This file is indexed.

/usr/include/liggghts/normal_model_hooke_hysteresis.h is in libliggghts-dev 3.7.0+repack1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/* ----------------------------------------------------------------------
    This is the

    ██╗     ██╗ ██████╗  ██████╗  ██████╗ ██╗  ██╗████████╗███████╗
    ██║     ██║██╔════╝ ██╔════╝ ██╔════╝ ██║  ██║╚══██╔══╝██╔════╝
    ██║     ██║██║  ███╗██║  ███╗██║  ███╗███████║   ██║   ███████╗
    ██║     ██║██║   ██║██║   ██║██║   ██║██╔══██║   ██║   ╚════██║
    ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║  ██║   ██║   ███████║
    ╚══════╝╚═╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝   ╚═╝   ╚══════╝®

    DEM simulation engine, released by
    DCS Computing Gmbh, Linz, Austria
    http://www.dcs-computing.com, office@dcs-computing.com

    LIGGGHTS® is part of CFDEM®project:
    http://www.liggghts.com | http://www.cfdem.com

    Core developer and main author:
    Christoph Kloss, christoph.kloss@dcs-computing.com

    LIGGGHTS® is open-source, distributed under the terms of the GNU Public
    License, version 2 or later. It is distributed in the hope that it will
    be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have
    received a copy of the GNU General Public License along with LIGGGHTS®.
    If not, see http://www.gnu.org/licenses . See also top-level README
    and LICENSE files.

    LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH,
    the producer of the LIGGGHTS® software and the CFDEM®coupling software
    See http://www.cfdem.com/terms-trademark-policy for details.

-------------------------------------------------------------------------
    Contributing author and copyright for this file:

    Christoph Kloss (DCS Computing GmbH, Linz)
    Christoph Kloss (JKU Linz)
    Richard Berger (JKU Linz)

    Copyright 2012-     DCS Computing GmbH, Linz
    Copyright 2009-2012 JKU Linz
------------------------------------------------------------------------- */

#ifdef NORMAL_MODEL
NORMAL_MODEL(HOOKE_HYSTERESIS,hooke/hysteresis,2)
#else
#ifndef NORMAL_MODEL_HOOKE_HYSTERESIS_H_
#define NORMAL_MODEL_HOOKE_HYSTERESIS_H_
#include "contact_models.h"
#include "normal_model_base.h"
#include <math.h>
#include "atom.h"
#include "force.h"
#include "update.h"
#include "global_properties.h"

namespace LIGGGHTS {
namespace ContactModels
{
  template<>
  class NormalModel<HOOKE_HYSTERESIS> : public NormalModel<HOOKE>
  {
  public:
    NormalModel(LAMMPS * lmp, IContactHistorySetup * hsetup,class ContactModelBase *c) :
        NormalModel<HOOKE>(lmp, hsetup,c),
        kn2k2Max(NULL),
        kn2kc(NULL),
        phiF(NULL)
    {
      history_offset = hsetup->add_history_value("deltaMax", "0");
      
    }

    inline void registerSettings(Settings & settings){
      NormalModel<HOOKE>::registerSettings(settings);
    }

    inline void postSettings(IContactHistorySetup * hsetup, ContactModelBase *cmb) {}

    inline void connectToProperties(PropertyRegistry & registry) {
      NormalModel<HOOKE>::connectToProperties(registry);

      registry.registerProperty("kn2kcMax", &MODEL_PARAMS::createCoeffMaxElasticStiffness);
      registry.registerProperty("kn2kc", &MODEL_PARAMS::createCoeffAdhesionStiffness);
      registry.registerProperty("phiF", &MODEL_PARAMS::createCoeffPlasticityDepth);

      registry.connect("kn2kcMax", kn2k2Max,"model hooke/hysteresis");
      registry.connect("kn2kc", kn2kc,"model hooke/hysteresis");
      registry.connect("phiF", phiF,"model hooke/hysteresis");

      // error checks on coarsegraining
      if(force->cg_active())
        error->cg(FLERR,"model hooke/hysteresis");
    }

