This file is indexed.

/usr/include/linbox/algorithms/charpoly-rational.h is in liblinbox-dev 1.4.2-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/* linbox/blackbox/rational-reconstruction-base.h
 * Copyright (C) 2009 Anna Marszalek
 *
 * Written by Anna Marszalek <aniau@astronet.pl>
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

#ifndef __LINBOX_charpoly_rational_H
#define __LINBOX_charpoly_rational_H

#include "linbox/util/commentator.h"
#include "linbox/util/timer.h"
#include "linbox/ring/modular.h"

//#include "linbox/field/gmp-rational.h"
#include "linbox/blackbox/rational-matrix-factory.h"
#include "linbox/algorithms/cra-early-multip.h"
#include "linbox/algorithms/cra-domain.h"
//#include "linbox/algorithms/rational-cra.h"
#include "linbox/algorithms/rational-reconstruction-base.h"
#include "linbox/algorithms/classic-rational-reconstruction.h"
#include "linbox/solutions/charpoly.h"
#include "linbox/blackbox/compose.h"
#include "linbox/blackbox/diagonal.h"

namespace LinBox
{
	//typedef GMPRationalField Rationals;
	//typedef Rationals::Element Quotient;

	/*
	 * Computes the characteristic polynomial of a rational dense matrix
	 */

	template<class T1, class T2>
	struct MyModularCharpoly{
		T1* t1;
		T2* t2;

		int switcher;

		MyModularCharpoly(T1* s1, T2* s2, int s = 1)  {t1=s1; t2=s2;switcher = s;}

		int setSwitcher(int s) {return switcher = s;}

		template<typename Polynomial, typename Field>
		Polynomial& operator()(Polynomial& P, const Field& F) const
		{
			if (switcher ==1) {
				t1->operator()(P,F);
			}
			else {
				t2->operator()(P,F);
			}
			return P;
		}
	};

	template <class Blackbox, class MyMethod>
	struct MyRationalModularCharpoly {
		const Blackbox &A;
		const MyMethod &M;
		const std::vector<Integer> &mul;//multiplicative prec;

		MyRationalModularCharpoly(const Blackbox& b, const MyMethod& n,
					  const std::vector<Integer >& p) :
			A(b), M(n), mul(p)
		{}
		MyRationalModularCharpoly(MyRationalModularCharpoly& C) :
			// MyRationalModularCharpoly(C.A,C.M,C.mul)
			A(C.A),M(C.M),mul(C.mul)
		{}

		template<typename Polynomial, typename Field>
		Polynomial& operator()(Polynomial& P, const Field& F) const
		{
			typedef typename Blackbox::template rebind<Field>::other FBlackbox;
			FBlackbox * Ap;
			MatrixHom::map(Ap, A, F);
			charpoly( P, *Ap, typename FieldTraits<Field>::categoryTag(), M);
			typename std::vector<Integer >::const_iterator it = mul.begin();
			typename Polynomial::iterator it_p = P.begin();
			for (;it_p !=P.end(); ++it, ++it_p) {
				typename Field::Element e;
				F.init(e, *it);
				F.mulin(*it_p,e);
			}

			delete Ap;
			return P;
		}
	};

	template <class Blackbox, class MyMethod>
	struct MyIntegerModularCharpoly {
		const Blackbox &A;
		const MyMethod &M;
		const std::vector<typename Blackbox::Field::Element> &vD;//diagonal div. prec;
		const std::vector<typename Blackbox::Field::Element > &mul;//multiplicative prec;

		MyIntegerModularCharpoly(const Blackbox& b, const MyMethod& n,
					 const std::vector<typename Blackbox::Field::Element>& ve,
					 const std::vector<typename Blackbox::Field::Element >& p) :
			A(b), M(n), vD(ve), mul(p) {}

