This file is indexed.

/usr/include/linbox/algorithms/rational-solver-sn.h is in liblinbox-dev 1.4.2-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* sn-rational-solver.h */

/* Copyright (C) 2011 LinBox
 * Written Bryan Youse <>
 *
 *
 *
 * ========LICENCE========
 * This file is part of the library LinBox.
 *
  * LinBox is free software: you can redistribute it and/or modify
 * it under the terms of the  GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * ========LICENCE========
 */

#ifndef __LINBOX_rational_solver_sn_H
#define __LINBOX_rational_solver_sn_H

#include <iostream>

#include "linbox/integer.h"
#include "linbox/field/param-fuzzy.h"
#include "linbox/solutions/methods.h"
#include "linbox/blackbox/archetype.h"
#include "linbox/algorithms/dyadic-to-rational.h"
#include "linbox/blackbox/compose.h"
#include "linbox/matrix/dense-matrix.h"
#include "linbox/algorithms/vector-fraction.h"
#include "linbox/algorithms/matrix-hom.h"
#include "linbox/util/timer.h"
#include "givaro/zring.h"

namespace LinBox {


	/** \brief define the possible return status of the solver's computation.
	*/
	enum SNSolverReturnStatus {
		SNSS_OK, SNSS_FAILED, SNSS_SINGULAR, SNSS_INCONSISTENT
	};

	enum ShiftStatus {
		SHIFT_GROW, SHIFT_SHRINK, SHIFT_PEAK, SHIFT_SEARCH, SHIFT_MAX
	};

	/*
	 * A NumericSolver has
	 * init from a matrix A,
	 * solve(double* x, double* b)		// x = A^{-1}b
	 * apply(double* y, double * x);		// y = Ax
	 */

	template<class Ring, class NumericSolver>
	class RationalSolverSN {

	public:
		typedef typename Ring::Element Int;
		typedef BlasVector<Ring> IVector;
		// note: the type integer is also used.  For instance, we assume shift operator<< works on integer.
		typedef ParamFuzzy Field;
		typedef typename Field::Element Float;
		typedef BlasVector<Field> FVector;
		typedef BlasMatrix<Field> FMatrix;

	protected:
		Ring _ring;
		VectorDomain<Ring> _VDR;
		const Field _field; // we own it, user not expected to provide this handle on floating pt.
		VectorDomain<Field> _VDF;
		NumericSolver _numsolver;
		//inline static int check (int n, const double* M, integer* numx, integer& denx, double* b) ;
		//inline void update_r_xs (double* r, double* xs_int, double* xs_frac,
		//							int n, const double* M, double* x, int shift);
		//inline int rat_sol(IVector& numx, Int& denx, NumericSolver& _numsolver, FVector& r, integer Bd);
		//inline void dyadicToRational(ZIVector& num, Int& den, vector<integer>& numx, integer& denx, integer Bd);
	private:
		size_t shift, shift_prev, shift_max, SHIFT_BOUND, HIT, MISS, iterations;
		ShiftStatus sstatus;
		bool searchPeak;
		double mnorm;
		bool exact_apply;
	public:

		inline const Field & field() const { return _field; }

		RationalSolverSN(const Ring& R = Ring(), const NumericSolver& S = NumericSolver(),
				 bool ea=false) :
		       	_ring(R), _VDR(R), _field(), _VDF(field()), _numsolver(S)
			// randow default to 0
			,shift(0),shift_prev(0),shift_max(0),SHIFT_BOUND(0), HIT(0), MISS(0), iterations(0),sstatus(SHIFT_GROW),searchPeak(false),mnorm(0)
			, exact_apply(ea)
		{}

		/**
		 * IMatrix is matrix of integer type, eg. BlasMatrix<PID-integer>
		 * IVector is linbox Vector of integer, eg. vector<PID-integer::Element>
		 * M is the matrix, b is rhs.
		 * num, den are the output  such that M*num = den*b (and den != 0 if successful).
		 */
		//  sparse matrix flag at the end, then avoid copying to DM as well ass
		//  new method to get hadamard bound and matrix norm!
		template <class IMatrix, class IVector>
		SNSolverReturnStatus solve(IVector& num, Int& den,
					   const IMatrix& M, const IVector& b)
		{
			Timer timer, solve_timer, rr_timer, tt;

			size_t n = b.size();
			// check basic feasiblility
			linbox_check((b.size() == M.rowdim()) && (num. size() == M.coldim()));

