This file is indexed.

/usr/include/liggghts/rolling_model_epsd.h is in libliggghts-dev 3.7.0+repack1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/* ----------------------------------------------------------------------
    This is the

    ██╗     ██╗ ██████╗  ██████╗  ██████╗ ██╗  ██╗████████╗███████╗
    ██║     ██║██╔════╝ ██╔════╝ ██╔════╝ ██║  ██║╚══██╔══╝██╔════╝
    ██║     ██║██║  ███╗██║  ███╗██║  ███╗███████║   ██║   ███████╗
    ██║     ██║██║   ██║██║   ██║██║   ██║██╔══██║   ██║   ╚════██║
    ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║  ██║   ██║   ███████║
    ╚══════╝╚═╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝   ╚═╝   ╚══════╝®

    DEM simulation engine, released by
    DCS Computing Gmbh, Linz, Austria
    http://www.dcs-computing.com, office@dcs-computing.com

    LIGGGHTS® is part of CFDEM®project:
    http://www.liggghts.com | http://www.cfdem.com

    Core developer and main author:
    Christoph Kloss, christoph.kloss@dcs-computing.com

    LIGGGHTS® is open-source, distributed under the terms of the GNU Public
    License, version 2 or later. It is distributed in the hope that it will
    be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have
    received a copy of the GNU General Public License along with LIGGGHTS®.
    If not, see http://www.gnu.org/licenses . See also top-level README
    and LICENSE files.

    LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH,
    the producer of the LIGGGHTS® software and the CFDEM®coupling software
    See http://www.cfdem.com/terms-trademark-policy for details.

-------------------------------------------------------------------------
    Contributing author and copyright for this file:

    Andreas Aigner (DCS Computing GmbH, Linz)
    Christoph Kloss (DCS Computing GmbH, Linz)
    Alexander Podlodhnyuk (DCS Computing GmbH, Linz)
    Andreas Aigner (JKU Linz)
    Christoph Kloss (JKU Linz)
    Richard Berger (JKU Linz)

    Copyright 2012-     DCS Computing GmbH, Linz
    Copyright 2009-2012 JKU Linz
------------------------------------------------------------------------- */

#ifdef ROLLING_MODEL
ROLLING_MODEL(ROLLING_EPSD,epsd,2)
#else
#ifndef ROLLING_MODEL_EPSD_H_
#define ROLLING_MODEL_EPSD_H_
#include "contact_models.h"
#include "rolling_model_base.h"
#include <algorithm>
#include <math.h>
#include "domain.h"
#include "math_extra_liggghts.h"

namespace LIGGGHTS {
namespace ContactModels
{
  using namespace LAMMPS_NS;

  template<>
  class RollingModel<ROLLING_EPSD> : public RollingModelBase
  {
  public:
    RollingModel(class LAMMPS * lmp, IContactHistorySetup * hsetup,class ContactModelBase * c) :
        RollingModelBase(lmp, hsetup, c), coeffRollFrict(NULL), coeffRollVisc(NULL)
    {
      history_offset = hsetup->add_history_value("r_torquex_old", "1");
      hsetup->add_history_value("r_torquey_old", "1");
      hsetup->add_history_value("r_torquez_old", "1");
      
    }

    void registerSettings(Settings& settings)
    {
       settings.registerOnOff("torsionTorque", torsion_torque, false);
    }

    inline void postSettings(IContactHistorySetup * hsetup, ContactModelBase *cmb)
    {}

    void connectToProperties(PropertyRegistry & registry) {
      registry.registerProperty("coeffRollFrict", &MODEL_PARAMS::createCoeffRollFrict);
      registry.registerProperty("coeffRollVisc", &MODEL_PARAMS::createCoeffRollVisc);
      registry.connect("coeffRollFrict", coeffRollFrict,"rolling_model epsd");
      registry.connect("coeffRollVisc", coeffRollVisc,"rolling_model epsd");

      // error checks on coarsegraining
      if(force->cg_active())
        error->cg(FLERR,"rolling model epsd");
    }

    void surfacesIntersect(SurfacesIntersectData & sidata, ForceData & i_forces, ForceData & j_forces)
    {
      double r_torque[3];
      vectorZeroize3D(r_torque);

      if(sidata.contact_flags) *sidata.contact_flags |= CONTACT_ROLLING_MODEL;

      const double radi = sidata.radi;
      const double radj = sidata.radj;
      double reff=sidata.is_wall ? radi : (radi*radj/(radi+radj));

#ifdef SUPERQUADRIC_ACTIVE_FLAG
      if(sidata.is_non_spherical) {
        if(sidata.is_wall)
          reff = MathExtraLiggghtsNonspherical::get_effective_radius_wall(sidata, atom->roundness[sidata.i], error);
        else
          reff = MathExtraLiggghtsNonspherical::get_effective_radius(sidata, atom->roundness[sidata.i], atom->roundness[sidata.j], error);
      }
#endif
      if(sidata.is_wall) {
        const double wr1 = sidata.wr1;
        const double wr2 = sidata.wr2;
        const double wr3 = sidata.wr3;

        double r_inertia = 0.0; //pre-initialize to prevent compiler "warning"

#ifdef SUPERQUADRIC_ACTIVE_FLAG
        if(sidata.is_non_spherical) {
          const double rii = pointDistance(sidata.contact_point, atom->x[sidata.i]);
          const double omega_mag = sqrt(wr1*wr1 + wr2*wr2 + wr3*wr3);
          if(omega_mag != 0.0) {
            double er[3];
            er[0] = wr1 / omega_mag;
            er[1] = wr2 / omega_mag;
            er[2] = wr3 / omega_mag;
            const double Ix = atom->inertia[sidata.i][0];
            const double Iy = atom->inertia[sidata.i][1];
            const double Iz = atom->inertia[sidata.i][2];
            double inertia_tensor[9];
            double inertia_tensor_local[9] = { Ix, 0.0, 0.0,
                                               0.0, Iy, 0.0,
                                               0.0, 0.0, Iz };
            MathExtraLiggghtsNonspherical::tensor_quat_rotate(inertia_tensor_local, atom->quaternion[sidata.i], inertia_tensor);
            double temp[3];
            MathExtraLiggghtsNonspherical::matvec(inertia_tensor, er, temp);
            double Ii = MathExtra::dot3(temp, er);
            r_inertia = Ii + sidata.mi*rii*rii;
          }
        } else {
          if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*reff*reff;
          else  r_inertia = 1.4*sidata.mi*reff*reff;
        }
#else

        if (domain->dimension == 2) r_inertia = 1.5*sidata.mi*reff*reff;
        else  r_inertia = 1.4*sidata.mi*reff*reff;
#endif

        calcRollTorque(r_torque,sidata,reff,wr1,wr2,wr3,r_inertia);

      } else {

        double  wr_roll[3];

        const int i = sidata.i;
        const int j = sidata.j;

        const double * const * const omega = atom->omega;

        // relative rotational velocity
        vectorSubtract3D(omega[i],omega[j],wr_roll);
        double r_inertia = 0.0; //pre-initialize to prevent compiler "warning"
        double r_inertia_red_i, r_inertia_red_j;

#ifdef SUPERQUADRIC_ACTIVE_FLAG
        if(sidata.is_non_spherical) {
          const double rii = pointDistance(sidata.contact_point, atom->x[i]);
          const double rjj = pointDistance(sidata.contact_point, atom->x[j]);
          const double omega_mag = vectorMag3D(wr_roll);
          if(omega_mag != 0.0) {
            double er[3];
            er[0] = wr_roll[0] / omega_mag;
            er[1] = wr_roll[1] / omega_mag;
            er[2] = wr_roll[2] / omega_mag;
            const double Ix_i = atom->inertia[i][0];
            const double Iy_i = atom->inertia[i][1];
            const double Iz_i = atom->inertia[i][2];

            const double Ix_j = atom->inertia[j][0];
            const double Iy_j = atom->inertia[j][1];
            const double Iz_j = atom->inertia[j][2];

            double inertia_tensor_i[9];
            double inertia_tensor_local_i[9] = { Ix_i, 0.0, 0.0,
                                                 0.0, Iy_i, 0.0,
                                                 0.0, 0.0, Iz_i };
            double inertia_tensor_j[9];
            double inertia_tensor_local_j[9] = { Ix_j, 0.0, 0.0,
                                                 0.0, Iy_j, 0.0,
                                                 0.0, 0.0, Iz_j };
            MathExtraLiggghtsNonspherical::tensor_quat_rotate(inertia_tensor_local_i, atom->quaternion[i], inertia_tensor_i);
            MathExtraLiggghtsNonspherical::tensor_quat_rotate(inertia_tensor_local_j, atom->quaternion[j], inertia_tensor_j);
            double temp[3];
            MathExtraLiggghtsNonspherical::matvec(inertia_tensor_i, er, temp);
            double Ii = MathExtra::dot3(temp, er);
            MathExtraLiggghtsNonspherical::matvec(inertia_tensor_j, er, temp);
            double Ij = MathExtra::dot3(temp, er);
            r_inertia_red_i = Ii + sidata.mi*rii*rii; //
            r_inertia_red_j = Ij + sidata.mj*rjj*rjj;
            r_inertia = r_inertia_red_i*r_inertia_red_j / (r_inertia_red_i + r_inertia_red_j);
          }

