This file is indexed.

/usr/include/linbox/blackbox/pascal.h is in liblinbox-dev 1.4.2-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#ifndef __LINBOX_pascal_H
#define __LINBOX_pascal_H

#include <iostream>
#include <vector>
#include <limits>
#include <algorithm>

#ifdef __LINBOX_USE_OPENMP
#include <omp.h>
#endif

#include "linbox/util/debug.h"
#include "linbox/matrix/sliced3.h"

#define PASCAL_BASECASE_THRESH 81

namespace LinBox {

template <class Field>
class ModularNChooseK {
public:
	typedef typename Field::Element Element;

	int reduceZeros(int x)
	{
		while ((x>0)&&(x%q_==0)) {
			x/=q_;
		}
		return x;
	}

	void initFactorials()
	{
		factList_.resize(maxN_+1);
		Element d;
		F_.assign(factList_[0],F_.one);
		for (int i=1;i<maxN_+1;++i) {
			F_.init(d,reduceZeros(i));
			if (d==0) {
				F_.assign(factList_[i],factList_[i-1]);
			} else {
				F_.mul(factList_[i],factList_[i-1],d);
			}
		}
	}

	void initPowerList()
	{
		powerList_.resize(maxN_+1);
		for (int i=0;i<maxN_+1;++i) {
			powerList_[i]=0;
		}
		for (int k=q_;k<maxN_;k*=q_) {
			for (int i=k-1;i<maxN_;i+=k) {
				++powerList_[i+1];
			}
		}
		
		int sum=0;
		for (int i=0;i<maxN_+1;++i) {
			sum+=powerList_[i];
			powerList_[i]=sum;
		}
	}

	ModularNChooseK(Field& F, int q, int maxN) :
		F_(F), q_(q), maxN_(maxN)
	{
		
		initPowerList();
		initFactorials();
	}

	Element& compute(Element& d,int n,int k)
	{
		int denomPower=powerList_[k]+powerList_[n-k];
		int numerPower=powerList_[n];
		if (numerPower>denomPower) {
			F_.assign(d,F_.zero);
		} else {
			linbox_check(numerPower==denomPower);
			F_.mul(d,factList_[n-k],factList_[k]);
			F_.div(d,factList_[n],d);
		}
		return d;
		
	}
protected:
	Field F_;
	int q_;
	std::vector<int> powerList_;
	std::vector<Element> factList_;
	int maxN_;
};

template <class Field>
class PascalBlackbox {
public:
	typedef typename Field::Element Element;

	template <class Vector>
	PascalBlackbox(int r,
	               int c,
	               const Vector& polyCoeffs,
	               Field& F) :
		polyCoeffs_(polyCoeffs),
		rowdim_(r),coldim_(c),
		F_(F)
	{
		initPowersOfThree();
		initBaseCase();
	}

	void initBaseCase()
	{
		ModularNChooseK<Field> Choose(F_,3,std::max(rowdim_+coldim_,2*PASCAL_BASECASE_THRESH)+1);
		nonZeroRows_.clear();
		nonZeroCols_.clear();
		nonZerosUnflipped_.clear();
		nonZerosFlipped_.clear();
		int r=PASCAL_BASECASE_THRESH;
		Element two;
		F_.add(two,F_.one,F_.one);
		for (int k=0;k<(2*r)-1;++k) {
			for (int j=(k<r)?0:(1+k-4);j<std::min(k+1,r);++j) {
				Element d;
				int i=k-j;
				Choose.compute(d,k,j);
				if (!F_.isZero(d)) {
					nonZeroRows_.push_back(i);
					nonZeroCols_.push_back(j);
					nonZerosUnflipped_.push_back(d);
					F_.mulin(d,two);
					nonZerosFlipped_.push_back(d);
				}
			}
		}
	}

	template <class Mat1, class Mat2>
	Mat1& applyLeft(Mat1& lhs,const Mat2& rhs) const
	{
		int r=std::max(PASCAL_BASECASE_THRESH,
		               nextPowerOfThree(std::max(rowdim_,coldim_)));
		lhs.zero();
		applyLeft(0,0,r,lhs,const_cast<Mat2&>(rhs),false,1);
		return lhs;
	}

	template<class Mat1, class Mat2>
	void applyLeft(int i0, int j0, int r, Mat1& lhs,Mat2& rhs, bool flip, int numThreads) const
	{
		if (i0 > rowdim_ || j0 > coldim_) return;
		if (r<=PASCAL_BASECASE_THRESH) {
			if (flip) {
				applyHelper(i0,j0,r,lhs,rhs,nonZerosFlipped_);
			} else {
				applyHelper(i0,j0,r,lhs,rhs,nonZerosUnflipped_);
			}
		} else {
			int r3=r/3;

