This file is indexed.

/usr/include/liquid/liquid.h is in libliquid-dev 1.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
/*
 * Copyright (c) 2007 - 2017 Joseph Gaeddert
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#ifndef __LIQUID_H__
#define __LIQUID_H__

#ifdef __cplusplus
extern "C" {
#   define LIQUID_USE_COMPLEX_H 0
#else
#   define LIQUID_USE_COMPLEX_H 1
#endif // __cplusplus

// common headers
#include <inttypes.h>

//
// Make sure the version and version number macros weren't defined by
// some prevoiusly included header file.
//
#ifdef LIQUID_VERSION
#  undef LIQUID_VERSION
#endif
#ifdef LIQUID_VERSION_NUMBER
#  undef LIQUID_VERSION_NUMBER
#endif

//
// Compile-time version numbers
// 
// LIQUID_VERSION = "X.Y.Z"
// LIQUID_VERSION_NUMBER = (X*1000000 + Y*1000 + Z)
//
#define LIQUID_VERSION          "1.3.0"
#define LIQUID_VERSION_NUMBER   1003000

//
// Run-time library version numbers
//
extern const char liquid_version[];
const char * liquid_libversion(void);
int liquid_libversion_number(void);

// run-time library validation
#define LIQUID_VALIDATE_LIBVERSION                              \
  if (LIQUID_VERSION_NUMBER != liquid_libversion_number()) {    \
    fprintf(stderr,"%s:%u: ", __FILE__,__LINE__);               \
    fprintf(stderr,"error: invalid liquid runtime library\n");  \
    exit(1);                                                    \
  }                                                             \

#define LIQUID_CONCAT(prefix, name) prefix ## name
#define LIQUID_VALIDATE_INPUT

/* 
 * Compile-time complex data type definitions
 *
 * Default: use the C99 complex data type, otherwise
 * define complex type compatible with the C++ complex standard,
 * otherwise resort to defining binary compatible array.
 */
#if LIQUID_USE_COMPLEX_H==1
#   include <complex.h>
#   define LIQUID_DEFINE_COMPLEX(R,C) typedef R _Complex C
#elif defined _GLIBCXX_COMPLEX || defined _LIBCPP_COMPLEX
#   define LIQUID_DEFINE_COMPLEX(R,C) typedef std::complex<R> C
#else
#   define LIQUID_DEFINE_COMPLEX(R,C) typedef struct {R real; R imag;} C;
#endif
//#   define LIQUID_DEFINE_COMPLEX(R,C) typedef R C[2]

LIQUID_DEFINE_COMPLEX(float,  liquid_float_complex);
LIQUID_DEFINE_COMPLEX(double, liquid_double_complex);

// 
// MODULE : agc (automatic gain control)
//

// available squelch modes
typedef enum {
    LIQUID_AGC_SQUELCH_UNKNOWN=0,   // unknown/unavailable squelch mode
    LIQUID_AGC_SQUELCH_ENABLED,     // squelch enabled but signal not detected
    LIQUID_AGC_SQUELCH_RISE,        // signal first hit/exceeded threshold
    LIQUID_AGC_SQUELCH_SIGNALHI,    // signal level high (above threshold)
    LIQUID_AGC_SQUELCH_FALL,        // signal first dropped below threshold
    LIQUID_AGC_SQUELCH_SIGNALLO,    // signal level low (below threshold)
    LIQUID_AGC_SQUELCH_TIMEOUT,     // signal level low (below threshold for a certain time)
    LIQUID_AGC_SQUELCH_DISABLED,    // squelch not enabled
} agc_squelch_mode;

#define LIQUID_AGC_MANGLE_CRCF(name) LIQUID_CONCAT(agc_crcf, name)
#define LIQUID_AGC_MANGLE_RRRF(name) LIQUID_CONCAT(agc_rrrf, name)

// large macro
//   AGC    : name-mangling macro
//   T      : primitive data type
//   TC     : input/output data type
#define LIQUID_AGC_DEFINE_API(AGC,T,TC)                         \
typedef struct AGC(_s) * AGC();                                 \
                                                                \
/* create automatic gain control object                     */  \
AGC() AGC(_create)(void);                                       \
                                                                \
/* destroy object, freeing all internally-allocated memory  */  \
void AGC(_destroy)(AGC() _q);                                   \
                                                                \
/* print object properties to stdout                        */  \
void AGC(_print)(AGC() _q);                                     \
                                                                \
/* reset object's internal state                            */  \
void AGC(_reset)(AGC() _q);                                     \
                                                                \
/* execute automatic gain control on an single input sample */  \
/*  _q      : automatic gain control object                 */  \
/*  _x      : input sample                                  */  \
/*  _y      : output sample                                 */  \
void AGC(_execute)(AGC() _q,                                    \
                   TC    _x,                                    \
                   TC *  _y);                                   \
                                                                \
/* execute automatic gain control on block of samples       */  \
/*  _q      : automatic gain control object                 */  \
/*  _x      : input data array, [size: _n x 1]              */  \
/*  _n      : number of input, output samples               */  \
/*  _y      : output data array, [size: _n x 1]             */  \
void AGC(_execute_block)(AGC()        _q,                       \
                         TC *         _x,                       \
                         unsigned int _n,                       \
                         TC *         _y);                      \
                                                                \
/* lock/unlock gain control */                                  \
void AGC(_lock)(  AGC() _q);                                    \
void AGC(_unlock)(AGC() _q);                                    \
                                                                \
/* get/set loop filter bandwidth; attack/release time       */  \
float AGC(_get_bandwidth)(AGC() _q);                            \
void  AGC(_set_bandwidth)(AGC() _q, float _bt);                 \
                                                                \
/* get/set signal level (linear) relative to unity energy   */  \
float AGC(_get_signal_level)(AGC() _q);                         \
void  AGC(_set_signal_level)(AGC() _q, float _signal_level);    \
                                                                \
/* get/set signal level (dB) relative to unity energy       */  \
float AGC(_get_rssi)(AGC() _q);                                 \
void  AGC(_set_rssi)(AGC() _q, float _rssi);                    \
                                                                \
/* get/set gain value (linear) relative to unity energy     */  \
float AGC(_get_gain)(AGC() _q);                                 \
void  AGC(_set_gain)(AGC() _q, float _gain);                    \
                                                                \
/* initialize internal gain on input array                  */  \
/*  _q      : automatic gain control object                 */  \
/*  _x      : input data array, [size: _n x 1]              */  \
/*  _n      : number of input, output samples               */  \
void AGC(_init)(AGC()        _q,                                \
                TC *         _x,                                \
                unsigned int _n);                               \
                                                                \
/* enable squelch mode                                      */  \
void AGC(_squelch_enable)(AGC() _q);                            \
                                                                \
/* disable squelch mode                                     */  \
void AGC(_squelch_disable)(AGC() _q);                           \
                                                                \
/* is squelch enabled?                                      */  \
int  AGC(_squelch_is_enabled)(AGC() _q);                        \
                                                                \
/* set squelch threshold                                    */  \
/*  _q          :   automatic gain control object           */  \
/*  _thresh_dB  :   threshold for enabling squelch [dB]     */  \
void AGC(_squelch_set_threshold)(AGC() _q,                      \
                                 T     _threshold);             \
                                                                \
/* get squelch threshold [dB]                               */  \
T    AGC(_squelch_get_threshold)(AGC() _q);                     \
                                                                \
/* set squelch timeout                                      */  \
/*  _q       : automatic gain control object                */  \
/*  _timeout : timeout before enabling squelch [samples]    */  \
void AGC(_squelch_set_timeout)(AGC()        _q,                 \
                               unsigned int _timeout);          \
                                                                \
/* get squelch timeout [samples]                            */  \
unsigned int AGC(_squelch_get_timeout)(AGC() _q);               \
                                                                \
/* get squelch status                                       */  \
int AGC(_squelch_get_status)(AGC() _q);                         \

// Define agc APIs
LIQUID_AGC_DEFINE_API(LIQUID_AGC_MANGLE_CRCF, float, liquid_float_complex)
LIQUID_AGC_DEFINE_API(LIQUID_AGC_MANGLE_RRRF, float, float)



//
// MODULE : audio
//

// CVSD: continuously variable slope delta
typedef struct cvsd_s * cvsd;

// create cvsd object
//  _num_bits   :   number of adjacent bits to observe (4 recommended)
//  _zeta       :   slope adjustment multiplier (1.5 recommended)
//  _alpha      :   pre-/post-emphasis filter coefficient (0.9 recommended)
// NOTE: _alpha must be in [0,1]
cvsd cvsd_create(unsigned int _num_bits,
                 float _zeta,
                 float _alpha);

// destroy cvsd object
void cvsd_destroy(cvsd _q);

// print cvsd object parameters
void cvsd_print(cvsd _q);

// encode/decode single sample
unsigned char   cvsd_encode(cvsd _q, float _audio_sample);
float           cvsd_decode(cvsd _q, unsigned char _bit);

// encode/decode 8 samples at a time
void cvsd_encode8(cvsd _q, float * _audio, unsigned char * _data);
void cvsd_decode8(cvsd _q, unsigned char _data, float * _audio);


//
// MODULE : buffer
//

// circular buffer
#define LIQUID_CBUFFER_MANGLE_FLOAT(name)  LIQUID_CONCAT(cbufferf,  name)
#define LIQUID_CBUFFER_MANGLE_CFLOAT(name) LIQUID_CONCAT(cbuffercf, name)

// large macro
//   CBUFFER : name-mangling macro
//   T       : data type
#define LIQUID_CBUFFER_DEFINE_API(CBUFFER,T)                    \
typedef struct CBUFFER(_s) * CBUFFER();                         \
                                                                \
/* create circular buffer object of a particular size       */  \
/*  _max_size  : maximum buffer size, _max_size > 0         */  \
CBUFFER() CBUFFER(_create)(unsigned int _max_size);             \
                                                                \
/* create circular buffer object of a particular size and   */  \
/* specify the maximum number of elements that can be read  */  \
/* at any given time.                                       */  \
/*  _max_size  : maximum buffer size, _max_size > 0         */  \
/*  _max_read  : maximum size that will be read from buffer */  \
CBUFFER() CBUFFER(_create_max)(unsigned int _max_size,          \
                               unsigned int _max_read);         \
                                                                \
/* destroy cbuffer object, freeing all internal memory      */  \
void CBUFFER(_destroy)(CBUFFER() _q);                           \
                                                                \
/* print cbuffer object properties                          */  \
void CBUFFER(_print)(CBUFFER() _q);                             \
                                                                \
/* print cbuffer object properties and internal state       */  \
void CBUFFER(_debug_print)(CBUFFER() _q);                       \
                                                                \
/* clear internal buffer                                    */  \
void CBUFFER(_reset)(CBUFFER() _q);                             \
                                                                \
/* get the number of elements currently in the buffer       */  \
unsigned int CBUFFER(_size)(CBUFFER() _q);                      \
                                                                \
/* get the maximum number of elements the buffer can hold   */  \
unsigned int CBUFFER(_max_size)(CBUFFER() _q);                  \
                                                                \
/* get the maximum number of elements you may read at once  */  \
unsigned int CBUFFER(_max_read)(CBUFFER() _q);                  \
                                                                \
/* get the number of available slots (max_size - size)      */  \
unsigned int CBUFFER(_space_available)(CBUFFER() _q);           \
                                                                \
/* is buffer full?                                          */  \
int CBUFFER(_is_full)(CBUFFER() _q);                            \
                                                                \
/* write a single sample into the buffer                    */  \
/*  _q  : circular buffer object                            */  \
/*  _v  : input sample                                      */  \
void CBUFFER(_push)(CBUFFER() _q,                               \
                    T         _v);                              \
                                                                \
/* write samples to the buffer                              */  \
/*  _q  : circular buffer object                            */  \
/*  _v  : output array                                      */  \
/*  _n  : number of samples to write                        */  \
void CBUFFER(_write)(CBUFFER()    _q,                           \
                     T *          _v,                           \
                     unsigned int _n);                          \
                                                                \
/* remove and return a single element from the buffer       */  \
/*  _q  : circular buffer object                            */  \
/*  _v  : pointer to sample output                          */  \
void CBUFFER(_pop)(CBUFFER() _q,                                \
                   T *       _v);                               \
                                                                \
/* read buffer contents                                     */  \
/*  _q              : circular buffer object                */  \
/*  _num_requested  : number of elements requested          */  \
/*  _v              : output pointer                        */  \
/*  _num_read       : number of elements referenced by _v   */  \
void CBUFFER(_read)(CBUFFER()      _q,                          \
                    unsigned int   _num_requested,              \
                    T **           _v,                          \
                    unsigned int * _num_read);                  \
                                                                \
/* release _n samples from the buffer                       */  \
/*  _q : circular buffer object                             */  \
/*  _n : number of elements to release                      */  \
void CBUFFER(_release)(CBUFFER()    _q,                         \
                       unsigned int _n);                        \