    // effective exponent for stress-strain relationship
    
    inline double stressStrainExponent()
    {
      return 1.;
    }

    inline void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, ForceData & j_forces)
    {
      // use these values from HOOKE implementation
      bool & viscous = NormalModel<HOOKE>::viscous;
      double ** & Yeff = NormalModel<HOOKE>::Yeff;
      double & charVel = NormalModel<HOOKE>::charVel;
      bool & tangential_damping = NormalModel<HOOKE>::tangential_damping;
      Force * & force = NormalModel<HOOKE>::force;

      const int itype = sidata.itype;
      const int jtype = sidata.jtype;
      const double deltan = sidata.deltan;
      const double radi = sidata.radi;
      const double radj = sidata.radj;
      double reff=sidata.is_wall ? radi : (radi*radj/(radi+radj));
#ifdef SUPERQUADRIC_ACTIVE_FLAG
      if(sidata.is_non_spherical) {
        if(sidata.is_wall)
          reff = MathExtraLiggghtsNonspherical::get_effective_radius_wall(sidata, atom->roundness[sidata.i], error);
        else
          reff = MathExtraLiggghtsNonspherical::get_effective_radius(sidata, atom->roundness[sidata.i], atom->roundness[sidata.j], error);
      }
#endif
      double meff=sidata.meff;
      double coeffRestLogChosen;

      if (viscous)  {
        double ** & coeffMu = NormalModel<HOOKE>::coeffMu;
        double ** & coeffRestMax = NormalModel<HOOKE>::coeffRestMax;
        double ** & coeffStc = NormalModel<HOOKE>::coeffStc;
        // Stokes Number from MW Schmeeckle (2001)
        const double stokes=sidata.meff*sidata.vn/(6.0*M_PI*coeffMu[itype][jtype]*reff*reff);
        // Empirical from Legendre (2006)
        coeffRestLogChosen=log(coeffRestMax[itype][jtype])+coeffStc[itype][jtype]/stokes;
      } else {
        double ** & coeffRestLog = NormalModel<HOOKE>::coeffRestLog;
        coeffRestLogChosen=coeffRestLog[itype][jtype];
      }

      const double sqrtval = sqrt(reff);
      double kn = 16./15.*sqrtval*(Yeff[itype][jtype])*pow(15.*meff*charVel*charVel/(16.*sqrtval*Yeff[itype][jtype]),0.2);
      double kt = kn;
      const double gamman = sqrt(4.*meff*kn/(1.+(M_PI/coeffRestLogChosen)*(M_PI/coeffRestLogChosen)));
      const double gammat = tangential_damping ? gamman : 0.0;

      // convert Kn and Kt from pressure units to force/distance^2
      kn /= force->nktv2p;
      kt /= force->nktv2p;

      // coefficients
      
      const double k2Max = kn * kn2k2Max[itype][jtype]; 
      const double kc = kn * kn2kc[itype][jtype]; 

      // get the history value -- maximal overlap
      if(sidata.contact_flags) *sidata.contact_flags |= CONTACT_NORMAL_MODEL;
      double * const history = &sidata.contact_history[history_offset];
      if (deltan > history[0]) {
          history[0] = deltan;
      }
      const double deltaMax = history[0]; // the 1st value of the history array is deltaMax

      // k2 dependent on the maximum overlap
      // this accounts for an increasing stiffness with deformation
      const double deltaMaxLim =(k2Max/(k2Max-kn))*phiF[itype][jtype]*2*reff;
      double k2, fHys;
      const bool update_history = sidata.computeflag && sidata.shearupdate;
      if (deltaMax >= deltaMaxLim) // big overlap ... no kn at all
      {
          k2 = k2Max;
          const double fTmp = k2*(deltan-deltaMaxLim)+kn*deltaMaxLim;//k2*(deltan-delta0);
          if (fTmp >= -kc*deltan) { // un-/reloading part (k2)
              fHys = fTmp;
          } else { // cohesion part
              fHys = -kc*deltan;