			// DM is M as matrix of doubles
			FMatrix DM(field(), n, n);
			//  Fix MatrixHom?
			//FMatrix* DMp = &DM;
			//MatrixHom::map<FMatrix, IMatrix, Field>(DMp, M, field());

			if(n != M. rowdim() || n != M. coldim() || n != num.size()) {
				// std::cerr << "solve fail 1 - dimension mismatch" << std::endl;
				return SNSS_FAILED;
			}

			//  this is currently not used to check anything...
			integer entryBound = 1; entryBound <<= 49;  // nothing should exceed 2^50.
			SHIFT_BOUND = 52;

			//  why can't i put this in the for loop def???
			typename FMatrix::Iterator dm_p = DM.Begin();
			for (typename IMatrix::ConstIterator raw_p = M.Begin();
			     raw_p != M. End(); ++ raw_p, ++dm_p) {
				field().init(*dm_p, *raw_p);
			}

			// build a numeric solver from new double matrix
			_numsolver.init(DM);

			// r is b as vector of doubles.  (r is initial residual)
			FVector r(field(),n);
			IVector bi(_ring,n);
			typename IVector::const_iterator b_p = b.begin();
			typename IVector::iterator bi_p = bi.begin();
			typename FVector::iterator r_p = r.begin();
			for (  ; b_p != b. begin() + (ptrdiff_t) n; ++b_p, ++r_p, ++bi_p) {
				*bi_p = *b_p;  //  copy original RHS
				field().init(*r_p, *b_p);
			}

			//  denBound is the Hadamard bound, loopBound is roughly twice as much
			integer denBound, loopBound;
			zw_hbound (denBound, (int)n, (int)n, &*(DM.Begin()));
			loopBound = denBound*denBound;

			mnorm = zw_dOOnorm(&*(DM.Begin()), (int)n, (int)n);  //  infinity-norm of matrix
			//  set max shift to avoid exact applys
			size_t bits = 0;
			size_t mn2 = nextPower2((size_t)mnorm);
			for(;mn2;mn2>>=1, bits++);

			SHIFT_BOUND -= bits;
			//std::cerr << "BITS" << bits << "MAX" << SHIFT_BOUND << std::endl;

			loopBound *= (2*mnorm + zw_dmax((int)n, &*(r.begin()), 1));

			Givaro::ZRing<Integer> Z;
			BlasVector<Givaro::ZRing<Integer> > numx(Z,n), tnum(Z,n); // numerator of binary expansion
			integer denx = 1, tden; // denominator of binary expansion (denx is a power of 2).

			FVector x(field(),n), xs_int(field(),n), xs_frac(field(),n);
			FVector lastr(field(),n);
			IVector lastb(_ring,n);

			//set initial shift small.
			shift = 2;
			shift_prev = shift;
			shift_max = 0;
			searchPeak = false;
			sstatus = SHIFT_GROW;
			HIT = 0; MISS = 0;
			iterations = 0;
			integer ay, be;

			bool recon_success = false;
			int recon_status = 0;

			//timer.clear(); timer.start();
#ifdef SN_EARLY_TERM
			integer bound = denBound;
			//double it_cost = 0, rr_cost = 0;
#else
			integer bound = loopBound;
#endif
			//size_t rr_count = 0;
			//solve_timer.clear(); rr_timer.clear();
			do{
			int ret;
				//tt.clear(); tt.start();
				ret = rat_sol(numx, denx, xs_int, xs_frac, bi, lastb, r, lastr, x, bound, M);
				//tt.stop(); solve_timer += tt;

				if(ret == 1){
					// std::cerr << "numsym loop failed - likely lack of num accuracy" << std::endl;
					return SNSS_FAILED;
				}
				else if(ret == 2) denBound = denx; // zero residual

				// we're trying to early-term
				//std::cerr << bound << " " << loopBound << std::endl;
				if(bound < loopBound){
					//  update bound for next iteration (if applicable)
#if 0
				       	it_cost = solve_timer.realtime()/(double)iterations;
					   rr_cost = rr_timer.realtime()/(double)rr_count;
					   std::cerr << "iteration cost: " << it_cost << " v. rr cost: " << rr_cost << std::endl;
#endif
					Z.sqrt(bound, loopBound*bound);
					bound <<= 2;
					int rPos = rand()%(int)n;
					//std::cerr << "At iteration " << iterations << ", ";
					if(dyadicToRational(Z, ay, be, numx[(size_t)rPos], denx, denBound) /*== 2*/){
						//std::cerr << "Random single worked!  ";
					}
					else{
						//std::cerr << "Random single failed." << std::endl;
						continue;
					}
				}