// Define buffer APIs
LIQUID_CBUFFER_DEFINE_API(LIQUID_CBUFFER_MANGLE_FLOAT,  float)
LIQUID_CBUFFER_DEFINE_API(LIQUID_CBUFFER_MANGLE_CFLOAT, liquid_float_complex)



// Windowing functions
#define LIQUID_WINDOW_MANGLE_FLOAT(name)  LIQUID_CONCAT(windowf,  name)
#define LIQUID_WINDOW_MANGLE_CFLOAT(name) LIQUID_CONCAT(windowcf, name)

// large macro
//   WINDOW : name-mangling macro
//   T      : data type
#define LIQUID_WINDOW_DEFINE_API(WINDOW,T)                      \
                                                                \
typedef struct WINDOW(_s) * WINDOW();                           \
                                                                \
/* create window buffer object of length _n                 */  \
WINDOW() WINDOW(_create)(unsigned int _n);                      \
                                                                \
/* recreate window buffer object with new length            */  \
/*  _q      : old window object                             */  \
/*  _n      : new window length                             */  \
WINDOW() WINDOW(_recreate)(WINDOW() _q, unsigned int _n);       \
                                                                \
/* destroy window object, freeing all internally memory     */  \
void WINDOW(_destroy)(WINDOW() _q);                             \
                                                                \
/* print window object to stdout                            */  \
void WINDOW(_print)(WINDOW() _q);                               \
                                                                \
/* print window object to stdout (with extra information)   */  \
void WINDOW(_debug_print)(WINDOW() _q);                         \
                                                                \
/* reset window object (initialize to zeros)                */  \
void WINDOW(_reset)(WINDOW() _q);                               \
                                                                \
/* read window buffer contents                              */  \
/*  _q      : window object                                 */  \
/*  _v      : output pointer (set to internal array)        */  \
void WINDOW(_read)(WINDOW() _q, T ** _v);                       \
                                                                \
/* index single element in buffer at a particular index     */  \
/*  _q      : window object                                 */  \
/*  _i      : index of element to read                      */  \
/*  _v      : output value pointer                          */  \
void WINDOW(_index)(WINDOW()     _q,                            \
                    unsigned int _i,                            \
                    T *          _v);                           \
                                                                \
/* push single element onto window buffer                   */  \
/*  _q      : window object                                 */  \
/*  _v      : single input element                          */  \
void WINDOW(_push)(WINDOW() _q,                                 \
                   T        _v);                                \
                                                                \
/* write array of elements onto window buffer               */  \
/*  _q      : window object                                 */  \
/*  _v      : input array of values to write                */  \
/*  _n      : number of input values to write               */  \
void WINDOW(_write)(WINDOW()     _q,                            \
                    T *          _v,                            \
                    unsigned int _n);                           \

// Define window APIs
LIQUID_WINDOW_DEFINE_API(LIQUID_WINDOW_MANGLE_FLOAT,  float)
LIQUID_WINDOW_DEFINE_API(LIQUID_WINDOW_MANGLE_CFLOAT, liquid_float_complex)
//LIQUID_WINDOW_DEFINE_API(LIQUID_WINDOW_MANGLE_UINT,   unsigned int)


// wdelay functions : windowed-delay
// Implements an efficient z^-k delay with minimal memory
#define LIQUID_WDELAY_MANGLE_FLOAT(name)  LIQUID_CONCAT(wdelayf,  name)
#define LIQUID_WDELAY_MANGLE_CFLOAT(name) LIQUID_CONCAT(wdelaycf, name)
//#define LIQUID_WDELAY_MANGLE_UINT(name)   LIQUID_CONCAT(wdelayui, name)

// large macro
//   WDELAY : name-mangling macro
//   T      : data type
#define LIQUID_WDELAY_DEFINE_API(WDELAY,T)                      \
typedef struct WDELAY(_s) * WDELAY();                           \
                                                                \
/* create delay buffer object with '_delay' samples         */  \
WDELAY() WDELAY(_create)(unsigned int _delay);                  \
                                                                \
/* re-create delay buffer object with '_delay' samples      */  \
/*  _q      :   old delay buffer object                     */  \
/*  _delay  :   delay for new object                        */  \
WDELAY() WDELAY(_recreate)(WDELAY()     _q,                     \
                           unsigned int _delay);                \
                                                                \
/* destroy delay buffer object, freeing internal memory     */  \
void WDELAY(_destroy)(WDELAY() _q);                             \
                                                                \
/* print delay buffer object's state to stdout              */  \
void WDELAY(_print)(WDELAY() _q);                               \
                                                                \
/* clear/reset state of object                              */  \
void WDELAY(_reset)(WDELAY() _q);                               \
                                                                \
/* read delayed sample from delay buffer object             */  \
/*  _q  :   delay buffer object                             */  \
/*  _v  :   value of delayed element                        */  \
void WDELAY(_read)(WDELAY() _q,                                 \
                   T *      _v);                                \
                                                                \
/* push new sample into delay buffer object                 */  \
/*  _q  :   delay buffer object                             */  \
/*  _v  :   new value to be added to buffer                 */  \
void WDELAY(_push)(WDELAY() _q,                                 \
                   T        _v);                                \

// Define wdelay APIs
LIQUID_WDELAY_DEFINE_API(LIQUID_WDELAY_MANGLE_FLOAT,  float)
LIQUID_WDELAY_DEFINE_API(LIQUID_WDELAY_MANGLE_CFLOAT, liquid_float_complex)
//LIQUID_WDELAY_DEFINE_API(LIQUID_WDELAY_MANGLE_UINT,   unsigned int)



//
// MODULE : channel
//

#define LIQUID_CHANNEL_MANGLE_CCCF(name) LIQUID_CONCAT(channel_cccf,name)

// large macro
//   CHANNEL    : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_CHANNEL_DEFINE_API(CHANNEL,TO,TC,TI)             \
                                                                \
typedef struct CHANNEL(_s) * CHANNEL();                         \
                                                                \
/* create channel object with default parameters            */  \
CHANNEL() CHANNEL(_create)(void);                               \
                                                                \
/* destroy channel object, freeing all internal memory      */  \
void CHANNEL(_destroy)(CHANNEL() _q);                           \
                                                                \
/* print channel object internals to standard output        */  \
void CHANNEL(_print)(CHANNEL() _q);                             \
                                                                \
/* apply additive white Gausss noise impairment             */  \
/*  _q          : channel object                            */  \
/*  _N0dB       : noise floor power spectral density [dB]   */  \
/*  _SNRdB      : signal-to-noise ratio [dB]                */  \
void CHANNEL(_add_awgn)(CHANNEL() _q,                           \
                        float     _N0dB,                        \
                        float     _SNRdB);                      \
                                                                \
/* apply carrier offset impairment                          */  \
/*  _q          : channel object                            */  \
/*  _frequency  : carrier frequency offset [radians/sample] */  \
/*  _phase      : carrier phase offset    [radians]         */  \
void CHANNEL(_add_carrier_offset)(CHANNEL() _q,                 \
                                  float     _frequency,         \
                                  float     _phase);            \
                                                                \
/* apply multi-path channel impairment                      */  \
/*  _q          : channel object                            */  \
/*  _h          : channel coefficients (NULL for random)    */  \
/*  _h_len      : number of channel coefficients            */  \
void CHANNEL(_add_multipath)(CHANNEL()    _q,                   \
                             TC *         _h,                   \
                             unsigned int _h_len);              \
                                                                \
/* apply slowly-varying shadowing impairment                */  \
/*  _q          : channel object                            */  \
/*  _sigma      : std. deviation for log-normal shadowing   */  \
/*  _fd         : Doppler frequency, _fd in (0,0.5)         */  \
void CHANNEL(_add_shadowing)(CHANNEL()    _q,                   \
                             float        _sigma,               \
                             float        _fd);                 \
                                                                \
/* apply channel impairments on single input sample         */  \
/*  _q      : channel object                                */  \
/*  _x      : input sample                                  */  \
/*  _y      : pointer to output sample                      */  \
void CHANNEL(_execute)(CHANNEL()      _q,                       \
                       TI             _x,                       \
                       TO *           _y);                      \
                                                                \
/* apply channel impairments on block of samples            */  \
/*  _q      : channel object                                */  \
/*  _x      : input array, [size: _n x 1]                   */  \
/*  _n      : input array, length                           */  \
/*  _y      : output array, [size: _n x 1]                  */  \
void CHANNEL(_execute_block)(CHANNEL()      _q,                 \
                             TI *           _x,                 \
                             unsigned int   _n,                 \
                             TO *           _y);                \

LIQUID_CHANNEL_DEFINE_API(LIQUID_CHANNEL_MANGLE_CCCF,
                          liquid_float_complex,
                          liquid_float_complex,
                          liquid_float_complex)


//
// time-varying multi-path channel
//
#define LIQUID_TVMPCH_MANGLE_CCCF(name) LIQUID_CONCAT(tvmpch_cccf,name)