//CP: removing all explicit OMP calls
//    to be replaced by calls to FFLAS-FFPACK's DSL

// #ifdef __LINBOX_USE_OPENMP
// 			int threadLimit=omp_get_max_threads();
// 			//int threadLimit=4;
// #endif

// #pragma omp parallel sections if (numThreads+2<=threadLimit) shared(lhs,rhs)
// 			{
// #pragma omp section
				applyLeft(i0,j0,r3,lhs,rhs,flip,numThreads+2);
// #pragma omp section
				applyLeft(i0+r3,j0,r3,lhs,rhs,flip,numThreads+2);
// #pragma omp section
				applyLeft(i0+2*r3,j0,r3,lhs,rhs,flip,numThreads+2);
// 			}

// #pragma omp parallel sections if (numThreads+1<=threadLimit) shared(lhs,rhs)
// 			{
// #pragma omp section
				applyLeft(i0,j0+r3,r3,lhs,rhs,flip,numThreads+1);
// #pragma omp section
				applyLeft(i0+r3,j0+r3,r3,lhs,rhs,!flip,numThreads);
			// }


			applyLeft(i0,j0+2*r3,r3,lhs,rhs,flip,numThreads+1);

		}
	}

	template<class SlicedDom>
	void applyHelper(int i0,int j0,int r,Sliced<SlicedDom>& lhs,Sliced<SlicedDom>& rhs,
	                 const std::vector<uint16_t>& nonZeros) const
	{
		int nnz=nonZeroRows_.size();
		for (int l=0;l<nnz;++l) {
			int i=nonZeroRows_[l]+i0;
			int j=nonZeroCols_[l]+j0;
			int k=i+j;
			if (i>=rowdim_ || j>=coldim_) {
				continue;
			}
			if (F_.isZero(polyCoeffs_[k])) {
				continue;
			}
			Element d;
			d=nonZeros[l];
			F_.mul(d,d,polyCoeffs_[k]);
			typename Sliced<SlicedDom>::RawIterator Ab(lhs.rowBegin(i)),
				Ae(lhs.rowEnd(i)), Bb(rhs.rowBegin(j));
			lhs.axpyin(Ab,Ae,d,Bb);
		}
	}

	template<class Mat1, class Mat2>
	void applyHelper(int i0,int j0,int r,Mat1& lhs,Mat2& rhs,const std::vector<uint16_t>& nonZeros) const
	{
		int nnz=nonZeroRows_.size();
		int w=rhs.coldim();
		for (int l=0;l<nnz;++l) {
			int i=nonZeroRows_[l]+i0;
			int j=nonZeroCols_[l]+j0;
			int k=i+j;
			if (i>=rowdim_ || j>=coldim_) {
				continue;
			}
			if (F_.isZero(polyCoeffs_[k])) {
				continue;
			}
			Element d;
			d=nonZeros[l];
			F_.mul(d,d,polyCoeffs_[k]);
			typename Mat2::constSubMatrixType Xr(rhs,j,0,1,w);
			typename Mat1::subMatrixType Yr(lhs,i,0,1,w);
			lhs._MD.saxpyin(Yr,d,Xr);
		}
	}

	size_t rowdim() const {return rowdim_;}
	size_t coldim() const {return coldim_;}

	const Field& field() const {
		return F_;
	}
	
protected:
	std::vector<Element> polyCoeffs_;
	int rowdim_,coldim_;
	Field F_;
	std::vector<int> powersOfThree_;
	std::vector<uint16_t> nonZeroRows_,nonZeroCols_,nonZerosFlipped_,nonZerosUnflipped_;

	void initPowersOfThree()
	{
		int x=1;
		while (x<std::numeric_limits<int>::max()/3) {
			powersOfThree_.push_back(x);
			x*=3;
		}
		powersOfThree_.push_back(x);
	}
	int nextPowerOfThree(int x) const
	{
		int i=0;
		while (powersOfThree_[i] < x) {++i;}
		return powersOfThree_[i];
	}
};

}

#endif //__LINBOX_pascal_H