		MyIntegerModularCharpoly(MyIntegerModularCharpoly& C) :
			// MyIntegerModularCharpoly(C.A,C.M,C.vD,C.mul)
			A(C.A),M(C.M),vD(C.vD),mul(C.mul)
		{}

		template<typename Polynomial, typename Field>
		Polynomial& operator()(Polynomial& P, const Field& F) const
		{
			typedef typename Blackbox::template rebind<Field>::other FBlackbox;
			FBlackbox * Ap;
			MatrixHom::map(Ap, A, F);

			typename std::vector<typename Blackbox::Field::Element>::const_iterator it;

			int i=0;
			for (it = vD.begin(); it != vD.end(); ++it,++i) {
				typename Field::Element t,tt;
				F.init(t,*it);
				F.invin(t);
				for (int j=0; j < A.coldim(); ++j) {
					F.mulin(Ap->refEntry(i,j),t);
				}
			}

			charpoly( P, *Ap, typename FieldTraits<Field>::categoryTag(), M);
			typename std::vector<typename Blackbox::Field::Element >::const_iterator it2 = mul.begin();
			typename Polynomial::iterator it_p = P.begin();
			for (;it_p !=P.end(); ++it2, ++it_p) {
				typename Field::Element e;
				F.init(e, *it2);
				F.mulin(*it_p,e);
			}

			delete Ap;
			return P;
		}
	};

	template <class Rationals, template <class> class Vector, class MyMethod >
	Vector<typename Rationals::Element>& rational_charpoly (Vector<typename Rationals::Element> &p,
								const BlasMatrix<Rationals > &A,
								const MyMethod &Met=  Method::Hybrid())
	{

		typedef typename Rationals::Element Quotient;

		commentator().start ("Rational Charpoly", "Rminpoly");

		RandomPrimeIterator genprime( 26-(int)ceil(log((double)A.rowdim())*0.7213475205));

		std::vector<Integer> F(A.rowdim()+1,1);
		std::vector<Integer> M(A.rowdim()+1,1);
		std::vector<Integer> Di(A.rowdim());

		RationalMatrixFactory<Givaro::ZRing<Integer>,Rationals,BlasMatrix<Rationals > > FA(&A);
		Integer da=1, di=1; Integer D=1;
		FA.denominator(da);

		for (int i=(int)M.size()-2; i >= 0 ; --i) {
			//c[m]=1, c[0]=det(A);
			FA.denominator(di,i);
			D *=di;
			Di[(size_t)i]=di;
			M[(size_t)i] = M[(size_t)i+1]*da;
		}
		for (int i=0; i < (int) M.size() ; ++i ) {
			gcd(M[(size_t)i],M[(size_t)i],D);
		}

		Givaro::ZRing<Integer> Z;
		BlasMatrix<Givaro::ZRing<Integer> > Atilde(Z,A.rowdim(), A.coldim());
		FA.makeAtilde(Atilde);

		ChineseRemainder< EarlyMultipCRA<Givaro::Modular<double> > > cra(4UL);
		MyRationalModularCharpoly<BlasMatrix<Rationals > , MyMethod> iteration1(A, Met, M);
		MyIntegerModularCharpoly<BlasMatrix<Givaro::ZRing<Integer> >, MyMethod> iteration2(Atilde, Met, Di, M);
		MyModularCharpoly<MyRationalModularCharpoly<BlasMatrix<Rationals > , MyMethod>,
		MyIntegerModularCharpoly<BlasMatrix<Givaro::ZRing<Integer> >, MyMethod> >  iteration(&iteration1,&iteration2);