// large macro
//   TVMPCH    : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_TVMPCH_DEFINE_API(TVMPCH,TO,TC,TI)               \
                                                                \
typedef struct TVMPCH(_s) * TVMPCH();                           \
                                                                \
/* create channel object with default parameters            */  \
/* create time-varying multi-path channel emulator object   */  \
/*  _n      :   number of coefficients, _n > 0              */  \
/*  _std    :   standard deviation                          */  \
/*  _tau    :   coherence time                              */  \
TVMPCH() TVMPCH(_create)(unsigned int _n,                       \
                         float        _std,                     \
                         float        _tau);                    \
                                                                \
/* destroy channel object, freeing all internal memory      */  \
void TVMPCH(_destroy)(TVMPCH() _q);                             \
                                                                \
/* reset object                                             */  \
void TVMPCH(_reset)(TVMPCH() _q);                               \
                                                                \
/* print channel object internals to standard output        */  \
void TVMPCH(_print)(TVMPCH() _q);                               \
                                                                \
/* push sample into emulator                                */  \
/*  _q      : channel object                                */  \
/*  _x      : input sample                                  */  \
void TVMPCH(_push)(TVMPCH() _q,                                 \
                   TI       _x);                                \
                                                                \
/* compute output sample                                    */  \
/*  _q      : channel object                                */  \
/*  _y      : output sample                                 */  \
void TVMPCH(_execute)(TVMPCH()      _q,                         \
                      TO *          _y);                        \
                                                                \
/* apply channel impairments on a block of samples          */  \
/*  _q      : channel object                                */  \
/*  _x      : input array [size: _nx x 1]                   */  \
/*  _nx     : input array length                            */  \
/*  _y      : output array                                  */  \
void TVMPCH(_execute_block)(TVMPCH()     _q,                    \
                            TI *         _x,                    \
                            unsigned int _nx,                   \
                            TO *         _y);                   \

LIQUID_TVMPCH_DEFINE_API(LIQUID_TVMPCH_MANGLE_CCCF,
                         liquid_float_complex,
                         liquid_float_complex,
                         liquid_float_complex)


//
// MODULE : dotprod (vector dot product)
//

#define LIQUID_DOTPROD_MANGLE_RRRF(name) LIQUID_CONCAT(dotprod_rrrf,name)
#define LIQUID_DOTPROD_MANGLE_CCCF(name) LIQUID_CONCAT(dotprod_cccf,name)
#define LIQUID_DOTPROD_MANGLE_CRCF(name) LIQUID_CONCAT(dotprod_crcf,name)

// large macro
//   DOTPROD    : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_DOTPROD_DEFINE_API(DOTPROD,TO,TC,TI)             \
                                                                \
/* run dot product without creating object [unrolled loop]  */  \
/*  _v      : coefficients array [size: _n x 1]             */  \
/*  _x      : input array [size: _n x 1]                    */  \
/*  _n      : dotprod length, _n > 0                        */  \
/*  _y      : output sample pointer                         */  \
void DOTPROD(_run)( TC *_v, TI *_x, unsigned int _n, TO *_y);   \
void DOTPROD(_run4)(TC *_v, TI *_x, unsigned int _n, TO *_y);   \
                                                                \
typedef struct DOTPROD(_s) * DOTPROD();                         \
                                                                \
/* create dot product object                                */  \
/*  _v      : coefficients array [size: _n x 1]             */  \
/*  _n      : dotprod length, _n > 0                        */  \
DOTPROD() DOTPROD(_create)(TC *         _v,                     \
                           unsigned int _n);                    \
                                                                \
/* re-create dot product object                             */  \
/*  _q      : old dotprod object                            */  \
/*  _v      : coefficients array [size: _n x 1]             */  \
/*  _n      : dotprod length, _n > 0                        */  \
DOTPROD() DOTPROD(_recreate)(DOTPROD()    _q,                   \
                             TC *         _v,                   \
                             unsigned int _n);                  \
                                                                \
/* destroy dotprod object, freeing all internal memory      */  \
void DOTPROD(_destroy)(DOTPROD() _q);                           \
                                                                \
/* print dotprod object internals to standard output        */  \
void DOTPROD(_print)(DOTPROD() _q);                             \
                                                                \
/* execute dot product                                      */  \
/*  _q      : dotprod object                                */  \
/*  _x      : input array [size: _n x 1]                    */  \
/*  _y      : output sample pointer                         */  \
void DOTPROD(_execute)(DOTPROD() _q,                            \
                       TI *      _x,                            \
                       TO *      _y);                           \

LIQUID_DOTPROD_DEFINE_API(LIQUID_DOTPROD_MANGLE_RRRF,
                          float,
                          float,
                          float)

LIQUID_DOTPROD_DEFINE_API(LIQUID_DOTPROD_MANGLE_CCCF,
                          liquid_float_complex,
                          liquid_float_complex,
                          liquid_float_complex)

LIQUID_DOTPROD_DEFINE_API(LIQUID_DOTPROD_MANGLE_CRCF,
                          liquid_float_complex,
                          float,
                          liquid_float_complex)

// 
// sum squared methods
//

float liquid_sumsqf(float *      _v,
                    unsigned int _n);

float liquid_sumsqcf(liquid_float_complex * _v,
                     unsigned int           _n);


//
// MODULE : equalization
//

// least mean-squares (LMS)
#define LIQUID_EQLMS_MANGLE_RRRF(name) LIQUID_CONCAT(eqlms_rrrf,name)
#define LIQUID_EQLMS_MANGLE_CCCF(name) LIQUID_CONCAT(eqlms_cccf,name)

// large macro
//   EQLMS  : name-mangling macro
//   T      : data type
#define LIQUID_EQLMS_DEFINE_API(EQLMS,T)                        \
typedef struct EQLMS(_s) * EQLMS();                             \
                                                                \
/* create LMS EQ initialized with external coefficients     */  \
/*  _h      : filter coefficients (NULL for {1,0,0...})     */  \
/*  _h_len  : filter length                                 */  \
EQLMS() EQLMS(_create)(T *          _h,                         \
                       unsigned int _h_len);                    \
                                                                \
/* create LMS EQ initialized with square-root Nyquist       */  \
/*  _type   : filter type (e.g. LIQUID_FIRFILT_RRC)         */  \
/*  _k      : samples/symbol                                */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _beta   : rolloff factor (0 < beta <= 1)                */  \
/*  _dt     : fractional sample delay                       */  \
EQLMS() EQLMS(_create_rnyquist)(int          _type,             \
                                unsigned int _k,                \
                                unsigned int _m,                \
                                float        _beta,             \
                                float        _dt);              \
                                                                \
/* create LMS EQ initialized with low-pass filter           */  \
/*  _h_len  : filter length                                 */  \
/*  _fc     : filter cut-off, _fc in (0,0.5]                */  \
EQLMS() EQLMS(_create_lowpass)(unsigned int _h_len,             \
                               float        _fc);               \
                                                                \
/* re-create EQ initialized with external coefficients      */  \
/*  _q      :   equalizer object                            */  \
/*  _h      :   filter coefficients (NULL for {1,0,0...})   */  \
/*  _h_len  :   filter length                               */  \
EQLMS() EQLMS(_recreate)(EQLMS()      _q,                       \
                         T *          _h,                       \
                         unsigned int _h_len);                  \
                                                                \
/* destroy equalizer object, freeing all internal memory    */  \
void EQLMS(_destroy)(EQLMS() _q);                               \
                                                                \
/* reset equalizer object, clearing internal state          */  \
void EQLMS(_reset)(EQLMS() _q);                                 \
                                                                \
/* print equalizer internal state                           */  \
void EQLMS(_print)(EQLMS() _q);                                 \
                                                                \
/* get/set equalizer learning rate                          */  \
float EQLMS(_get_bw)(EQLMS() _q);                               \
void  EQLMS(_set_bw)(EQLMS() _q,                                \
                     float   _lambda);                          \
                                                                \
/* push sample into equalizer internal buffer               */  \
void EQLMS(_push)(EQLMS() _q,                                   \
                  T       _x);                                  \
                                                                \
/* push sample into equalizer internal buffer as block      */  \
/*  _q      :   equalizer object                            */  \
/*  _x      :   input sample array                          */  \
/*  _n      :   input sample array length                   */  \
void EQLMS(_push_block)(EQLMS()      _q,                        \
                        T *          _x,                        \
                        unsigned int _n);                       \
                                                                \
/* execute internal dot product and return result           */  \
/*  _q      :   equalizer object                            */  \
/*  _y      :   output sample                               */  \
void EQLMS(_execute)(EQLMS() _q,                                \
                     T *     _y);                               \
                                                                \
/* execute equalizer with block of samples using constant   */  \
/* modulus algorithm, operating on a decimation rate of _k  */  \
/* samples.                                                 */  \
/*  _q      :   equalizer object                            */  \
/*  _k      :   down-sampling rate                          */  \
/*  _x      :   input sample array [size: _n x 1]           */  \
/*  _n      :   input sample array length                   */  \
/*  _y      :   output sample array [size: _n x 1]          */  \
void EQLMS(_execute_block)(EQLMS()      _q,                     \
                           unsigned int _k,                     \
                           T *          _x,                     \
                           unsigned int _n,                     \
                           T *          _y);                    \
                                                                \
/* step through one cycle of equalizer training             */  \
/*  _q      :   equalizer object                            */  \
/*  _d      :   desired output                              */  \
/*  _d_hat  :   actual output                               */  \
void EQLMS(_step)(EQLMS() _q,                                   \
                  T       _d,                                   \
                  T       _d_hat);                              \
                                                                \
/* step through one cycle of equalizer training (blind)     */  \
/*  _q      :   equalizer object                            */  \
/*  _d_hat  :   actual output                               */  \
void EQLMS(_step_blind)(EQLMS() _q,                             \
                        T       _d_hat);                        \
                                                                \
/* get equalizer's internal coefficients                    */  \
/*  _q      :   equalizer object                            */  \
/*  _w      :   weights [size: _p x 1]                      */  \
void EQLMS(_get_weights)(EQLMS() _q,                            \
                         T *     _w);                           \
                                                                \
/* train equalizer object on group of samples               */  \
/*  _q      :   equalizer object                            */  \
/*  _w      :   input/output weights   [size: _p x 1]       */  \
/*  _x      :   received sample vector [size: _n x 1]       */  \
/*  _d      :   desired output vector  [size: _n x 1]       */  \
/*  _n      :   input, output vector length                 */  \
void EQLMS(_train)(EQLMS()      _q,                             \
                   T *          _w,                             \
                   T *          _x,                             \
                   T *          _d,                             \
                   unsigned int _n);                            \

LIQUID_EQLMS_DEFINE_API(LIQUID_EQLMS_MANGLE_RRRF, float)
LIQUID_EQLMS_DEFINE_API(LIQUID_EQLMS_MANGLE_CCCF, liquid_float_complex)


// recursive least-squares (RLS)
#define LIQUID_EQRLS_MANGLE_RRRF(name) LIQUID_CONCAT(eqrls_rrrf,name)
#define LIQUID_EQRLS_MANGLE_CCCF(name) LIQUID_CONCAT(eqrls_cccf,name)

