall_thickness() : 0.0;

      if(sidata.contact_flags) *sidata.contact_flags |= CONTACT_COHESION_MODEL;
      double * const contflag = &sidata.contact_history[history_offset];
      // store for noCollision
      contflag[0] = 1.0;

      // limit maximum liquid content
      if (limit_lqc_flag_)
      {
          limitLiquidContent(i,itype);
          if (!sidata.is_wall)
            limitLiquidContent(j,jtype);
      }

      const double volLi1000 = /* 4/3 * 1000 */ 1333.333333*M_PI*radi*radi*radi*surfaceLiquidContent[i];
      const double volLj1000 = /* 4/3 * 1000 */ sidata.is_wall ?
        (liquidContPtr ? (*liquidContPtr)(sidata.j)*fmin(radi*radi*M_PI,sidata.mesh->areaElem(sidata.j))*1000.0*wallThickness : 0.0) :
        1333.333333*M_PI*radj*radj*radj*surfaceLiquidContent[j]; // TODO-wall liquid content at wall?
      const double volBond1000 = (volLi1000+volLj1000)*volumeFraction;

      // skip if bond volume too small
      if(volBond1000 < 1e-14) return;

      const double rEff = radi*radj / (radi+radj);
      const double contactAngleEff = 0.5 * contactAngle[itype] * contactAngle[jtype];

      // capilar force
      // this is from Rabinovich et al., Langmiur, 21 (2005), 10992-10997 - Eqn. A11
      // separation distance = 0 in this case
      const double Fcapilary = - 2.*M_PI*rEff*surfaceTension*cos(contactAngleEff)*(1.-dist*sqrt(1000.*M_PI*rEff/(2.*volBond1000)));

      // viscous force
      // this is from Nase et al as cited in Shi and McCarthy, Powder Technology, 184 (2008), 65-75, Eqns 40,41
      const double stokesPreFactor = -6.*M_PI*fluidViscosity*rEff;
      const double FviscN = stokesPreFactor*sidata.vn/minSeparationDistanceRatio;
      const double FviscT_over_vt = (/* 8/15 */ 0.5333333*ln1overMinSeparationDistanceRatio + 0.9588) * stokesPreFactor;

      // tangential force components
      const double Ft1 = FviscT_over_vt*sidata.vtr1;
      const double Ft2 = FviscT_over_vt*sidata.vtr2;
      const double Ft3 = FviscT_over_vt*sidata.vtr3;

      // torques
      const double tor1 = sidata.en[1] * Ft3 - sidata.en[2] * Ft2;
      const double tor2 = sidata.en[2] * Ft1 - sidata.en[0] * Ft3;
      const double tor3 = sidata.en[0] * Ft2 - sidata.en[1] * Ft1;

      // add to fn, Ft
      if(tangentialReduce_) sidata.Fn += Fcapilary+FviscN; 
      //sidata.Ft += ...

      // apply normal and tangential force
      const double fx = (Fcapilary+FviscN) * sidata.en[0] + Ft1;
      const double fy = (Fcapilary+FviscN) * sidata.en[1] + Ft2;
      const double fz = (Fcapilary+FviscN) * sidata.en[2] + Ft3;

      // return resulting forces
      if(sidata.is_wall) {
        const double area_ratio = sidata.area_ratio;
        i_forces.delta_F[0] += fx * area_ratio;
        i_forces.delta_F[1] += fy * area_ratio;
        i_forces.delta_F[2] += fz * area_ratio;
        i_forces.delta_torque[0] += -sidata.cri * tor1 * area_ratio;
        i_forces.delta_torque[1] += -sidata.cri * tor2 * area_ratio;
        i_forces.delta_torque[2] += -sidata.cri * tor3 * area_ratio;
      } else {
        i_forces.delta_F[0] += fx;
        i_forces.delta_F[1] += fy;
        i_forces.delta_F[2] += fz;
        i_forces.delta_torque[0] += -sidata.cri * tor1;
        i_forces.delta_torque[1] += -sidata.cri * tor2;
        i_forces.delta_torque[2] += -sidata.cri * tor3;

