This file is indexed.

/usr/include/linbox/algorithms/bbcharpoly.h is in liblinbox-dev 1.4.2-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/* linbox/algorithms/bbchapoly.h
 * Copyright(C) LinBox
 * Written
 *  by Clement Pernet <clement.pernet@imag.fr>
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
 * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 *.
 */

/*! @file algorithms/bbcharpoly.h
 * @ingroup algorithms
 * @brief no doc.
 *
 */

#ifndef __LINBOX_bbcharpoly_H
#define __LINBOX_bbcharpoly_H

#define _LB_MAXITER 5

#include <givaro/givpoly1.h>


#include "linbox/blackbox/scalar-matrix.h"
#include "linbox/blackbox/sum.h"
#include "linbox/ring/modular.h"
#include "linbox/field/field-traits.h"
#include "linbox/solutions/det.h"
#include "linbox/solutions/rank.h"
#include "linbox/solutions/minpoly.h"
#include "linbox/randiter/random-prime.h"
#include "linbox/algorithms/matrix-hom.h"
#include "linbox/blackbox/polynomial.h"

#include <vector>
#include <map>

namespace LinBox
{

	/*! @internal
	 * @ingroup charpoly
	 * @brief  BlackBox Characteristic Polynomial
	 * @details NO DOC
	 * @warning rebind comes from Givaro !
	 */
	class BBcharpoly {
		template<class FieldPoly, class IntPoly=FieldPoly>
		class FactorMult ;

		/*! @brief No doc
		*/
		template<class FieldPoly, class IntPoly>
		class FactorMult {
		public:
			FactorMult() :
				fieldP(NULL),intP(NULL)
				,multiplicity(0),dep(NULL)
			{}
			FactorMult( FieldPoly* FP, IntPoly* IP, unsigned long m, FactorMult<FieldPoly,IntPoly>*d) :
				fieldP(FP), intP(IP), multiplicity(m), dep(d)
			{}

			FactorMult (const FactorMult<FieldPoly>& FM) :
				fieldP(FM.fieldP), intP(FM.intP), multiplicity(FM.multiplicity), dep(FM.dep)
			{}

			int update (const size_t n, int * goal)
			{
				if (dep->dep != NULL){
					FactorMult<FieldPoly,IntPoly>*curr = dep;
					int k = dep->update (n,goal)+1;
					int d = ((int)dep->fieldP->size()-1)/k;
					int tmp = (int)(n-dep->multiplicity) / d;
					int i = k-1;
					while (curr->dep!=NULL){
						curr = curr->dep;
						tmp-=i*(int)curr->multiplicity;
						--i;
					}
					tmp = tmp/k + (int)(multiplicity - dep->multiplicity) / d;
					dep->multiplicity =(size_t) tmp ;
					//std::cerr<<"Updating "<<*dep->fieldP<<" --> mul = "<<tmp<<std::endl;

					*goal -= tmp * ((int)dep->fieldP->size()-1);
					return k;
				}
				else{
					int tmp =  (int)((n - 2 * dep->multiplicity + multiplicity) / (dep->fieldP->size()-1));
					*goal -= tmp * ((int)dep->fieldP->size()-1);
					//std::cerr<<"Updating (leaf)"<<*dep->fieldP<<" --> mul = "<<tmp<<std::endl;
					dep->multiplicity = (size_t)tmp;
					return 1;
				}
			}


			FieldPoly                       *fieldP;
			IntPoly                         *intP;
			unsigned long                   multiplicity;
			FactorMult<FieldPoly, IntPoly>  *dep;

			std::ostream& write(std::ostream& os)
			{
				return os<<"  FieldPoly --> "<<fieldP
				<<"  IntPoly --> "<<intP
				<<"  multiplicity --> "<<multiplicity<<std::endl
				<<"  dep --> "<<dep<<std::endl;

			}
		};

	public :

		BBcharpoly() {} ;
		/** Algorithm computing the characteristic polynomial
		 * of a blackbox.
		 * @warning not implemented in general cases.
		 */
		template < class BlackBox, class Polynomial, class Categorytag >
		static Polynomial&
		blackboxcharpoly (Polynomial & P,
				  const BlackBox                   & A,
				  const Categorytag                & tag,
				  const Method::Blackbox           & M);