// large macro
//   EQRLS  : name-mangling macro
//   T      : data type
#define LIQUID_EQRLS_DEFINE_API(EQRLS,T)                        \
typedef struct EQRLS(_s) * EQRLS();                             \
                                                                \
/* create RLS EQ initialized with external coefficients     */  \
/*  _h  : filter coefficients (NULL for {1,0,0...})         */  \
/*  _p  : filter length                                     */  \
EQRLS() EQRLS(_create)(T *          _h,                         \
                       unsigned int _p);                        \
                                                                \
/* re-create RLS EQ initialized with external coefficients  */  \
/*  _q  : initial equalizer object                          */  \
/*  _h  : filter coefficients (NULL for {1,0,0...})         */  \
/*  _p  : filter length                                     */  \
EQRLS() EQRLS(_recreate)(EQRLS()      _q,                       \
                         T *          _h,                       \
                         unsigned int _p);                      \
                                                                \
/* destroy equalizer object, freeing all internal memory    */  \
void EQRLS(_destroy)(EQRLS() _q);                               \
                                                                \
/* print equalizer internal state                           */  \
void EQRLS(_print)(EQRLS() _q);                                 \
                                                                \
/* reset equalizer object, clearing internal state          */  \
void EQRLS(_reset)(EQRLS() _q);                                 \
                                                                \
/* get/set equalizer learning rate                          */  \
float EQRLS(_get_bw)(EQRLS() _q);                               \
void  EQRLS(_set_bw)(EQRLS() _q,                                \
                     float   _mu);                              \
                                                                \
/* push sample into equalizer internal buffer               */  \
void EQRLS(_push)(EQRLS() _q, T _x);                            \
                                                                \
/* execute internal dot product and return result           */  \
/*  _q      :   equalizer object                            */  \
/*  _y      :   output sample                               */  \
void EQRLS(_execute)(EQRLS() _q, T * _y);                       \
                                                                \
/* step through one cycle of equalizer training             */  \
/*  _q      :   equalizer object                            */  \
/*  _d      :   desired output                              */  \
/*  _d_hat  :   actual output                               */  \
void EQRLS(_step)(EQRLS() _q, T _d, T _d_hat);                  \
                                                                \
/* retrieve internal filter coefficients                    */  \
/*  _q      :   equalizer object                            */  \
/*  _w      :   weights [size: _p x 1]                      */  \
void EQRLS(_get_weights)(EQRLS() _q,                            \
                         T *     _w);                           \
                                                                \
/* train equalizer object on group of samples               */  \
/*  _q      :   equalizer object                            */  \
/*  _w      :   input/output weights   [size: _p x 1]       */  \
/*  _x      :   received sample vector [size: _n x 1]       */  \
/*  _d      :   desired output vector  [size: _n x 1]       */  \
/*  _n      :   input, output vector length                 */  \
void EQRLS(_train)(EQRLS()      _q,                             \
                   T *          _w,                             \
                   T *          _x,                             \
                   T *          _d,                             \
                   unsigned int _n);                            \

LIQUID_EQRLS_DEFINE_API(LIQUID_EQRLS_MANGLE_RRRF, float)
LIQUID_EQRLS_DEFINE_API(LIQUID_EQRLS_MANGLE_CCCF, liquid_float_complex)




//
// MODULE : fec (forward error-correction)
//

// soft bit values
#define LIQUID_SOFTBIT_0        (0)
#define LIQUID_SOFTBIT_1        (255)
#define LIQUID_SOFTBIT_ERASURE  (127)

// available CRC schemes
#define LIQUID_CRC_NUM_SCHEMES  7
typedef enum {
    LIQUID_CRC_UNKNOWN=0,   // unknown/unavailable CRC scheme
    LIQUID_CRC_NONE,        // no error-detection
    LIQUID_CRC_CHECKSUM,    // 8-bit checksum
    LIQUID_CRC_8,           // 8-bit CRC
    LIQUID_CRC_16,          // 16-bit CRC
    LIQUID_CRC_24,          // 24-bit CRC
    LIQUID_CRC_32           // 32-bit CRC
} crc_scheme;

// pretty names for crc schemes
extern const char * crc_scheme_str[LIQUID_CRC_NUM_SCHEMES][2];

// Print compact list of existing and available CRC schemes
void liquid_print_crc_schemes();

// returns crc_scheme based on input string
crc_scheme liquid_getopt_str2crc(const char * _str);

// get length of CRC (bytes)
unsigned int crc_get_length(crc_scheme _scheme);

// generate error-detection key
//  _scheme     :   error-detection scheme
//  _msg        :   input data message, [size: _n x 1]
//  _n          :   input data message size
unsigned int crc_generate_key(crc_scheme      _scheme,
                              unsigned char * _msg,
                              unsigned int    _n);

// generate error-detection key and append to end of message
//  _scheme     :   error-detection scheme (resulting in 'p' bytes)
//  _msg        :   input data message, [size: _n+p x 1]
//  _n          :   input data message size (excluding key at end)
void crc_append_key(crc_scheme      _scheme,
                    unsigned char * _msg,
                    unsigned int    _n);

// validate message using error-detection key
//  _scheme     :   error-detection scheme
//  _msg        :   input data message, [size: _n x 1]
//  _n          :   input data message size
//  _key        :   error-detection key
int crc_validate_message(crc_scheme      _scheme,
                         unsigned char * _msg,
                         unsigned int    _n,
                         unsigned int    _key);

// check message with key appended to end of array
//  _scheme     :   error-detection scheme (resulting in 'p' bytes)
//  _msg        :   input data message, [size: _n+p x 1]
//  _n          :   input data message size (excluding key at end)
int crc_check_key(crc_scheme      _scheme,
                  unsigned char * _msg,
                  unsigned int    _n);

// get size of key (bytes)
unsigned int crc_sizeof_key(crc_scheme _scheme);


// available FEC schemes
#define LIQUID_FEC_NUM_SCHEMES  28
typedef enum {
    LIQUID_FEC_UNKNOWN=0,       // unknown/unsupported scheme
    LIQUID_FEC_NONE,            // no error-correction
    LIQUID_FEC_REP3,            // simple repeat code, r1/3
    LIQUID_FEC_REP5,            // simple repeat code, r1/5
    LIQUID_FEC_HAMMING74,       // Hamming (7,4) block code, r1/2 (really 4/7)
    LIQUID_FEC_HAMMING84,       // Hamming (7,4) with extra parity bit, r1/2
    LIQUID_FEC_HAMMING128,      // Hamming (12,8) block code, r2/3
    
    LIQUID_FEC_GOLAY2412,       // Golay (24,12) block code, r1/2
    LIQUID_FEC_SECDED2216,      // SEC-DED (22,16) block code, r8/11
    LIQUID_FEC_SECDED3932,      // SEC-DED (39,32) block code
    LIQUID_FEC_SECDED7264,      // SEC-DED (72,64) block code, r8/9

    // codecs not defined internally (see http://www.ka9q.net/code/fec/)
    LIQUID_FEC_CONV_V27,        // r1/2, K=7, dfree=10
    LIQUID_FEC_CONV_V29,        // r1/2, K=9, dfree=12
    LIQUID_FEC_CONV_V39,        // r1/3, K=9, dfree=18
    LIQUID_FEC_CONV_V615,       // r1/6, K=15, dfree<=57 (Heller 1968)

    // punctured (perforated) codes
    LIQUID_FEC_CONV_V27P23,     // r2/3, K=7, dfree=6
    LIQUID_FEC_CONV_V27P34,     // r3/4, K=7, dfree=5
    LIQUID_FEC_CONV_V27P45,     // r4/5, K=7, dfree=4
    LIQUID_FEC_CONV_V27P56,     // r5/6, K=7, dfree=4
    LIQUID_FEC_CONV_V27P67,     // r6/7, K=7, dfree=3
    LIQUID_FEC_CONV_V27P78,     // r7/8, K=7, dfree=3

    LIQUID_FEC_CONV_V29P23,     // r2/3, K=9, dfree=7
    LIQUID_FEC_CONV_V29P34,     // r3/4, K=9, dfree=6
    LIQUID_FEC_CONV_V29P45,     // r4/5, K=9, dfree=5
    LIQUID_FEC_CONV_V29P56,     // r5/6, K=9, dfree=5
    LIQUID_FEC_CONV_V29P67,     // r6/7, K=9, dfree=4
    LIQUID_FEC_CONV_V29P78,     // r7/8, K=9, dfree=4

    // Reed-Solomon codes
    LIQUID_FEC_RS_M8            // m=8, n=255, k=223
} fec_scheme;

// pretty names for fec schemes
extern const char * fec_scheme_str[LIQUID_FEC_NUM_SCHEMES][2];

// Print compact list of existing and available FEC schemes
void liquid_print_fec_schemes();

// returns fec_scheme based on input string
fec_scheme liquid_getopt_str2fec(const char * _str);

// fec object (pointer to fec structure)
typedef struct fec_s * fec;

// return the encoded message length using a particular error-
// correction scheme (object-independent method)
//  _scheme     :   forward error-correction scheme
//  _msg_len    :   raw, uncoded message length
unsigned int fec_get_enc_msg_length(fec_scheme _scheme,
                                    unsigned int _msg_len);

// get the theoretical rate of a particular forward error-
// correction scheme (object-independent method)
float fec_get_rate(fec_scheme _scheme);

// create a fec object of a particular scheme
//  _scheme     :   error-correction scheme
//  _opts       :   (ignored)
fec fec_create(fec_scheme _scheme,
               void *_opts);

// recreate fec object
//  _q          :   old fec object
//  _scheme     :   new error-correction scheme
//  _opts       :   (ignored)
fec fec_recreate(fec _q,
                 fec_scheme _scheme,
                 void *_opts);

// destroy fec object
void fec_destroy(fec _q);

// print fec object internals
void fec_print(fec _q);

// encode a block of data using a fec scheme
//  _q              :   fec object
//  _dec_msg_len    :   decoded message length
//  _msg_dec        :   decoded message
//  _msg_enc        :   encoded message
void fec_encode(fec _q,
                unsigned int _dec_msg_len,
                unsigned char * _msg_dec,
                unsigned char * _msg_enc);

// decode a block of data using a fec scheme
//  _q              :   fec object
//  _dec_msg_len    :   decoded message length
//  _msg_enc        :   encoded message
//  _msg_dec        :   decoded message
void fec_decode(fec _q,
                unsigned int _dec_msg_len,
                unsigned char * _msg_enc,
                unsigned char * _msg_dec);

// decode a block of data using a fec scheme (soft decision)
//  _q              :   fec object
//  _dec_msg_len    :   decoded message length
//  _msg_enc        :   encoded message (soft bits)
//  _msg_dec        :   decoded message
void fec_decode_soft(fec _q,
                     unsigned int _dec_msg_len,
                     unsigned char * _msg_enc,
                     unsigned char * _msg_dec);

// 
// Packetizer
//

// computes the number of encoded bytes after packetizing
//
//  _n      :   number of uncoded input bytes
//  _crc    :   error-detecting scheme
//  _fec0   :   inner forward error-correction code
//  _fec1   :   outer forward error-correction code
unsigned int packetizer_compute_enc_msg_len(unsigned int _n,
                                            int _crc,
                                            int _fec0,
                                            int _fec1);

// computes the number of decoded bytes before packetizing
//
//  _k      :   number of encoded bytes
//  _crc    :   error-detecting scheme
//  _fec0   :   inner forward error-correction code
//  _fec1   :   outer forward error-correction code
unsigned int packetizer_compute_dec_msg_len(unsigned int _k,
                                            int _crc,
                                            int _fec0,
                                            int _fec1);

typedef struct packetizer_s * packetizer;

// create packetizer object
//
//  _n      :   number of uncoded input bytes
//  _crc    :   error-detecting scheme
//  _fec0   :   inner forward error-correction code
//  _fec1   :   outer forward error-correction code
packetizer packetizer_create(unsigned int _dec_msg_len,
                             int _crc,
                             int _fec0,
                             int _fec1);