        j_forces.delta_F[0] -= fx;
        j_forces.delta_F[1] -= fy;
        j_forces.delta_F[2] -= fz;
        j_forces.delta_torque[0] += -sidata.crj * tor1;
        j_forces.delta_torque[1] += -sidata.crj * tor2;
        j_forces.delta_torque[2] += -sidata.crj * tor3;
      }
    }

    void surfacesClose(SurfacesCloseData & scdata, ForceData & i_forces, ForceData & j_forces)
    {
      
      double * const contflag = &scdata.contact_history[history_offset];

      // 3 cases: (i) no bridge present, (ii) bridge active, (iii) bridge breaks this step
      // for this model, bridge is created and breaks at rupture distancy

      const int i = scdata.i;
      const int j = scdata.j;
      const int itype = scdata.itype;
      const int jtype = scdata.jtype;
      const double radi = scdata.radi;
      const double radj = scdata.is_wall ? radi : scdata.radj;
      const double r = sqrt(scdata.rsq);
      const double dist =  scdata.is_wall ? r - radi : r - (radi + radj);
      double const *surfaceLiquidContent = fix_surfaceliquidcontent->vector_atom;

      ScalarContainer<double> *liquidContPtr = scdata.is_wall && scdata.mesh ? scdata.mesh->prop().getElementProperty< ScalarContainer<double> >("LiquidContent") : NULL;

      MeshModuleLiquidTransfer *mm_liquid_transfer = liquidContPtr ? static_cast<MeshModuleLiquidTransfer*>((static_cast<FixMeshSurface*>(scdata.fix_mesh))->get_module("liquidtransfer")) : NULL;
      const double wallThickness = liquidContPtr ? mm_liquid_transfer->get_wall_thickness() : 0.0;
      const double wallArea = liquidContPtr ? scdata.mesh->areaElem(scdata.j) : 0.0;

      // limit maximum liquid content
      if (limit_lqc_flag_)
      {
          limitLiquidContent(i,itype);
          if (!scdata.is_wall) limitLiquidContent(j,jtype);
      }

      const double volLi1000 = /* 4/3 * 1000 */ 1333.333333*M_PI*radi*radi*radi*surfaceLiquidContent[i];
      const double volLj1000 = /* 4/3 * 1000 */ scdata.is_wall ?
        (liquidContPtr ? (*liquidContPtr)(scdata.j)*fmin(radi*radi*M_PI, wallArea)*1000.0*wallThickness : 0.0) :
        1333.333333*M_PI*radj*radj*radj*surfaceLiquidContent[j]; // TODO-wall liquid content at wall?
      const double volBond1000 = (volLi1000+volLj1000)*volumeFraction;

      const double rEff = radi*radj / (radi+radj);
      const double contactAngleEff = 0.5 * contactAngle[itype] * contactAngle[jtype];
      const double distMax = (1. + 0.5*contactAngleEff) * cbrt(volBond1000) * 0.1 /* 0.1*cbrt(1000)=1 */;

      // check if liquid bridge exists
      bool bridge_active = false, bridge_breaks = false;

      if (dist > (maxSeparationDistanceRatio-1.0)*(radi+radj) && MathExtraLiggghts::compDouble(contflag[0],1.0,1e-6)) // in this case always break
      {
        bridge_breaks = true;
      }
      else if (dist < distMax && dist < (maxSeparationDistanceRatio-1.0)*(radi+radj) )
        bridge_active = true;
      else if(MathExtraLiggghts::compDouble(contflag[0],1.0,1e-6)) // can only break if exists
        bridge_breaks = true;

      // case (ii)
      if(bridge_active)
      {
          if(scdata.contact_flags) *scdata.contact_flags |= CONTACT_COHESION_MODEL;

          // store for next step
          contflag[0] = 1.0;

          // skip if bond volume too small
          if(volBond1000 < 1e-14) return;