		/** Algorithm computing the integer characteristic polynomial
		 * of a blackbox.
		 */
		template < class BlackBox, class Polynomial >
		static Polynomial&
		blackboxcharpoly (Polynomial& P,
				  const BlackBox                   & A,
				  const RingCategories::IntegerTag & tag,
				  const Method::Blackbox           & M)
		{
			commentator().start ("Integer BlackBox Charpoly ", "IbbCharpoly");

			typename BlackBox::Field intRing = A.field();
			typedef Givaro::Modular<uint32_t> Field;
			typedef typename BlackBox::template rebind<Field>::other FieldBlackBox;
			typedef Givaro::Poly1FactorDom<typename BlackBox::Field, Givaro::Dense> IntPolyDom;
			typedef typename IntPolyDom::Element IntPoly;
			typedef Givaro::Poly1FactorDom<Field,Givaro::Dense>::Element FieldPoly;
			// Set of factors-multiplicities sorted by degree
			typedef FactorMult<FieldPoly,IntPoly> FM;
			typedef std::multimap<unsigned long,FM*> FactPoly;
			typedef typename FactPoly::iterator FactPolyIterator;
			std::multimap<FM*,bool> leadingBlocks;
			//typename std::multimap<FM*,bool>::iterator lead_it;
			FactPoly factCharPoly;
			size_t n = A.coldim();

			IntPolyDom IPD(intRing);

			/* Computation of the integer minimal polynomial */
			Polynomial intMinPoly(A.field());
			minpoly (intMinPoly, A, M);
			if (intMinPoly.size() == n+1){
				commentator().stop ("done", NULL, "IbbCharpoly");
				return P = intMinPoly;
			}
			/* Factorization over the integers */
			std::vector<IntPoly> intFactors;
			std::vector<uint64_t> exp;
			IPD.factor (intFactors, exp, IntPoly(intMinPoly.getRep().begin(),intMinPoly.getRep().end()));
			size_t factnum = intFactors.size();

			/* Choose a modular prime field */
			RandomPrimeIterator primeg (28);
			++primeg;
			Field F(*primeg);

			/* Building the structure of factors */
			int goal =(int) n;

			for (size_t i = 0; i < intFactors.size(); ++i) {
				uint64_t deg =  (intFactors[i].size()-1);
				FactorMult<FieldPoly,IntPoly>* FFM=NULL;
				if (exp[i] > 1) {
					IntPoly *tmp = new IntPoly(intFactors[i]);
					FM* depend = NULL;
					for (size_t j = 1; j <= exp[i]; ++j){
						IntPoly * tmp2 = new IntPoly(*tmp);
						FieldPoly *tmp2p = new FieldPoly(tmp2->size());
						typename IntPoly::template rebind<Field>() (*tmp2p, *tmp2, F);

						FFM = new FM (tmp2p, tmp2, 0, depend);
						factCharPoly.insert (std::pair<size_t, FM*> (deg, FFM));
						++factnum;
						depend = FFM;
						deg += intFactors[i].size()-1;
						if (j < exp[i])
							IPD.mul (*tmp, *tmp2, intFactors[i]);
					}
					delete tmp;
					--factnum;
					FFM->multiplicity = 1; // The last factor is present in minpoly
					goal -= (int)deg-(int)intFactors[i].size()+1;
					leadingBlocks.insert (std::pair<FM*,bool>(FFM,false));
				}
				else {
					FieldPoly* fp=new FieldPoly(intFactors[i].size());
					typename IntPoly::template rebind<Field>() (*fp, (intFactors[i]), F);
					FFM = new FM (fp,&intFactors[i],1,NULL);
					factCharPoly.insert (std::pair<size_t, FM* > (intFactors[i].size()-1, FFM));
					leadingBlocks.insert (std::pair<FM*,bool>(FFM,false));
					goal -= (int)deg;
				}
			}

			FieldBlackBox Ap(A, F);

			findMultiplicities (Ap, factCharPoly, leadingBlocks, goal, M);