		RReconstruction<Givaro::ZRing<Integer>, ClassicMaxQRationalReconstruction<Givaro::ZRing<Integer> > > RR;

		std::vector<Integer> PP; // use of integer due to non genericity of cra. PG 2005-08-04
		UserTimer t1,t2;
		t1.clear();
		t2.clear();
		t1.start();
		cra(2,PP,iteration1,genprime);
		t1.stop();
		t2.start();
		cra(2,PP,iteration2,genprime);
		t2.stop();



		if (t1.time() < t2.time()) {
			//cout << "ratim";
			iteration.setSwitcher(1);
		}
		else {
			//cout << "intim";
			iteration.setSwitcher(2);
		}

		int k=4;
		while (! cra(k,PP, iteration, genprime)) {
			k *=2;
			Integer m; //Integer r; Integer a,b;
			cra.getModulus(m);
			cra.result(PP);//need to divide
			for (int i=0; i < (int)PP.size(); ++i) {
				Integer D_1;
				inv(D_1,M[(size_t)i],m);
				PP[(size_t)i] = (PP[(size_t)i]*D_1) % m;
			}
			Integer den,den1;
			std::vector<Integer> num(A.rowdim()+1);
			std::vector<Integer> num1(A.rowdim()+1);
			if (RR.reconstructRational(num,den,PP,m,-1)) {//performs reconstruction strating form c[m], use c[(size_t)i] as prec for c[(size_t)i-1]
				cra(1,PP,iteration,genprime);
				cra.getModulus(m);
				for (int i=0; i < (int)PP.size(); ++i) {
					Integer D_1;
					inv(D_1,M[(size_t)i],m);
					PP[(size_t)i] = (PP[(size_t)i]*D_1) % m;
				}
				if (RR.reconstructRational(num1,den1,PP,m,-1)) {
					bool terminated = true;
					if (den==den1) {
						for (int i=0; i < (int)num.size(); ++i) {
							if (num[(size_t)i] != num1[(size_t)i]) {
								terminated =false;
								break;
							}
						}
					}
					else {
						terminated = false;
					}
					//set p
					if (terminated) {
						size_t i =0;
						integer t,tt,ttt;
						integer err;
						// size_t max_err = 0;
						Quotient qerr;
						p.resize(PP.size());
						typename Vector <typename Rationals::Element>::iterator it;
						Rationals Q;
						for (it= p.begin(); it != p.end(); ++it, ++i) {
							A.field().init(*it, num[(size_t)i],den);
							Q.get_den(t,*it);
							if (it != p.begin()) Q.get_den(tt,*(it-1));
							else tt = 1;
							Q.init(qerr,t,tt);

						}
						return p;
						// break;
					}
				}
			}
		}

		cra.result(PP);

		size_t i =0;
		integer t,tt;
		integer err;
		// size_t max_res=0;int max_i;
		// double rel;
		// size_t max_resu=0; int max_iu;
		// size_t max_err = 0;
		Quotient qerr;
		p.resize(PP.size());

		typename Vector <typename Rationals::Element>::iterator it;

		Rationals Q;
		for (it= p.begin(); it != p.end(); ++it, ++i) {
			A.field().init(*it, PP[(size_t)i],M[(size_t)i]);
			Q.get_den(t, *it);
			Q.get_num(tt,*it);
			err = M[(size_t)i]/t;
			// size_t resi = err.bitsize() + tt.bitsize() -1;
			// size_t resu = t.bitsize() + tt.bitsize() -1;
			// if (resi > max_res) {max_res = resi; max_i=i;}
			// if (resu > max_resu) {max_resu = resu; max_iu =i;}
			//size_t resu = t.bitsize() + tt.bitsize() -1;
			//if (err.bitsize() > max_err) max_err = err.bitsize();
		}

		// max_res=0;
		for (it= p.begin()+1; it != p.end(); ++it) {
			//A.field().init(*it, PP[(size_t)i],M[(size_t)i]);
			Q.get_den(t, *it);
			Q.get_den(tt, *(it-1));
			Q.init(qerr,t,tt);
			Q.get_num(tt, *it);
			// size_t resi = Q.bitsize(t,qerr) + tt.bitsize() -2;
			// if (resi > max_res) {max_res = resi; max_i=i;}
			//if (err.bitsize() > max_err) max_err = err.bitsize();
		}

		commentator().stop ("done", NULL, "Iminpoly");

		return p;

	}

}

#endif //__LINBOX_charpoly_rational_H

// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,:0,t0,+0,=s
// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End: