This file is indexed.

/usr/include/liggghts/tangential_model_history.h is in libliggghts-dev 3.7.0+repack1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/* ----------------------------------------------------------------------
    This is the

    ██╗     ██╗ ██████╗  ██████╗  ██████╗ ██╗  ██╗████████╗███████╗
    ██║     ██║██╔════╝ ██╔════╝ ██╔════╝ ██║  ██║╚══██╔══╝██╔════╝
    ██║     ██║██║  ███╗██║  ███╗██║  ███╗███████║   ██║   ███████╗
    ██║     ██║██║   ██║██║   ██║██║   ██║██╔══██║   ██║   ╚════██║
    ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║  ██║   ██║   ███████║
    ╚══════╝╚═╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝   ╚═╝   ╚══════╝®

    DEM simulation engine, released by
    DCS Computing Gmbh, Linz, Austria
    http://www.dcs-computing.com, office@dcs-computing.com

    LIGGGHTS® is part of CFDEM®project:
    http://www.liggghts.com | http://www.cfdem.com

    Core developer and main author:
    Christoph Kloss, christoph.kloss@dcs-computing.com

    LIGGGHTS® is open-source, distributed under the terms of the GNU Public
    License, version 2 or later. It is distributed in the hope that it will
    be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have
    received a copy of the GNU General Public License along with LIGGGHTS®.
    If not, see http://www.gnu.org/licenses . See also top-level README
    and LICENSE files.

    LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH,
    the producer of the LIGGGHTS® software and the CFDEM®coupling software
    See http://www.cfdem.com/terms-trademark-policy for details.

-------------------------------------------------------------------------
    Contributing author and copyright for this file:

    Christoph Kloss (DCS Computing GmbH, Linz)
    Christoph Kloss (JKU Linz)
    Richard Berger (JKU Linz)

    Copyright 2012-     DCS Computing GmbH, Linz
    Copyright 2009-2012 JKU Linz
------------------------------------------------------------------------- */

#ifdef TANGENTIAL_MODEL
TANGENTIAL_MODEL(TANGENTIAL_HISTORY,history,2)
#else
#ifndef TANGENTIAL_MODEL_HISTORY_H_
#define TANGENTIAL_MODEL_HISTORY_H_
#include "contact_models.h"
#include "tangential_model_base.h"
#include <math.h>
#include "update.h"
#include "global_properties.h"
#include "atom.h"

namespace LIGGGHTS {
namespace ContactModels
{
  template<>
  class TangentialModel<TANGENTIAL_HISTORY> : public TangentialModelBase
  {
    double ** coeffFrict;
    int history_offset;

  public:
    TangentialModel(LAMMPS * lmp, IContactHistorySetup * hsetup,class ContactModelBase *c) :
      TangentialModelBase(lmp, hsetup, c),
      coeffFrict(NULL),
      heating(false),
      heating_track(false),
      cmb(c)
    {
      history_offset = hsetup->add_history_value("shearx", "1");
      hsetup->add_history_value("sheary", "1");
      hsetup->add_history_value("shearz", "1");

    }

    inline void postSettings(IContactHistorySetup * hsetup, ContactModelBase *cmb)
    {}

    inline void registerSettings(Settings& settings)
    {
        settings.registerOnOff("heating_tangential_history",heating,false);
        settings.registerOnOff("heating_tracking",heating_track,false);
        //TODO error->one(FLERR,"TODO here also check if right surface model used");
    }

    inline void connectToProperties(PropertyRegistry & registry)
    {
      registry.registerProperty("coeffFrict", &MODEL_PARAMS::createCoeffFrict);
      registry.connect("coeffFrict", coeffFrict,"tangential_model history");
    }

    inline void surfacesIntersect(const SurfacesIntersectData & sidata, ForceData & i_forces, ForceData & j_forces)
    {
      // normal forces = Hookian contact + normal velocity damping
      const double enx = sidata.en[0];
      const double eny = sidata.en[1];
      const double enz = sidata.en[2];