			// Building the integer charpoly
			IntPoly intCharPoly (n+1);
			IntPoly tmpP;
			intRing.assign(intCharPoly[0], intRing.one);
			for (FactPolyIterator it_f = factCharPoly.begin(); it_f != factCharPoly.end(); ++it_f){
				IPD.pow (tmpP, *it_f->second->intP, (long) it_f->second->multiplicity);
				IPD.mulin (intCharPoly, tmpP);
				delete it_f->second->intP;
				delete it_f->second->fieldP;
				delete it_f->second;
			}
			commentator().stop ("done", NULL, "IbbCharpoly");

			return P = Polynomial(A.field(), typename Polynomial::Rep(intCharPoly.begin(),intCharPoly.end()));
		}

		/** Algorithm computing the  characteristic polynomial
		 * of a blackbox over a prime field.
		 */
		template < class BlackBox, class Polynomial >
		static Polynomial&
		blackboxcharpoly (Polynomial & P,
				  const BlackBox                                                & A,
				  const RingCategories::ModularTag                              & tag,
				  const Method::Blackbox                                        & M)
		{
			commentator().start ("Givaro::Modular BlackBox Charpoly ", "MbbCharpoly");
			typedef typename BlackBox::Field Field;
			typedef Givaro::Poly1FactorDom<Field, Givaro::Dense> PolyDom;
			typedef typename PolyDom::Element FieldPoly;
			// Set of factors-multiplicities sorted by degree
			typedef std::multimap<unsigned long,FactorMult<FieldPoly>* > FactPoly;
			typedef typename FactPoly::iterator FactPolyIterator;
			std::multimap<FactorMult<FieldPoly>*,bool> leadingBlocks;
			//typename std::multimap<FactorMult<Polynomial>*,bool>::iterator lead_it;

			Field F = A.field();
			PolyDom PD (F);
			FactPoly factCharPoly;
			const size_t n = A.coldim();

			/* Computation of the minimal polynomial */
			Polynomial minPoly;
			minpoly (minPoly, A, M);
			//std::cerr<<"Minpoly = "<<minPoly;
			if (minPoly.size() == n+1){
				commentator().stop ("done", NULL, "MbbCharpoly");
				return P = minPoly;
			}


			FieldPoly charPoly (n+1);

			{	/* Factorization over the field */
				std::vector<FieldPoly> factors;
				std::vector<uint64_t> exp;

				PD.factor (factors, exp, FieldPoly(minPoly.getRep().begin(),minPoly.getRep().end()));
				size_t factnum = factors.size();

				/* Building the structure of factors */
				int goal = (int)n;

				for (size_t i = 0; i < factors.size(); ++i) {
					uint64_t deg =  (factors[i].size()-1);
					FactorMult<FieldPoly>* FFM=NULL;
					if (exp[i] > 1) {
                                            FieldPoly* tmp = new FieldPoly(factors[i]);
						FactorMult<FieldPoly>* depend = NULL;
						for (size_t j = 1; j <= exp[i]; ++j){
							FieldPoly* tmp2 = new FieldPoly(*tmp);
							FFM = new FactorMult<FieldPoly> (tmp2, tmp2, 0, depend);
							//	std::cerr<<"Inserting new factor (exp>1): "<<(*tmp2)<<std::endl;

							factCharPoly.insert (std::pair<size_t, FactorMult<FieldPoly>* > (deg, FFM));
							++factnum;
							depend = FFM;
							deg += factors[i].size()-1;
							if (j < exp[i])
								PD.mul (*tmp, *tmp2, factors[i]);
						}
						delete tmp;
						--factnum;
						FFM->multiplicity = 1; // The last factor is present in minpoly
						goal -= (int)(deg-factors[i].size())+1;
						leadingBlocks.insert (std::pair<FactorMult<FieldPoly>*,bool>(FFM,false));
					}
					else {
						FFM = new FactorMult<FieldPoly> (&factors[i],&factors[i],1U,NULL);
						//std::cerr<<"Inserting new factor : "<<*factors[i]<<std::endl;
						factCharPoly.insert (std::pair<size_t, FactorMult<FieldPoly>* > (factors[i].size()-1, FFM));
						leadingBlocks.insert (std::pair<FactorMult<FieldPoly>*,bool>(FFM,false));
						goal -= (int)deg;
					}
				}
				findMultiplicities ( A, factCharPoly, leadingBlocks, goal, M);