// re-create packetizer object
//
//  _p      :   initialz packetizer object
//  _n      :   number of uncoded input bytes
//  _crc    :   error-detecting scheme
//  _fec0   :   inner forward error-correction code
//  _fec1   :   outer forward error-correction code
packetizer packetizer_recreate(packetizer _p,
                               unsigned int _dec_msg_len,
                               int _crc,
                               int _fec0,
                               int _fec1);

// destroy packetizer object
void packetizer_destroy(packetizer _p);

// print packetizer object internals
void packetizer_print(packetizer _p);

// access methods
unsigned int packetizer_get_dec_msg_len(packetizer _p);
unsigned int packetizer_get_enc_msg_len(packetizer _p);
crc_scheme   packetizer_get_crc        (packetizer _p);
fec_scheme   packetizer_get_fec0       (packetizer _p);
fec_scheme   packetizer_get_fec1       (packetizer _p);


// Execute the packetizer on an input message
//
//  _p      :   packetizer object
//  _msg    :   input message (uncoded bytes)
//  _pkt    :   encoded output message
void packetizer_encode(packetizer            _p,
                       const unsigned char * _msg,
                       unsigned char *       _pkt);

// Execute the packetizer to decode an input message, return validity
// check of resulting data
//
//  _p      :   packetizer object
//  _pkt    :   input message (coded bytes)
//  _msg    :   decoded output message
int  packetizer_decode(packetizer            _p,
                       const unsigned char * _pkt,
                       unsigned char *       _msg);

// Execute the packetizer to decode an input message, return validity
// check of resulting data
//
//  _p      :   packetizer object
//  _pkt    :   input message (coded soft bits)
//  _msg    :   decoded output message
int packetizer_decode_soft(packetizer            _p,
                           const unsigned char * _pkt,
                           unsigned char *       _msg);


//
// interleaver
//
typedef struct interleaver_s * interleaver;

// create interleaver
//   _n     : number of bytes
interleaver interleaver_create(unsigned int _n);

// destroy interleaver object
void interleaver_destroy(interleaver _q);

// print interleaver object internals
void interleaver_print(interleaver _q);

// set depth (number of internal iterations)
//  _q      :   interleaver object
//  _depth  :   depth
void interleaver_set_depth(interleaver _q,
                           unsigned int _depth);

// execute forward interleaver (encoder)
//  _q          :   interleaver object
//  _msg_dec    :   decoded (un-interleaved) message
//  _msg_enc    :   encoded (interleaved) message
void interleaver_encode(interleaver _q,
                        unsigned char * _msg_dec,
                        unsigned char * _msg_enc);

// execute forward interleaver (encoder) on soft bits
//  _q          :   interleaver object
//  _msg_dec    :   decoded (un-interleaved) message
//  _msg_enc    :   encoded (interleaved) message
void interleaver_encode_soft(interleaver _q,
                             unsigned char * _msg_dec,
                             unsigned char * _msg_enc);

// execute reverse interleaver (decoder)
//  _q          :   interleaver object
//  _msg_enc    :   encoded (interleaved) message
//  _msg_dec    :   decoded (un-interleaved) message
void interleaver_decode(interleaver _q,
                        unsigned char * _msg_enc,
                        unsigned char * _msg_dec);

// execute reverse interleaver (decoder) on soft bits
//  _q          :   interleaver object
//  _msg_enc    :   encoded (interleaved) message
//  _msg_dec    :   decoded (un-interleaved) message
void interleaver_decode_soft(interleaver _q,
                             unsigned char * _msg_enc,
                             unsigned char * _msg_dec);



//
// MODULE : fft (fast Fourier transform)
//

// type of transform
typedef enum {
    LIQUID_FFT_UNKNOWN  =   0,  // unknown transform type

    // regular complex one-dimensional transforms
    LIQUID_FFT_FORWARD  =  +1,  // complex one-dimensional FFT 
    LIQUID_FFT_BACKWARD =  -1,  // complex one-dimensional inverse FFT 

    // discrete cosine transforms
    LIQUID_FFT_REDFT00  =  10,  // real one-dimensional DCT-I
    LIQUID_FFT_REDFT10  =  11,  // real one-dimensional DCT-II
    LIQUID_FFT_REDFT01  =  12,  // real one-dimensional DCT-III
    LIQUID_FFT_REDFT11  =  13,  // real one-dimensional DCT-IV

    // discrete sine transforms
    LIQUID_FFT_RODFT00  =  20,  // real one-dimensional DST-I
    LIQUID_FFT_RODFT10  =  21,  // real one-dimensional DST-II
    LIQUID_FFT_RODFT01  =  22,  // real one-dimensional DST-III
    LIQUID_FFT_RODFT11  =  23,  // real one-dimensional DST-IV

    // modified discrete cosine transform
    LIQUID_FFT_MDCT     =  30,  // MDCT
    LIQUID_FFT_IMDCT    =  31,  // IMDCT
} liquid_fft_type;

#define LIQUID_FFT_MANGLE_FLOAT(name) LIQUID_CONCAT(fft,name)

// Macro    :   FFT
//  FFT     :   name-mangling macro
//  T       :   primitive data type
//  TC      :   primitive data type (complex)
#define LIQUID_FFT_DEFINE_API(FFT,T,TC)                         \
                                                                \
typedef struct FFT(plan_s) * FFT(plan);                         \
                                                                \
/* create regular complex one-dimensional transform         */  \
/*  _n      :   transform size                              */  \
/*  _x      :   pointer to input array  [size: _n x 1]      */  \
/*  _y      :   pointer to output array [size: _n x 1]      */  \
/*  _dir    :   direction (e.g. LIQUID_FFT_FORWARD)         */  \
/*  _flags  :   options, optimization                       */  \
FFT(plan) FFT(_create_plan)(unsigned int _n,                    \
                            TC *         _x,                    \
                            TC *         _y,                    \
                            int          _dir,                  \
                            int          _flags);               \
                                                                \
/* create real-to-real transform                            */  \
/*  _n      :   transform size                              */  \
/*  _x      :   pointer to input array  [size: _n x 1]      */  \
/*  _y      :   pointer to output array [size: _n x 1]      */  \
/*  _type   :   transform type (e.g. LIQUID_FFT_REDFT00)    */  \
/*  _flags  :   options, optimization                       */  \
FFT(plan) FFT(_create_plan_r2r_1d)(unsigned int _n,             \
                                   T *          _x,             \
                                   T *          _y,             \
                                   int          _type,          \
                                   int          _flags);        \
                                                                \
/* destroy transform                                        */  \
void FFT(_destroy_plan)(FFT(plan) _p);                          \
                                                                \
/* print transform plan and internal strategy               */  \
void FFT(_print_plan)(FFT(plan) _p);                            \
                                                                \
/* run the transform                                        */  \
void FFT(_execute)(FFT(plan) _p);                               \
                                                                \
/* object-independent methods */                                \
                                                                \
/* perform n-point FFT allocating plan internally           */  \
/*  _nfft   : fft size                                      */  \
/*  _x      : input array [size: _nfft x 1]                 */  \
/*  _y      : output array [size: _nfft x 1]                */  \
/*  _dir    : fft direction: LIQUID_FFT_{FORWARD,BACKWARD}  */  \
/*  _flags  : fft flags                                     */  \
void FFT(_run)(unsigned int _n,                                 \
               TC *         _x,                                 \
               TC *         _y,                                 \
               int          _dir,                               \
               int          _flags);                            \
                                                                \
/* perform n-point real FFT allocating plan internally      */  \
/*  _nfft   : fft size                                      */  \
/*  _x      : input array [size: _nfft x 1]                 */  \
/*  _y      : output array [size: _nfft x 1]                */  \
/*  _type   : fft type, e.g. LIQUID_FFT_REDFT10             */  \
/*  _flags  : fft flags                                     */  \
void FFT(_r2r_1d_run)(unsigned int _n,                          \
                      T *          _x,                          \
                      T *          _y,                          \
                      int          _type,                       \
                      int          _flags);                     \
                                                                \
/* perform _n-point fft shift                               */  \
void FFT(_shift)(TC *         _x,                               \
                 unsigned int _n);                              \


LIQUID_FFT_DEFINE_API(LIQUID_FFT_MANGLE_FLOAT,float,liquid_float_complex)

// antiquated fft methods
// FFT(plan) FFT(_create_plan_mdct)(unsigned int _n,
//                                  T * _x,
//                                  T * _y,
//                                  int _kind,
//                                  int _flags);


// 
// spectral periodogram
//

#define LIQUID_SPGRAM_MANGLE_CFLOAT(name) LIQUID_CONCAT(spgramcf,name)
#define LIQUID_SPGRAM_MANGLE_FLOAT(name)  LIQUID_CONCAT(spgramf, name)

// Macro    :   SPGRAM
//  SPGRAM  :   name-mangling macro
//  T       :   primitive data type
//  TC      :   primitive data type (complex)
//  TI      :   primitive data type (input)
#define LIQUID_SPGRAM_DEFINE_API(SPGRAM,T,TC,TI)                \
                                                                \
typedef struct SPGRAM(_s) * SPGRAM();                           \
                                                                \
/* create spgram object                                     */  \
/*  _nfft       : FFT size                                  */  \
/*  _wtype      : window type, e.g. LIQUID_WINDOW_HAMMING   */  \
/*  _window_len : window length, _window_len in [1,_nfft]   */  \
/*  _delay      : delay between transforms, _delay > 0      */  \
SPGRAM() SPGRAM(_create)(unsigned int _nfft,                    \
                         int          _wtype,                   \
                         unsigned int _window_len,              \
                         unsigned int _delay);                  \
                                                                \
/* create default spgram object (Kaiser-Bessel window)      */  \
SPGRAM() SPGRAM(_create_default)(unsigned int _nfft);           \
                                                                \
/* destroy spgram object                                    */  \
void SPGRAM(_destroy)(SPGRAM() _q);                             \
                                                                \
/* clears the internal state of the spgram object, but not  */  \
/* the internal buffer                                      */  \
void SPGRAM(_clear)(SPGRAM() _q);                               \
                                                                \
/* reset the spgram object to its original state completely */  \
void SPGRAM(_reset)(SPGRAM() _q);                               \
                                                                \
/* print internal state of the spgram object                */  \
void SPGRAM(_print)(SPGRAM() _q);                               \
                                                                \
/* set methods                                              */  \
int          SPGRAM(_set_alpha)(SPGRAM() _q, float _alpha);     \
                                                                \
/* access methods                                           */  \
unsigned int SPGRAM(_get_nfft)                (SPGRAM() _q);    \
unsigned int SPGRAM(_get_window_len)          (SPGRAM() _q);    \
unsigned int SPGRAM(_get_delay)               (SPGRAM() _q);    \
uint64_t     SPGRAM(_get_num_samples)         (SPGRAM() _q);    \
uint64_t     SPGRAM(_get_num_samples_total)   (SPGRAM() _q);    \
uint64_t     SPGRAM(_get_num_transforms)      (SPGRAM() _q);    \
uint64_t     SPGRAM(_get_num_transforms_total)(SPGRAM() _q);    \
float        SPGRAM(_get_alpha)               (SPGRAM() _q);    \
                                                                \
/* push a single sample into the spgram object              */  \
/*  _q      :   spgram object                               */  \
/*  _x      :   input sample                                */  \
void SPGRAM(_push)(SPGRAM() _q,                                 \
                   TI       _x);                                \
                                                                \
/* write a block of samples to the spgram object            */  \
/*  _q      :   spgram object                               */  \
/*  _x      :   input buffer [size: _n x 1]                 */  \
/*  _n      :   input buffer length                         */  \
void SPGRAM(_write)(SPGRAM()     _q,                            \
                    TI *         _x,                            \
                    unsigned int _n);                           \
                                                                \
/* compute spectral periodogram output (fft-shifted values  */  \
/* in dB) from current buffer contents                      */  \
/*  _q      :   spgram object                               */  \
/*  _X      :   output spectrum (dB) [size: _nfft x 1]      */  \
void SPGRAM(_get_psd)(SPGRAM() _q,                              \
                      T *      _X);                             \
                                                                \
/* export gnuplot file                                      */  \
/*  _q        : spgram object                               */  \
/*  _filename : input buffer [size: _n x 1]                 */  \
int SPGRAM(_export_gnuplot)(SPGRAM()     _q,                    \
                            const char * _filename);            \
                                                                \
/* object-independent methods */                                \
                                                                \
/* estimate spectrum on input signal                        */  \
/*  _nfft   :   FFT size                                    */  \
/*  _x      :   input signal [size: _n x 1]                 */  \
/*  _n      :   input signal length                         */  \
/*  _psd    :   output spectrum, [size: _nfft x 1]          */  \
void SPGRAM(_estimate_psd)(unsigned int _nfft,                  \
                           TI *         _x,                     \
                           unsigned int _n,                     \
                           T *          _psd);                  \