          // calculate forces

          // capilary force, case no collision
          // this is from Langmiur, 21 (24), 2005 - Eqns. 19, 20, A3
          const double prefactor = -1. + sqrt(1.+2.*volBond1000/(M_PI*rEff*1000.*dist*dist));
          const double dSpSp =       0.5*dist*prefactor;
          const double alpha = sqrt(dist/rEff*prefactor);
          const double Fcapilary = - 2.*M_PI*rEff*surfaceTension* (cos(contactAngleEff) / (1. + dist/(2.*dSpSp)) + sin(alpha)*sin(alpha+contactAngleEff));

          // calculate vn and vt since not in struct
          const double rinv = 1.0 / r;
          const double dx = scdata.delta[0];
          const double dy = scdata.delta[1];
          const double dz = scdata.delta[2];
          const double enx = dx * rinv;
          const double eny = dy * rinv;
          const double enz = dz * rinv;

          // relative translational velocity
          const double vr1 = scdata.v_i[0] - scdata.v_j[0];
          const double vr2 = scdata.v_i[1] - scdata.v_j[1];
          const double vr3 = scdata.v_i[2] - scdata.v_j[2];

          // normal component
          const double vn = vr1 * enx + vr2 * eny + vr3 * enz;
          const double vn1 = vn * enx;
          const double vn2 = vn * eny;
          const double vn3 = vn * enz;

          // tangential component
          const double vt1 = vr1 - vn1;
          const double vt2 = vr2 - vn2;
          const double vt3 = vr3 - vn3;

          // relative rotational velocity
          double wr1 = 0.0, wr2 = 0.0, wr3 = 0.0;
          double const *omega_i = atom->omega[i];

          if(!scdata.is_wall) {
            double const *omega_j = atom->omega[j];
            wr1 = radj * omega_j[0];
            wr2 = radj * omega_j[1];
            wr3 = radj * omega_j[2];
          }
          wr1 = (radi * omega_i[0] + wr1)*rinv;
          wr2 = (radi * omega_i[1] + wr2)*rinv;
          wr3 = (radi * omega_i[2] + wr3)*rinv;

          // relative velocities
          const double vtr1 = vt1 - (dz * wr2 - dy * wr3);
          const double vtr2 = vt2 - (dx * wr3 - dz * wr1);
          const double vtr3 = vt3 - (dy * wr1 - dx * wr2);

          // viscous force
          // this is from Nase et al as cited in Shi and McCarthy, Powder Technology, 184 (2008), 65-75, Eqns 40,41
          const double stokesPreFactor = -6.*M_PI*fluidViscosity*rEff;
          const double FviscN = stokesPreFactor*vn/MathExtraLiggghts::max(minSeparationDistanceRatio,dist/rEff);
          const double FviscT_over_vt = (/* 8/15 */ 0.5333333*log(1./MathExtraLiggghts::max(minSeparationDistanceRatio,dist/rEff)) + 0.9588) * stokesPreFactor;

          // tangential force components
          const double Ft1 = FviscT_over_vt*vtr1;
          const double Ft2 = FviscT_over_vt*vtr2;
          const double Ft3 = FviscT_over_vt*vtr3;

          // torques
          const double tor1 = eny * Ft3 - enz * Ft2;
          const double tor2 = enz * Ft1 - enx * Ft3;
          const double tor3 = enx * Ft2 - eny * Ft1;

          // add to fn, Ft
          //if(tangentialReduce_) scdata.Fn += Fcapilary+FviscN;
          //scdata.Ft += ...