				// Building the product
				FieldPoly tmpP;
				F.assign(charPoly[0], F.one);
				for (FactPolyIterator it_f = factCharPoly.begin(); it_f != factCharPoly.end(); ++it_f){
					PD.pow (tmpP, *it_f->second->fieldP,(long) it_f->second->multiplicity);
					PD.mulin (charPoly, tmpP);
					delete it_f->second->fieldP;
					delete it_f->second;

				}
			}

			commentator().stop ("done", NULL, "MbbCharpoly");

			return P = Polynomial(A.field(), typename Polynomial::Rep(charPoly.begin(),charPoly.end()));
		}


		template < class FieldPoly,class IntPoly>
		static void trials( std::list<std::vector<FactorMult<FieldPoly,IntPoly> > >& sols,
			     const int goal,
			     std::vector<FactorMult<FieldPoly,IntPoly> >& ufv,
			     const int i0 )
		{
			if ( !goal ){
				sols.push_back( ufv);
			}
			else if ( goal > 0 ){
				for (size_t i=(size_t)i0; i<ufv.size(); ++i){
					ufv[i].multiplicity++;
					trials( sols, goal - (int)ufv[i].fieldP->size()+1, ufv, (int)i );
					ufv[i].multiplicity--;
				}
			}
		}

		template <class BlackBox, class FieldPoly, class IntPoly>
		static void findMultiplicities( const BlackBox& A,
					 std::multimap<unsigned long, FactorMult<FieldPoly,IntPoly>* >& factCharPoly,
					 std::multimap<FactorMult<FieldPoly,IntPoly>*,bool>& leadingBlocks,
					 int goal,
					 const Method::Blackbox &M)
		{
			typedef std::multimap<unsigned long, FactorMult<FieldPoly,IntPoly>* > FactPoly;
			typedef typename BlackBox::Field Field;
			typedef Givaro::Poly1FactorDom<Field, Givaro::Dense> PolyDom;
			typename FactPoly::iterator itf = factCharPoly.begin();
			typename std::multimap<FactorMult<FieldPoly,IntPoly>*,bool>::iterator lead_it;
			Field F = A.field();
			PolyDom PD(F);
			size_t factnum = factCharPoly.size();
			size_t n = A.coldim();

			/* Rank for the linear factors */
			while ( ( factnum > 1 ) && ( itf->first == 1) ){

				lead_it = leadingBlocks.find(itf->second);
				if ( lead_it != leadingBlocks.end())
					lead_it->second = true;
				long unsigned int r;

				/* The matrix Pi (A) */
				if (F.isZero (itf->second->fieldP->operator[](0))){
					rank (r, A, M) ;
				}
				else {
					PolynomialBB<BlackBox, FieldPoly > PA (A, *itf->second->fieldP);
					rank (r, PA,  M) ;
				}
				itf->second->multiplicity =(size_t) r;

				//std::cerr<<"Rank 1 : "<<*itf->second->fieldP<<" --> "<<r<<std::endl;
				--factnum;
				++itf;
			}

			size_t maxIter = _LB_MAXITER;//MAX( _LB_MAXITER, sqrt(IspBB.mnz() ) );
			// Rank for the other factorspair
			while ( factnum > maxIter ){
				lead_it = leadingBlocks.find (itf->second);
				if ( lead_it != leadingBlocks.end())
					lead_it->second = true;

				PolynomialBB<BlackBox, FieldPoly > PA (A, *itf->second->fieldP);
				long unsigned int r;
				rank (r, PA,  M);

				itf->second->multiplicity =(size_t)r;
				//std::cerr<<"Rank > 1 : "<<*itf->second->intP<<" --> "<<r<<std::endl;

				--factnum;
				++itf;
			}

			// update the multiplicities
			for (lead_it = leadingBlocks.begin(); lead_it != leadingBlocks.end(); ++lead_it){

				FactorMult<FieldPoly,IntPoly>* currFFM = lead_it->first;
				//std::cerr<<"Updating multiplicities of "<<*lead_it->first->fieldP<<std::endl;

				if (!lead_it->second){ // the leading block has not been computed

					// go to the last computed multiplicity of the sequence
					while (currFFM->dep!=NULL){
						if (currFFM->dep->multiplicity != 0)
							break;
						currFFM = currFFM->dep;
					}
					if (currFFM->dep != NULL){