LIQUID_SPGRAM_DEFINE_API(LIQUID_SPGRAM_MANGLE_CFLOAT,
                         float,
                         liquid_float_complex,
                         liquid_float_complex)

LIQUID_SPGRAM_DEFINE_API(LIQUID_SPGRAM_MANGLE_FLOAT,
                         float,
                         liquid_float_complex,
                         float)

// 
// asgram : ascii spectral periodogram
//

#define LIQUID_ASGRAM_MANGLE_CFLOAT(name) LIQUID_CONCAT(asgramcf,name)
#define LIQUID_ASGRAM_MANGLE_FLOAT(name)  LIQUID_CONCAT(asgramf, name)

// Macro    :   ASGRAM
//  ASGRAM  :   name-mangling macro
//  T       :   primitive data type
//  TC      :   primitive data type (complex)
//  TI      :   primitive data type (input)
#define LIQUID_ASGRAM_DEFINE_API(ASGRAM,T,TC,TI)                \
                                                                \
typedef struct ASGRAM(_s) * ASGRAM();                           \
                                                                \
/* create asgram object with size _nfft                     */  \
ASGRAM() ASGRAM(_create)(unsigned int _nfft);                   \
                                                                \
/* destroy asgram object                                    */  \
void ASGRAM(_destroy)(ASGRAM() _q);                             \
                                                                \
/* resets the internal state of the asgram object           */  \
void ASGRAM(_reset)(ASGRAM() _q);                               \
                                                                \
/* set scale and offset for spectrogram                     */  \
/*  _q      :   asgram object                               */  \
/*  _ref    :   signal reference level [dB]                 */  \
/*  _div    :   signal division [dB]                        */  \
void ASGRAM(_set_scale)(ASGRAM() _q,                            \
                        float    _ref,                          \
                        float    _div);                         \
                                                                \
/* set display characters for output string                 */  \
/*  _q      :   asgram object                               */  \
/*  _ascii  :   10-character display, default: " .,-+*&NM#" */  \
void ASGRAM(_set_display)(ASGRAM()     _q,                      \
                          const char * _ascii);                 \
                                                                \
/* push a single sample into the asgram object              */  \
/*  _q      :   asgram object                               */  \
/*  _x      :   input sample                                */  \
void ASGRAM(_push)(ASGRAM() _q,                                 \
                   TI       _x);                                \
                                                                \
/* write a block of samples to the asgram object            */  \
/*  _q      :   asgram object                               */  \
/*  _x      :   input buffer [size: _n x 1]                 */  \
/*  _n      :   input buffer length                         */  \
void ASGRAM(_write)(ASGRAM()     _q,                            \
                    TI *         _x,                            \
                    unsigned int _n);                           \
                                                                \
/* compute spectral periodogram output from current buffer  */  \
/* contents                                                 */  \
/*  _q          :   spgram object                           */  \
/*  _ascii      :   output ASCII string [size: _nfft x 1]   */  \
/*  _peakval    :   peak power spectral density value [dB]  */  \
/*  _peakfreq   :   peak power spectral density frequency   */  \
void ASGRAM(_execute)(ASGRAM() _q,                              \
                      char *  _ascii,                           \
                      float * _peakval,                         \
                      float * _peakfreq);                       \
                                                                \
/* compute spectral periodogram output from current buffer  */  \
/* contents and print standard format to stdout             */  \
void ASGRAM(_print)(ASGRAM() _q);                               \

LIQUID_ASGRAM_DEFINE_API(LIQUID_ASGRAM_MANGLE_CFLOAT,
                         float,
                         liquid_float_complex,
                         liquid_float_complex)

LIQUID_ASGRAM_DEFINE_API(LIQUID_ASGRAM_MANGLE_FLOAT,
                         float,
                         liquid_float_complex,
                         float)

// 
// spectral periodogram waterfall
//

#define LIQUID_SPWATERFALL_MANGLE_CFLOAT(name) LIQUID_CONCAT(spwaterfallcf,name)
#define LIQUID_SPWATERFALL_MANGLE_FLOAT(name)  LIQUID_CONCAT(spwaterfallf, name)

// Macro        :   SPWATERFALL
//  SPWATERFALL :   name-mangling macro
//  T           :   primitive data type
//  TC          :   primitive data type (complex)
//  TI          :   primitive data type (input)
#define LIQUID_SPWATERFALL_DEFINE_API(SPWATERFALL,T,TC,TI)      \
                                                                \
typedef struct SPWATERFALL(_s) * SPWATERFALL();                 \
                                                                \
/* create spgram object                                     */  \
/*  _nfft       : FFT size                                  */  \
/*  _wtype      : window type, e.g. LIQUID_WINDOW_HAMMING   */  \
/*  _window_len : window length, _window_len in [1,_nfft]   */  \
/*  _delay      : delay between transforms, _delay > 0      */  \
/*  _time       : number of aggregated transforms, _time > 0*/  \
SPWATERFALL() SPWATERFALL(_create)(unsigned int _nfft,          \
                                   int          _wtype,         \
                                   unsigned int _window_len,    \
                                   unsigned int _delay,         \
                                   unsigned int _time);         \
                                                                \
/* create default spgram object (Kaiser-Bessel window)      */  \
SPWATERFALL() SPWATERFALL(_create_default)(unsigned int _nfft,  \
                                           unsigned int _time); \
                                                                \
/* destroy spgram object                                    */  \
void SPWATERFALL(_destroy)(SPWATERFALL() _q);                   \
                                                                \
/* clears the internal state of the spgram object, but not  */  \
/* the internal buffer                                      */  \
void SPWATERFALL(_clear)(SPWATERFALL() _q);                     \
                                                                \
/* reset the spgram object to its original state completely */  \
void SPWATERFALL(_reset)(SPWATERFALL() _q);                     \
                                                                \
/* print internal state of the spgram object                */  \
void SPWATERFALL(_print)(SPWATERFALL() _q);                     \
                                                                \
/* push a single sample into the spgram object              */  \
/*  _q      :   spgram object                               */  \
/*  _x      :   input sample                                */  \
void SPWATERFALL(_push)(SPWATERFALL() _q,                       \
                        TI            _x);                      \
                                                                \
/* write a block of samples to the spgram object            */  \
/*  _q      :   spgram object                               */  \
/*  _x      :   input buffer [size: _n x 1]                 */  \
/*  _n      :   input buffer length                         */  \
void SPWATERFALL(_write)(SPWATERFALL() _q,                      \
                         TI *          _x,                      \
                         unsigned int  _n);                     \
                                                                \
/* export files for plotting                                */  \
/*  _q             : spgram object                          */  \
/*  _filename_base : base filename (will export files with  */  \
/*                   .gnu, .bin, and .png extensions)       */  \
int SPWATERFALL(_export)(SPWATERFALL() _q,                      \
                         const char *  _filename_base);         \


LIQUID_SPWATERFALL_DEFINE_API(LIQUID_SPWATERFALL_MANGLE_CFLOAT,
                              float,
                              liquid_float_complex,
                              liquid_float_complex)

LIQUID_SPWATERFALL_DEFINE_API(LIQUID_SPWATERFALL_MANGLE_FLOAT,
                              float,
                              liquid_float_complex,
                              float)


//
// MODULE : filter
//

//
// firdes: finite impulse response filter design
//

// prototypes
typedef enum {
    LIQUID_FIRFILT_UNKNOWN=0,   // unknown filter type

    // Nyquist filter prototypes
    LIQUID_FIRFILT_KAISER,      // Nyquist Kaiser filter
    LIQUID_FIRFILT_PM,          // Parks-McClellan filter
    LIQUID_FIRFILT_RCOS,        // raised-cosine filter
    LIQUID_FIRFILT_FEXP,        // flipped exponential
    LIQUID_FIRFILT_FSECH,       // flipped hyperbolic secant
    LIQUID_FIRFILT_FARCSECH,    // flipped arc-hyperbolic secant

    // root-Nyquist filter prototypes
    LIQUID_FIRFILT_ARKAISER,    // root-Nyquist Kaiser (approximate optimum)
    LIQUID_FIRFILT_RKAISER,     // root-Nyquist Kaiser (true optimum)
    LIQUID_FIRFILT_RRC,         // root raised-cosine
    LIQUID_FIRFILT_hM3,         // harris-Moerder-3 filter
    LIQUID_FIRFILT_GMSKTX,      // GMSK transmit filter
    LIQUID_FIRFILT_GMSKRX,      // GMSK receive filter
    LIQUID_FIRFILT_RFEXP,       // flipped exponential
    LIQUID_FIRFILT_RFSECH,      // flipped hyperbolic secant
    LIQUID_FIRFILT_RFARCSECH,   // flipped arc-hyperbolic secant
} liquid_firfilt_type;

// Design (root-)Nyquist filter from prototype
//  _type   : filter type (e.g. LIQUID_FIRFILT_RRC)
//  _k      : samples/symbol,          _k > 1
//  _m      : symbol delay,            _m > 0
//  _beta   : excess bandwidth factor, _beta in [0,1)
//  _dt     : fractional sample delay, _dt in [-1,1]
//  _h      : output coefficient buffer (length: 2*_k*_m+1)
void liquid_firdes_prototype(liquid_firfilt_type _type,
                             unsigned int        _k,
                             unsigned int        _m,
                             float               _beta,
                             float               _dt,
                             float *             _h);

// returns filter type based on input string
int liquid_getopt_str2firfilt(const char * _str);