      // shear history effects
      if(sidata.contact_flags) *sidata.contact_flags |= CONTACT_TANGENTIAL_MODEL;
      double * const shear = &sidata.contact_history[history_offset];

      const bool update_history = sidata.computeflag && sidata.shearupdate;
      if (update_history) {
        const double dt = update->dt;
        shear[0] += sidata.vtr1 * dt;
        shear[1] += sidata.vtr2 * dt;
        shear[2] += sidata.vtr3 * dt;

        // rotate shear displacements

        double rsht = shear[0]*enx + shear[1]*eny + shear[2]*enz;
        shear[0] -= rsht * enx;
        shear[1] -= rsht * eny;
        shear[2] -= rsht * enz;
      }

      const double shrmag = sqrt(shear[0]*shear[0] + shear[1]*shear[1] + shear[2]*shear[2]);
      const double kt = sidata.kt;
      const double xmu = coeffFrict[sidata.itype][sidata.jtype];

      // tangential forces = shear + tangential velocity damping
      double Ft1 = -(kt * shear[0]);
      double Ft2 = -(kt * shear[1]);
      double Ft3 = -(kt * shear[2]);

      // rescale frictional displacements and forces if needed
      const double Ft_shear = kt * shrmag; // sqrt(Ft1 * Ft1 + Ft2 * Ft2 + Ft3 * Ft3);
      const double Ft_friction = xmu * fabs(sidata.Fn);

      // energy loss from sliding or damping
      if (Ft_shear > Ft_friction) {
        if (shrmag != 0.0) {
          const double ratio = Ft_friction / Ft_shear;
          
          if(heating)
          {
            sidata.P_diss += (vectorMag3DSquared(shear)*kt - ratio*ratio*vectorMag3DSquared(shear)*kt) / (update->dt); 
            if(heating_track && sidata.is_wall) cmb->tally_pw((vectorMag3DSquared(shear)*kt - ratio*ratio*vectorMag3DSquared(shear)*kt) / (update->dt),sidata.i,sidata.jtype,2);
            if(heating_track && !sidata.is_wall) cmb->tally_pp((vectorMag3DSquared(shear)*kt - ratio*ratio*vectorMag3DSquared(shear)*kt) / (update->dt),sidata.i,sidata.j,2);
          }
          Ft1 *= ratio;
          Ft2 *= ratio;
          Ft3 *= ratio;
          
          if (update_history)
          {
              shear[0] = -Ft1/kt;
              shear[1] = -Ft2/kt;
              shear[2] = -Ft3/kt;
          }
        }
        else Ft1 = Ft2 = Ft3 = 0.0;
      }
      else
      {
        const double gammat = sidata.gammat;
        Ft1 -= (gammat*sidata.vtr1);
        Ft2 -= (gammat*sidata.vtr2);
        Ft3 -= (gammat*sidata.vtr3);
        if(heating)
        {
            sidata.P_diss += gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*sidata.vtr3); 
            if(heating_track && sidata.is_wall) cmb->tally_pw(gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*sidata.vtr3),sidata.i,sidata.jtype,1);
            if(heating_track && !sidata.is_wall) cmb->tally_pp(gammat*(sidata.vtr1*sidata.vtr1+sidata.vtr2*sidata.vtr2+sidata.vtr3*sidata.vtr3),sidata.i,sidata.j,1);
        }
      }

      // forces & torques
      const double tor1 = eny * Ft3 - enz * Ft2;
      const double tor2 = enz * Ft1 - enx * Ft3;
      const double tor3 = enx * Ft2 - eny * Ft1;