          // apply normal and tangential force
          const double fx = (Fcapilary+FviscN) * enx + Ft1;
          const double fy = (Fcapilary+FviscN) * eny + Ft2;
          const double fz = (Fcapilary+FviscN) * enz + Ft3;

          scdata.has_force_update = true;

          // return resulting forces
          if(scdata.is_wall) {
            const double area_ratio = scdata.area_ratio;
            i_forces.delta_F[0] += fx * area_ratio;
            i_forces.delta_F[1] += fy * area_ratio;
            i_forces.delta_F[2] += fz * area_ratio;
            i_forces.delta_torque[0] += -radi * tor1 * area_ratio;
            i_forces.delta_torque[1] += -radi * tor2 * area_ratio;
            i_forces.delta_torque[2] += -radi * tor3 * area_ratio;
          } else {
            i_forces.delta_F[0] += fx;
            i_forces.delta_F[1] += fy;
            i_forces.delta_F[2] += fz;
            i_forces.delta_torque[0] += -radi * tor1; // using radius here, not contact radius
            i_forces.delta_torque[1] += -radi * tor2;
            i_forces.delta_torque[2] += -radi * tor3;

            j_forces.delta_F[0] -= fx;
            j_forces.delta_F[1] -= fy;
            j_forces.delta_F[2] -= fz;
            j_forces.delta_torque[0] += -radj * tor1; // using radius here, not contact radius
            j_forces.delta_torque[1] += -radj * tor2;
            j_forces.delta_torque[2] += -radj * tor3;
          }
      }
      // case (iii)
      else if(bridge_breaks)
      {
          if(scdata.contact_flags) *scdata.contact_flags &= ~CONTACT_COHESION_MODEL;

          // store for next step
          contflag[0] = 0.0;

          // liquid transfer happens here
          if (!scdata.is_wall)
          {
              // assume liquid distributes evenly
              double *liquidFlux = fix_liquidflux->vector_atom;
              
              const double invdt = 1./update->dt;
              const double rad_ratio = radj/radi;
              const double split_factor = 1.0/(1.0+rad_ratio*rad_ratio*rad_ratio);
              // liquid flux is in vol% per time
              liquidFlux[i] += invdt*(split_factor * volBond1000 - volumeFraction*volLi1000) / (1333.333333*M_PI*radi*radi*radi) ;

              if (force->newton_pair || j < atom->nlocal)
                  liquidFlux[j] += invdt*((1.-split_factor) * volBond1000 - volumeFraction*volLj1000) / (1333.333333*M_PI*radj*radj*radj) ;
              
          }
          else if (liquidContPtr)
          {
              // assume liquid distributes evenly
              double *liquidFlux = fix_liquidflux->vector_atom;
              const double invdt = 1./update->dt;
              // liquid flux in vol per time
              double volFlux = invdt*(0.5 * volBond1000 - volumeFraction*volLi1000);
              // liquid flux in vol% per time for particle
              liquidFlux[i] += volFlux/(1333.333333*M_PI*radi*radi*radi);
              // TODO assume partArea < wallArea (overlap detection)
              const double wallLiquidFlux = -volFlux/(1000.0*wallThickness*wallArea);
              mm_liquid_transfer->add_liquid_flux(scdata.j, wallLiquidFlux, limit_lqc_flag_, limit_lqc_flag_ ? maxLiquidContent[scdata.jtype] : 0.0);
          }
      }
      // no else here, case (i) was already caught before
    }

  private: // private functions
    inline void limitLiquidContent(const int idx, const int itype)
    {
        double *surfaceLiquidContent = fix_surfaceliquidcontent->vector_atom;

        if (surfaceLiquidContent[idx] > maxLiquidContent[itype]) {
            
            surfaceLiquidContent[idx] = maxLiquidContent[itype];
        }
    }

  private:

    double surfaceLiquidContentInitial, surfaceTension, *contactAngle;
    double minSeparationDistanceRatio, maxSeparationDistanceRatio, fluidViscosity;
    double ln1overMinSeparationDistanceRatio, *maxLiquidContent;
    double volumeFraction;
    int history_offset;
    FixPropertyAtom *fix_surfaceliquidcontent;
    FixPropertyAtom *fix_liquidflux;
    FixScalarTransportEquation *fix_ste;

    bool limit_lqc_flag_;
    bool mod_lb_vol_flag_;

    bool tangentialReduce_;

    MeshModuleLiquidTransfer *mm_liquid_transfer;
  };
}
}
#endif // COHESION_MODEL_CAPILLARY_H_
#endif