// estimate required filter length given
//  _df     :   transition bandwidth (0 < _b < 0.5)
//  _As     :   stop-band attenuation [dB], _As > 0
unsigned int estimate_req_filter_len(float _df,
                                     float _As);

// estimate filter stop-band attenuation given
//  _df     :   transition bandwidth (0 < _b < 0.5)
//  _N      :   filter length
float estimate_req_filter_As(float        _df,
                             unsigned int _N);

// estimate filter transition bandwidth given
//  _As     :   stop-band attenuation [dB], _As > 0
//  _N      :   filter length
float estimate_req_filter_df(float        _As,
                             unsigned int _N);


// returns the Kaiser window beta factor give the filter's target
// stop-band attenuation (As) [Vaidyanathan:1993]
//  _As     :   target filter's stop-band attenuation [dB], _As > 0
float kaiser_beta_As(float _As);


// Design FIR filter using Parks-McClellan algorithm

// band type specifier
typedef enum {
    LIQUID_FIRDESPM_BANDPASS=0,     // regular band-pass filter
    LIQUID_FIRDESPM_DIFFERENTIATOR, // differentiating filter
    LIQUID_FIRDESPM_HILBERT         // Hilbert transform
} liquid_firdespm_btype;

// weighting type specifier
typedef enum {
    LIQUID_FIRDESPM_FLATWEIGHT=0,   // flat weighting
    LIQUID_FIRDESPM_EXPWEIGHT,      // exponential weighting
    LIQUID_FIRDESPM_LINWEIGHT,      // linear weighting
} liquid_firdespm_wtype;

// run filter design (full life cycle of object)
//  _h_len      :   length of filter (number of taps)
//  _num_bands  :   number of frequency bands
//  _bands      :   band edges, f in [0,0.5], [size: _num_bands x 2]
//  _des        :   desired response [size: _num_bands x 1]
//  _weights    :   response weighting [size: _num_bands x 1]
//  _wtype      :   weight types (e.g. LIQUID_FIRDESPM_FLATWEIGHT) [size: _num_bands x 1]
//  _btype      :   band type (e.g. LIQUID_FIRDESPM_BANDPASS)
//  _h          :   output coefficients array [size: _h_len x 1]
void firdespm_run(unsigned int            _h_len,
                  unsigned int            _num_bands,
                  float *                 _bands,
                  float *                 _des,
                  float *                 _weights,
                  liquid_firdespm_wtype * _wtype,
                  liquid_firdespm_btype   _btype,
                  float *                 _h);

// run filter design for basic low-pass filter
//  _n      : filter length, _n > 0
//  _fc     : cutoff frequency, 0 < _fc < 0.5
//  _As     : stop-band attenuation [dB], _As > 0
//  _mu     : fractional sample offset, -0.5 < _mu < 0.5 [ignored]
//  _h      : output coefficient buffer, [size: _n x 1]
void firdespm_lowpass(unsigned int _n,
                      float        _fc,
                      float        _As,
                      float        _mu,
                      float *      _h);

// firdespm response callback function
//  _frequency  : normalized frequency
//  _userdata   : pointer to userdata
//  _desired    : (return) desired response
//  _weight     : (return) weight
typedef int (*firdespm_callback)(double   _frequency,
                                 void   * _userdata,
                                 double * _desired,
                                 double * _weight);

// structured object
typedef struct firdespm_s * firdespm;

// create firdespm object
//  _h_len      :   length of filter (number of taps)
//  _num_bands  :   number of frequency bands
//  _bands      :   band edges, f in [0,0.5], [size: _num_bands x 2]
//  _des        :   desired response [size: _num_bands x 1]
//  _weights    :   response weighting [size: _num_bands x 1]
//  _wtype      :   weight types (e.g. LIQUID_FIRDESPM_FLATWEIGHT) [size: _num_bands x 1]
//  _btype      :   band type (e.g. LIQUID_FIRDESPM_BANDPASS)
firdespm firdespm_create(unsigned int            _h_len,
                         unsigned int            _num_bands,
                         float *                 _bands,
                         float *                 _des,
                         float *                 _weights,
                         liquid_firdespm_wtype * _wtype,
                         liquid_firdespm_btype   _btype);

// create firdespm object with user-defined callback
//  _h_len      :   length of filter (number of taps)
//  _num_bands  :   number of frequency bands
//  _bands      :   band edges, f in [0,0.5], [size: _num_bands x 2]
//  _btype      :   band type (e.g. LIQUID_FIRDESPM_BANDPASS)
//  _callback   :   user-defined callback for specifying desired response & weights
//  _userdata   :   user-defined data structure for callback function
firdespm firdespm_create_callback(unsigned int          _h_len,
                                  unsigned int          _num_bands,
                                  float *               _bands,
                                  liquid_firdespm_btype _btype,
                                  firdespm_callback     _callback,
                                  void *                _userdata);

// destroy firdespm object
void firdespm_destroy(firdespm _q);

// print firdespm object internals
void firdespm_print(firdespm _q);

// execute filter design, storing result in _h
void firdespm_execute(firdespm _q, float * _h);


// Design FIR using kaiser window
//  _n      : filter length, _n > 0
//  _fc     : cutoff frequency, 0 < _fc < 0.5
//  _As     : stop-band attenuation [dB], _As > 0
//  _mu     : fractional sample offset, -0.5 < _mu < 0.5
//  _h      : output coefficient buffer, [size: _n x 1]
void liquid_firdes_kaiser(unsigned int _n,
                          float _fc,
                          float _As,
                          float _mu,
                          float *_h);

// Design FIR doppler filter
//  _n      : filter length
//  _fd     : normalized doppler frequency (0 < _fd < 0.5)
//  _K      : Rice fading factor (K >= 0)
//  _theta  : LoS component angle of arrival
//  _h      : output coefficient buffer
void liquid_firdes_doppler(unsigned int _n,
                           float        _fd,
                           float        _K,
                           float        _theta,
                           float *      _h);


// Design Nyquist raised-cosine filter
//  _k      : samples/symbol
//  _m      : symbol delay
//  _beta   : rolloff factor (0 < beta <= 1)
//  _dt     : fractional sample delay
//  _h      : output coefficient buffer (length: 2*k*m+1)
void liquid_firdes_rcos(unsigned int _k,
                        unsigned int _m,
                        float _beta,
                        float _dt,
                        float * _h);

// Design root-Nyquist raised-cosine filter
void liquid_firdes_rrcos(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);

// Design root-Nyquist Kaiser filter
void liquid_firdes_rkaiser(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);

// Design (approximate) root-Nyquist Kaiser filter
void liquid_firdes_arkaiser(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);

// Design root-Nyquist harris-Moerder filter
void liquid_firdes_hM3(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);

// Design GMSK transmit and receive filters
void liquid_firdes_gmsktx(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);
void liquid_firdes_gmskrx(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);

// Design flipped exponential Nyquist/root-Nyquist filters
void liquid_firdes_fexp( unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);
void liquid_firdes_rfexp(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);

// Design flipped hyperbolic secand Nyquist/root-Nyquist filters
void liquid_firdes_fsech( unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);
void liquid_firdes_rfsech(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);

// Design flipped arc-hyperbolic secand Nyquist/root-Nyquist filters
void liquid_firdes_farcsech( unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);
void liquid_firdes_rfarcsech(unsigned int _k, unsigned int _m, float _beta, float _dt, float * _h);

// Compute group delay for an FIR filter
//  _h      : filter coefficients array
//  _n      : filter length
//  _fc     : frequency at which delay is evaluated (-0.5 < _fc < 0.5)
float fir_group_delay(float * _h,
                      unsigned int _n,
                      float _fc);

// Compute group delay for an IIR filter
//  _b      : filter numerator coefficients
//  _nb     : filter numerator length
//  _a      : filter denominator coefficients
//  _na     : filter denominator length
//  _fc     : frequency at which delay is evaluated (-0.5 < _fc < 0.5)
float iir_group_delay(float * _b,
                      unsigned int _nb,
                      float * _a,
                      unsigned int _na,
                      float _fc);


// liquid_filter_autocorr()
//
// Compute auto-correlation of filter at a specific lag.
//
//  _h      :   filter coefficients [size: _h_len x 1]
//  _h_len  :   filter length
//  _lag    :   auto-correlation lag (samples)
float liquid_filter_autocorr(float *      _h,
                             unsigned int _h_len,
                             int          _lag);

// liquid_filter_crosscorr()
//
// Compute cross-correlation of two filters at a specific lag.
//
//  _h      :   filter coefficients [size: _h_len]
//  _h_len  :   filter length
//  _g      :   filter coefficients [size: _g_len]
//  _g_len  :   filter length
//  _lag    :   cross-correlation lag (samples)
float liquid_filter_crosscorr(float *      _h,
                              unsigned int _h_len,
                              float *      _g,
                              unsigned int _g_len,
                              int          _lag);

// liquid_filter_isi()
//
// Compute inter-symbol interference (ISI)--both RMS and
// maximum--for the filter _h.
//
//  _h      :   filter coefficients [size: 2*_k*_m+1 x 1]
//  _k      :   filter over-sampling rate (samples/symbol)
//  _m      :   filter delay (symbols)
//  _rms    :   output root mean-squared ISI
//  _max    :   maximum ISI
void liquid_filter_isi(float *      _h,
                       unsigned int _k,
                       unsigned int _m,
                       float *      _rms,
                       float *      _max);

// Compute relative out-of-band energy
//
//  _h      :   filter coefficients [size: _h_len x 1]
//  _h_len  :   filter length
//  _fc     :   analysis cut-off frequency
//  _nfft   :   fft size
float liquid_filter_energy(float *      _h,
                           unsigned int _h_len,
                           float        _fc,
                           unsigned int _nfft);


//
// IIR filter design
//

// IIR filter design filter type
typedef enum {
    LIQUID_IIRDES_BUTTER=0,
    LIQUID_IIRDES_CHEBY1,
    LIQUID_IIRDES_CHEBY2,
    LIQUID_IIRDES_ELLIP,
    LIQUID_IIRDES_BESSEL
} liquid_iirdes_filtertype;

// IIR filter design band type
typedef enum {
    LIQUID_IIRDES_LOWPASS=0,
    LIQUID_IIRDES_HIGHPASS,
    LIQUID_IIRDES_BANDPASS,
    LIQUID_IIRDES_BANDSTOP
} liquid_iirdes_bandtype;

// IIR filter design coefficients format
typedef enum {
    LIQUID_IIRDES_SOS=0,
    LIQUID_IIRDES_TF
} liquid_iirdes_format;

// IIR filter design template
//  _ftype      :   filter type (e.g. LIQUID_IIRDES_BUTTER)
//  _btype      :   band type (e.g. LIQUID_IIRDES_BANDPASS)
//  _format     :   coefficients format (e.g. LIQUID_IIRDES_SOS)
//  _n          :   filter order
//  _fc         :   low-pass prototype cut-off frequency
//  _f0         :   center frequency (band-pass, band-stop)
//  _Ap         :   pass-band ripple in dB
//  _As         :   stop-band ripple in dB
//  _B          :   numerator
//  _A          :   denominator
void liquid_iirdes(liquid_iirdes_filtertype _ftype,
                   liquid_iirdes_bandtype   _btype,
                   liquid_iirdes_format     _format,
                   unsigned int _n,
                   float _fc,
                   float _f0,
                   float _Ap,
                   float _As,
                   float * _B,
                   float * _A);