      #ifdef NONSPHERICAL_ACTIVE_FLAG
          double torque_i[3];
          if(sidata.is_non_spherical) {
            double xci[3];
            double Ft_i[3] = { Ft1,  Ft2,  Ft3 };
            vectorSubtract3D(sidata.contact_point, atom->x[sidata.i], xci);
            vectorCross3D(xci, Ft_i, torque_i);
          } else {
            torque_i[0] = -sidata.cri * tor1;
            torque_i[1] = -sidata.cri * tor2;
            torque_i[2] = -sidata.cri * tor3;
          }
      #endif
      // return resulting forces
      if(sidata.is_wall) {
        const double area_ratio = sidata.area_ratio;
        i_forces.delta_F[0] += Ft1 * area_ratio;
        i_forces.delta_F[1] += Ft2 * area_ratio;
        i_forces.delta_F[2] += Ft3 * area_ratio;
        #ifdef NONSPHERICAL_ACTIVE_FLAG
                i_forces.delta_torque[0] += torque_i[0] * area_ratio;
                i_forces.delta_torque[1] += torque_i[1] * area_ratio;
                i_forces.delta_torque[2] += torque_i[2] * area_ratio;
        #else
                i_forces.delta_torque[0] += -sidata.cri * tor1 * area_ratio;
                i_forces.delta_torque[1] += -sidata.cri * tor2 * area_ratio;
                i_forces.delta_torque[2] += -sidata.cri * tor3 * area_ratio;
        #endif
      } else {
        i_forces.delta_F[0] += Ft1;
        i_forces.delta_F[1] += Ft2;
        i_forces.delta_F[2] += Ft3;
        j_forces.delta_F[0] += -Ft1;
        j_forces.delta_F[1] += -Ft2;
        j_forces.delta_F[2] += -Ft3;
        #ifdef NONSPHERICAL_ACTIVE_FLAG
                double torque_j[3];
                if(sidata.is_non_spherical) {
                  double xcj[3];
                  vectorSubtract3D(sidata.contact_point, atom->x[sidata.j], xcj);
                  double Ft_j[3] = { -Ft1,  -Ft2,  -Ft3 };
                  vectorCross3D(xcj, Ft_j, torque_j);
                } else {
                  torque_j[0] = -sidata.crj * tor1;
                  torque_j[1] = -sidata.crj * tor2;
                  torque_j[2] = -sidata.crj * tor3;
                }
                i_forces.delta_torque[0] += torque_i[0];
                i_forces.delta_torque[1] += torque_i[1];
                i_forces.delta_torque[2] += torque_i[2];

                j_forces.delta_torque[0] += torque_j[0];
                j_forces.delta_torque[1] += torque_j[1];
                j_forces.delta_torque[2] += torque_j[2];
        #else
                i_forces.delta_torque[0] += -sidata.cri * tor1;
                i_forces.delta_torque[1] += -sidata.cri * tor2;
                i_forces.delta_torque[2] += -sidata.cri * tor3;

                j_forces.delta_torque[0] += -sidata.crj * tor1;
                j_forces.delta_torque[1] += -sidata.crj * tor2;
                j_forces.delta_torque[2] += -sidata.crj * tor3;
        #endif
      }
    }

    inline void surfacesClose(SurfacesCloseData & scdata, ForceData&, ForceData&)
    {
      // unset non-touching neighbors
      // TODO even if shearupdate == false?
      if(scdata.contact_flags) *scdata.contact_flags &= ~CONTACT_TANGENTIAL_MODEL;
      if(!scdata.contact_history)
        return; //DO NOT access contact_history if not available
      double * const shear = &scdata.contact_history[history_offset];
      shear[0] = 0.0;
      shear[1] = 0.0;
      shear[2] = 0.0;
    }

    inline void beginPass(SurfacesIntersectData&, ForceData&, ForceData&){}
    inline void endPass(SurfacesIntersectData&, ForceData&, ForceData&){}

   protected:
    bool heating;
    bool heating_track;
    class ContactModelBase *cmb;
  };
}
}
#endif // TANGENTIAL_MODEL_HISTORY_H_
#endif