						// Need one more computation:
						PolynomialBB<BlackBox, FieldPoly > PA (A, *currFFM->fieldP);
						long unsigned int r;
						rank (r, PA, M) ;
						//std::cerr<<"extra factor : "<<*currFFM->fieldP<<" --> "<<r<<std::endl;

						int tmp = (int)currFFM->multiplicity;
						currFFM->multiplicity =(size_t) r;
						currFFM->update (n,&goal);
						currFFM->multiplicity = (size_t)tmp;
					}
				}
				else {
					int lbm;
					if (currFFM->dep != NULL){

						int k = currFFM->update (n,&goal)+1;
						int d = (int)(lead_it->first->fieldP->size()-1) / k;

						lbm = (int)(n-lead_it->first->multiplicity) / d;
						currFFM = currFFM->dep;
						do{
							lbm -= (int)(currFFM->multiplicity * (currFFM->fieldP->size()-1));
							currFFM = currFFM->dep;
						} while (currFFM!=NULL);
						lbm /= k;
						goal -= (lbm-1)*((int)lead_it->first->fieldP->size()-1);
					}
					else {
						lbm = (int)((int)(n-lead_it->first->multiplicity) / ((int)(lead_it->first->fieldP->size())-1));
						goal -=  (lbm-1)*((int)lead_it->first->fieldP->size()-1);
					}
					lead_it->first->multiplicity = (size_t)lbm;
				}
			}

			// Recursive search
			typename FactPoly::iterator firstUnknowFactor = itf;
			if ( factnum <= _LB_MAXITER ){
				std::vector<FactorMult<FieldPoly,IntPoly> > unknownFact (factnum);
				for (size_t  i = 0; i < factnum; ++i, ++itf){
					unknownFact[i] = *itf->second;
				}
				std::list<std::vector<FactorMult<FieldPoly,IntPoly> > > sols;
				trials (sols, goal,unknownFact, 0);
				typename std::list<std::vector<FactorMult<FieldPoly,IntPoly> > >::iterator uf_it = sols.begin();

				if (sols.size()>1){
					// Evaluation of P in random gamma
					typename Field::Element d, gamma, mgamma, d2;
					typename Field::RandIter g(F);
					do
						g.random(gamma);
					while (F.isZero(gamma));


					//Building the matrix A + gamma.Id mod p
					F.neg( mgamma, gamma );
					ScalarMatrix<Field> gammaId( F, n, n, gamma );
					Sum<BlackBox,ScalarMatrix<Field> > Agamma(A, gammaId);

					// Compute det (A+gamma.Id)
					det (d, Agamma, M);
					if (A.rowdim()%2)
						F.negin(d);

					// Compute Prod(Pi(-gamma)^mi)
					typename Field::Element tmp, e;
					F.assign(d2,F.one);
					typename FactPoly::iterator it_f=factCharPoly.begin();
					PolyDom PD_f (F);
					for (size_t i = 0; i < factCharPoly.size()-factnum; ++i, ++it_f){
						PD_f.eval (tmp, *it_f->second->fieldP, mgamma);
						for (size_t j=0; j < it_f->second->multiplicity; ++j)
							F.mulin (d2, tmp);
					}
					while ( uf_it != sols.end() ){
						F.assign (e,F.one);
						for (size_t i = 0; i < uf_it->size(); ++i){
							PD_f.eval( tmp, *(*uf_it)[i].fieldP, mgamma );
							for (size_t  j=0; j < (*uf_it)[i].multiplicity; ++j)
								F.mulin( e, tmp );
						}
						F.mulin( e, d2);
						if (F.areEqual(e,d))
							break;
						++uf_it;
					}
					if (uf_it == sols.end())
						std::cerr<<"FAIL:: No solutions found in recursive seach"<<std::endl;
				} // At this point, uf_it points on the good solution
				// update with the good multiplicities
				typename FactPoly::iterator it_f = firstUnknowFactor;
				typename std::vector<FactorMult<FieldPoly,IntPoly> >::iterator it_fm = (*uf_it).begin();
				for (; it_f != factCharPoly.end(); ++it_f, ++it_fm)
					it_f->second->multiplicity = it_fm->multiplicity;
			}
		}

	};
}

#undef _LB_MAXITER
#endif // __BBCHARPOLY_H


// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End:
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s