				//tt.clear(); tt.start();
				recon_status = dyadicToRational(Z, num, den, numx, denx, denBound);
				//tt.stop(); rr_timer += tt; ++rr_count;
				//std::cerr << "RRT: " << rr_timer << std::endl;

				recon_success = recon_status > 0;
				//if(!recon_success) std::cerr << "Full failed!" << std::endl;
				//else std::cerr << "Full worked!" << std::endl;
			} while((bound < loopBound) && !recon_success);

			//timer.stop(); std::cerr << "rat_sol time: " << solve_timer.realtime() << " rr time: " << rr_timer.realtime() << " Total: " << timer << std::endl;

#if 0
			writeVec(numx, "numx", 0, 10);
			std::cerr << denx << std::endl;
			writeVec(num, "num");
			std::cerr << "den: " /*(large)" << std::endl;*/ << den << std::endl;
#endif

			if (recon_success) {
#if 0
				if(recon_status == 2) std::cerr << "reconstruction guaranteed" << std::endl;
				else std::cerr << "reconstruction speculative" << std::endl;

				std::cerr << "Solve success. Iterations: " << iterations << std::endl;
				std::cerr << HIT << " hits, " << MISS << " misses. (";
				fprintf(stderr,  "%.2f", (float)(HIT)/(float)(HIT+MISS)*100.0);
				std::cerr << "%) Maximum shift: " << shift_max << std::endl;
#endif
			}
			else{
				// std::cerr << "rat reconstruction asserts failure" << std::endl;
				// dumpData(M, b, numx, denx, denBound);
				return SNSS_FAILED;
			}

			if (_ring.isZero(den)) {
				// std::cerr << "fail: zero denominator after rat-recons" << std::endl;
				return SNSS_FAILED;
			}

#if 0
			//  Answer checking
			IVector y(_ring,n), z(_ring,n);
			M.apply(y, num);
			_VDR.mul(z, b, den);
			if ( !_VDR.areEqual(y, z)) {
				std::cerr << "fail check: A*x != b exactly" << std::endl;
				dumpData(M, b, numx, denx, denBound);
				return SNSS_FAILED;
			}
#endif
			return SNSS_OK;

		} // solve

#include "rational-solver-sn.inl"

#if 0
		//embedded definitions now, so no declarations
		// functions used by solve()
		//protected:
		//print out a vector
		template <class Elt>
		inline static int printvec (const Elt* v, int n);
		/** Compute the OO-norm of a mtrix */
		inline static double zw_dOOnorm(const double* M, int m, int n);
		/** compute the maximam of absolute value of an array*/
		inline static double zw_dmax (const int N, const double* a, const int inc);
		/* apply  y <- Ax */
		inline static int zw_dapply (int m, int n, const double* A, const double* x, double* y);
		inline static int zw_mpzapply (int m, int n, const double* A, const integer* x, integer* y);
		//update the numerator; num = num * 2^shift + d;
		inline static int update_num (integer* num, int n, const double* d, int shift);
		//update r = r * shift - M d, where norm (r) < 2^32;
		inline static int update_r_int (double* r, int n, const double* M, const double* d, int shift);
		//update r = r * shift - M d, where 2^32 <= norm (r) < 2^53
		inline static int update_r_ll (double* r, int n, const double* M, const double* d, int shift);
		// compute  the hadamard bound
		inline static int zw_hbound (integer& b, int m, int n, const double* M);
		// compute the inverse of a general matrix
		inline static int zw_dgeinv(double* M, int n);
		/* solve Ax = b
		 * A, the integer matrix
		 * b, integer rhs
		 * Return value
		 * 0, ok.
		 * 1, the matrix is not invertible in floating point operations.
		 * 2, the matrix is not well conditioned.
		 * 3, incorrect answer, possible ill-conditioned.
		 */
		//inline int rsol (Ring& R, int n, const double* M, integer* numx, integer& denx, double* b);
#endif

	}; // class RationalSolverSN

} // namespace LinBox

#endif // __LINBOX_rational_solver_sn_H

// Local Variables:
// mode: C++
// tab-width: 8
// indent-tabs-mode: nil
// c-basic-offset: 8
// End:
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s