              const double newDeltaMax = 0.5*(deltan+sqrt(deltan*deltan+4*((kn+kc)*deltan*deltaMaxLim/(k2Max-kn))));
              if (update_history)
                  history[0] = newDeltaMax;
          }
      } else {
          k2 = kn+(k2Max-kn)*deltaMax/deltaMaxLim;
          const double fTmp = k2*(deltan-deltaMax)+kn*deltaMax;//k2*(deltan-delta0);
          if (fTmp >= kn*deltan) { // loading part (kn)
              fHys = kn*deltan;
          } else { // un-/reloading part (k2)
              if (fTmp > -kc*deltan) {
                  fHys = fTmp;
              } else { // cohesion part
                  fHys = -kc*deltan;

                  const double newDeltaMax = 0.5*(deltan+sqrt(deltan*deltan+4*((kn+kc)*deltan*deltaMaxLim/(k2Max-kn))));
                  if (update_history)
                      history[0] = newDeltaMax;
              }
          }
      }

      const double Fn_damping = -gamman*sidata.vn;
      const double Fn = fHys + Fn_damping;

      sidata.Fn = Fn;
      sidata.kn = kn;
      sidata.kt = kt;
      sidata.gamman = gamman;
      sidata.gammat = gammat;

      #ifdef NONSPHERICAL_ACTIVE_FLAG
          double Fn_i[3] = { Fn * sidata.en[0], Fn * sidata.en[1], Fn * sidata.en[2]};
          double torque_i[3] = {0.0, 0.0, 0.0}; //initialized here with zeros to avoid compiler warnings
          if(sidata.is_non_spherical) {
            double xci[3];
            vectorSubtract3D(sidata.contact_point, atom->x[sidata.i], xci);
            vectorCross3D(xci, Fn_i, torque_i);
          }
      #endif
      // apply normal force
      if(sidata.is_wall) {
        const double Fn_ = Fn * sidata.area_ratio;
        i_forces.delta_F[0] += Fn_ * sidata.en[0];
        i_forces.delta_F[1] += Fn_ * sidata.en[1];
        i_forces.delta_F[2] += Fn_ * sidata.en[2];
        #ifdef NONSPHERICAL_ACTIVE_FLAG
                if(sidata.is_non_spherical) {
                  //for non-spherical particles normal force can produce torque!
                  i_forces.delta_torque[0] += torque_i[0];
                  i_forces.delta_torque[1] += torque_i[1];
                  i_forces.delta_torque[2] += torque_i[2];
                }
        #endif
      } else {
        i_forces.delta_F[0] += sidata.Fn * sidata.en[0];
        i_forces.delta_F[1] += sidata.Fn * sidata.en[1];
        i_forces.delta_F[2] += sidata.Fn * sidata.en[2];

        j_forces.delta_F[0] += -i_forces.delta_F[0];
        j_forces.delta_F[1] += -i_forces.delta_F[1];
        j_forces.delta_F[2] += -i_forces.delta_F[2];
        #ifdef NONSPHERICAL_ACTIVE_FLAG
                if(sidata.is_non_spherical) {
                  //for non-spherical particles normal force can produce torque!
                  double xcj[3], torque_j[3];
                  double Fn_j[3] = { -Fn_i[0], -Fn_i[1], -Fn_i[2]};
                  vectorSubtract3D(sidata.contact_point, atom->x[sidata.j], xcj);
                  vectorCross3D(xcj, Fn_j, torque_j);

                  i_forces.delta_torque[0] += torque_i[0];
                  i_forces.delta_torque[1] += torque_i[1];
                  i_forces.delta_torque[2] += torque_i[2];

                  j_forces.delta_torque[0] += torque_j[0];
                  j_forces.delta_torque[1] += torque_j[1];
                  j_forces.delta_torque[2] += torque_j[2];
                }
        #endif
      }
    }

    inline void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&)
    {
      if(scdata.contact_flags) *scdata.contact_flags &= ~CONTACT_NORMAL_MODEL;
      double * const history = &scdata.contact_history[history_offset];
      history[0] = 0.0;
    }

    void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){}
    void endPass(SurfacesIntersectData&, ForceData&, ForceData&){}

  protected:
    double **kn2k2Max;
    double **kn2kc;
    double **phiF;
    int history_offset;
  };
}
}
#endif // NORMAL_MODEL_HOOKE_HYSTERESIS_H_
#endif