        } else {
          r_inertia_red_i = sidata.mi*radi*radi;
          r_inertia_red_j= sidata.mj*radj*radj;
        if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j);
        else  r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j);
        }
#else
        r_inertia_red_i = sidata.mi*radi*radi;
        r_inertia_red_j= sidata.mj*radj*radj;
        if (domain->dimension == 2) r_inertia = 1.5 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j);
        else  r_inertia = 1.4 * r_inertia_red_i * r_inertia_red_j/(r_inertia_red_i + r_inertia_red_j);
#endif

        calcRollTorque(r_torque,sidata,reff,wr_roll[0],wr_roll[1],wr_roll[2],r_inertia);
      }

      i_forces.delta_torque[0] -= r_torque[0];
      i_forces.delta_torque[1] -= r_torque[1];
      i_forces.delta_torque[2] -= r_torque[2];
      j_forces.delta_torque[0] += r_torque[0];
      j_forces.delta_torque[1] += r_torque[1];
      j_forces.delta_torque[2] += r_torque[2];
    }

    void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&)
    {
      if(scdata.contact_flags) *scdata.contact_flags &= ~CONTACT_ROLLING_MODEL;
      double * const c_history = &scdata.contact_history[history_offset];
      c_history[0] = 0.0; // this is the r_torque_old
      c_history[1] = 0.0; // this is the r_torque_old
      c_history[2] = 0.0; // this is the r_torque_old
    }

    void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){}
    void endPass(SurfacesIntersectData&, ForceData&, ForceData&){}

  private:
    double ** coeffRollFrict;
    double ** coeffRollVisc;
    int history_offset;
    bool torsion_torque;

    inline void calcRollTorque(double (&r_torque)[3],const SurfacesIntersectData & sidata,double reff,double wr1,double wr2,double wr3,double r_inertia) {

      double wr_tot[3],dr_torque[3];

      const int itype = sidata.itype;
      const int jtype = sidata.jtype;

      const double enx = sidata.en[0];
      const double eny = sidata.en[1];
      const double enz = sidata.en[2];

      const double dt = update->dt; 

      double * const c_history = &sidata.contact_history[history_offset]; // requires Style::TANGENTIAL == TANGENTIAL_HISTORY
      const double rmu= coeffRollFrict[itype][jtype];

      if(torsion_torque) {
        // use full relative rotation for rolling torque
        wr_tot[0] = wr1;
        wr_tot[1] = wr2;
        wr_tot[2] = wr3;
      } else {
        // remove normal (torsion) part of relative rotation
        // use only tangential parts for rolling torque
        double wr_n[3];
        const double wr_dot_delta = wr1*enx+ wr2*eny + wr3*enz;
        wr_n[0] = enx * wr_dot_delta;
        wr_n[1] = eny * wr_dot_delta;
        wr_n[2] = enz * wr_dot_delta;
        wr_tot[0] = wr1 - wr_n[0]; // wr_t[0];
        wr_tot[1] = wr2 - wr_n[1]; // wr_t[1];
        wr_tot[2] = wr3 - wr_n[2]; // wr_t[2];
      }

      // spring
      const double kr = 2.25*sidata.kn*rmu*rmu*reff*reff; 

      vectorScalarMult3D(wr_tot,dt*kr,dr_torque);

      r_torque[0] = c_history[0] + dr_torque[0];
      r_torque[1] = c_history[1] + dr_torque[1];
      r_torque[2] = c_history[2] + dr_torque[2];

      // limit max. torque
      const double r_torque_mag = vectorMag3D(r_torque);
      const double r_torque_max = fabs(sidata.Fn)*reff*rmu;
      const bool update_history = sidata.computeflag && sidata.shearupdate;
      if(r_torque_mag > r_torque_max)
      {
        //printf("[%d] %e > %e\n", update->ntimestep, r_torque_mag, r_torque_max);
        const double factor = r_torque_max / r_torque_mag;

        r_torque[0] *= factor;
        r_torque[1] *= factor;
        r_torque[2] *= factor;

        if (update_history)
        {
            // save rolling torque due to spring
            c_history[0] = r_torque[0];
            c_history[1] = r_torque[1];
            c_history[2] = r_torque[2];
        }

        // no damping / no dashpot in case of full mobilisation rolling angle

      } else {
        if (update_history)
        {
            // save rolling torque due to spring before adding damping torque
            c_history[0] = r_torque[0];
            c_history[1] = r_torque[1];
            c_history[2] = r_torque[2];
        }

        // dashpot
        
        const double r_coef = coeffRollVisc[itype][jtype] * 2 * sqrt(r_inertia*kr);

        // add damping torque
        r_torque[0] += r_coef*wr_tot[0];
        r_torque[1] += r_coef*wr_tot[1];
        r_torque[2] += r_coef*wr_tot[2];
      }
    }
  };
}
}
#endif // ROLLING_MODEL_EPSD_H_
#endif