// compute analog zeros, poles, gain for specific filter types
void butter_azpkf(unsigned int _n,
                  liquid_float_complex * _za,
                  liquid_float_complex * _pa,
                  liquid_float_complex * _ka);
void cheby1_azpkf(unsigned int _n,
                  float _ep,
                  liquid_float_complex * _z,
                  liquid_float_complex * _p,
                  liquid_float_complex * _k);
void cheby2_azpkf(unsigned int _n,
                  float _es,
                  liquid_float_complex * _z,
                  liquid_float_complex * _p,
                  liquid_float_complex * _k);
void ellip_azpkf(unsigned int _n,
                 float _ep,
                 float _es,
                 liquid_float_complex * _z,
                 liquid_float_complex * _p,
                 liquid_float_complex * _k);
void bessel_azpkf(unsigned int _n,
                  liquid_float_complex * _z,
                  liquid_float_complex * _p,
                  liquid_float_complex * _k);

// compute frequency pre-warping factor
float iirdes_freqprewarp(liquid_iirdes_bandtype _btype,
                         float _fc,
                         float _f0);

// convert analog z/p/k form to discrete z/p/k form (bilinear z-transform)
//  _za     :   analog zeros [length: _nza]
//  _nza    :   number of analog zeros
//  _pa     :   analog poles [length: _npa]
//  _npa    :   number of analog poles
//  _m      :   frequency pre-warping factor
//  _zd     :   output digital zeros [length: _npa]
//  _pd     :   output digital poles [length: _npa]
//  _kd     :   output digital gain (should actually be real-valued)
void bilinear_zpkf(liquid_float_complex * _za,
                   unsigned int _nza,
                   liquid_float_complex * _pa,
                   unsigned int _npa,
                   liquid_float_complex _ka,
                   float _m,
                   liquid_float_complex * _zd,
                   liquid_float_complex * _pd,
                   liquid_float_complex * _kd);

// digital z/p/k low-pass to high-pass
//  _zd     :   digital zeros (low-pass prototype), [length: _n]
//  _pd     :   digital poles (low-pass prototype), [length: _n]
//  _n      :   low-pass filter order
//  _zdt    :   output digital zeros transformed [length: _n]
//  _pdt    :   output digital poles transformed [length: _n]
void iirdes_dzpk_lp2hp(liquid_float_complex * _zd,
                       liquid_float_complex * _pd,
                       unsigned int _n,
                       liquid_float_complex * _zdt,
                       liquid_float_complex * _pdt);

// digital z/p/k low-pass to band-pass
//  _zd     :   digital zeros (low-pass prototype), [length: _n]
//  _pd     :   digital poles (low-pass prototype), [length: _n]
//  _n      :   low-pass filter order
//  _f0     :   center frequency
//  _zdt    :   output digital zeros transformed [length: 2*_n]
//  _pdt    :   output digital poles transformed [length: 2*_n]
void iirdes_dzpk_lp2bp(liquid_float_complex * _zd,
                       liquid_float_complex * _pd,
                       unsigned int _n,
                       float _f0,
                       liquid_float_complex * _zdt,
                       liquid_float_complex * _pdt);

// convert discrete z/p/k form to transfer function
//  _zd     :   digital zeros [length: _n]
//  _pd     :   digital poles [length: _n]
//  _n      :   filter order
//  _kd     :   digital gain
//  _b      :   output numerator [length: _n+1]
//  _a      :   output denominator [length: _n+1]
void iirdes_dzpk2tff(liquid_float_complex * _zd,
                     liquid_float_complex * _pd,
                     unsigned int _n,
                     liquid_float_complex _kd,
                     float * _b,
                     float * _a);

// convert discrete z/p/k form to second-order sections
//  _zd     :   digital zeros [length: _n]
//  _pd     :   digital poles [length: _n]
//  _n      :   filter order
//  _kd     :   digital gain
//  _B      :   output numerator [size: 3 x L+r]
//  _A      :   output denominator [size: 3 x L+r]
//  where r = _n%2, L = (_n-r)/2
void iirdes_dzpk2sosf(liquid_float_complex * _zd,
                      liquid_float_complex * _pd,
                      unsigned int _n,
                      liquid_float_complex _kd,
                      float * _B,
                      float * _A);

// additional IIR filter design templates

// design 2nd-order IIR filter (active lag)
//          1 + t2 * s
//  F(s) = ------------
//          1 + t1 * s
//
//  _w      :   filter bandwidth
//  _zeta   :   damping factor (1/sqrt(2) suggested)
//  _K      :   loop gain (1000 suggested)
//  _b      :   output feed-forward coefficients [size: 3 x 1]
//  _a      :   output feed-back coefficients [size: 3 x 1]
void iirdes_pll_active_lag(float _w,
                           float _zeta,
                           float _K,
                           float * _b,
                           float * _a);

// design 2nd-order IIR filter (active PI)
//          1 + t2 * s
//  F(s) = ------------
//           t1 * s
//
//  _w      :   filter bandwidth
//  _zeta   :   damping factor (1/sqrt(2) suggested)
//  _K      :   loop gain (1000 suggested)
//  _b      :   output feed-forward coefficients [size: 3 x 1]
//  _a      :   output feed-back coefficients [size: 3 x 1]
void iirdes_pll_active_PI(float _w,
                          float _zeta,
                          float _K,
                          float * _b,
                          float * _a);

// checks stability of iir filter
//  _b      :   feed-forward coefficients [size: _n x 1]
//  _a      :   feed-back coefficients [size: _n x 1]
//  _n      :   number of coefficients
int iirdes_isstable(float * _b,
                    float * _a,
                    unsigned int _n);

//
// linear prediction
//

// compute the linear prediction coefficients for an input signal _x
//  _x      :   input signal [size: _n x 1]
//  _n      :   input signal length
//  _p      :   prediction filter order
//  _a      :   prediction filter [size: _p+1 x 1]
//  _e      :   prediction error variance [size: _p+1 x 1]
void liquid_lpc(float * _x,
                unsigned int _n,
                unsigned int _p,
                float * _a,
                float * _g);

// solve the Yule-Walker equations using Levinson-Durbin recursion
// for _symmetric_ autocorrelation
//  _r      :   autocorrelation array [size: _p+1 x 1]
//  _p      :   filter order
//  _a      :   output coefficients [size: _p+1 x 1]
//  _e      :   error variance [size: _p+1 x 1]
//
// NOTES:
//  By definition _a[0] = 1.0
void liquid_levinson(float * _r,
                     unsigned int _p,
                     float * _a,
                     float * _e);

//
// auto-correlator (delay cross-correlation)
//

#define LIQUID_AUTOCORR_MANGLE_CCCF(name) LIQUID_CONCAT(autocorr_cccf,name)
#define LIQUID_AUTOCORR_MANGLE_RRRF(name) LIQUID_CONCAT(autocorr_rrrf,name)

// Macro:
//   AUTOCORR   : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_AUTOCORR_DEFINE_API(AUTOCORR,TO,TC,TI)           \
                                                                \
typedef struct AUTOCORR(_s) * AUTOCORR();                       \
                                                                \
/* create auto-correlator object                            */  \
/*  _window_size    : size of the correlator window         */  \
/*  _delay          : correlator delay [samples]            */  \
AUTOCORR() AUTOCORR(_create)(unsigned int _window_size,         \
                             unsigned int _delay);              \
                                                                \
/* destroy auto-correlator object, freeing internal memory  */  \
void AUTOCORR(_destroy)(AUTOCORR() _q);                         \
                                                                \
/* reset auto-correlator object's internals                 */  \
void AUTOCORR(_reset)(AUTOCORR() _q);                           \
                                                                \
/* print auto-correlator parameters to stdout               */  \
void AUTOCORR(_print)(AUTOCORR() _q);                           \
                                                                \
/* push sample into auto-correlator object                  */  \
void AUTOCORR(_push)(AUTOCORR() _q,                             \
                     TI         _x);                            \
                                                                \
/* compute single auto-correlation output                   */  \
void AUTOCORR(_execute)(AUTOCORR() _q,                          \
                        TO *       _rxx);                       \
                                                                \
/* compute auto-correlation on block of samples; the input  */  \
/* and output arrays may have the same pointer              */  \
/*  _q      :   auto-correlation object                     */  \
/*  _x      :   input array [size: _n x 1]                  */  \
/*  _n      :   number of input, output samples             */  \
/*  _rxx    :   input array [size: _n x 1]                  */  \
void AUTOCORR(_execute_block)(AUTOCORR()   _q,                  \
                              TI *         _x,                  \
                              unsigned int _n,                  \
                              TO *         _rxx);               \
                                                                \
/* return sum of squares of buffered samples                */  \
float AUTOCORR(_get_energy)(AUTOCORR() _q);                     \

LIQUID_AUTOCORR_DEFINE_API(LIQUID_AUTOCORR_MANGLE_CCCF,
                           liquid_float_complex,
                           liquid_float_complex,
                           liquid_float_complex)

LIQUID_AUTOCORR_DEFINE_API(LIQUID_AUTOCORR_MANGLE_RRRF,
                           float,
                           float,
                           float)


//
// Finite impulse response filter
//

#define LIQUID_FIRFILT_MANGLE_RRRF(name) LIQUID_CONCAT(firfilt_rrrf,name)
#define LIQUID_FIRFILT_MANGLE_CRCF(name) LIQUID_CONCAT(firfilt_crcf,name)
#define LIQUID_FIRFILT_MANGLE_CCCF(name) LIQUID_CONCAT(firfilt_cccf,name)

// Macro:
//   FIRFILT : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_FIRFILT_DEFINE_API(FIRFILT,TO,TC,TI)             \
typedef struct FIRFILT(_s) * FIRFILT();                         \
                                                                \
FIRFILT() FIRFILT(_create)(TC * _h, unsigned int _n);           \
                                                                \
/* create using Kaiser-Bessel windowed sinc method          */  \
/*  _n      : filter length, _n > 0                         */  \
/*  _fc     : filter cut-off frequency 0 < _fc < 0.5        */  \
/*  _As     : filter stop-band attenuation [dB], _As > 0    */  \
/*  _mu     : fractional sample offset, -0.5 < _mu < 0.5    */  \
FIRFILT() FIRFILT(_create_kaiser)(unsigned int _n,              \
                                  float        _fc,             \
                                  float        _As,             \
                                  float        _mu);            \
                                                                \
/* create from square-root Nyquist prototype                */  \
/*  _type   : filter type (e.g. LIQUID_FIRFILT_RRC)         */  \
/*  _k      : nominal samples/symbol, _k > 1                */  \
/*  _m      : filter delay [symbols], _m > 0                */  \
/*  _beta   : rolloff factor, 0 < beta <= 1                 */  \
/*  _mu     : fractional sample offset,-0.5 < _mu < 0.5     */  \
FIRFILT() FIRFILT(_create_rnyquist)(int          _type,         \
                                    unsigned int _k,            \
                                    unsigned int _m,            \
                                    float        _beta,         \
                                    float        _mu);          \
                                                                \
/* create rectangular filter prototype                      */  \
FIRFILT() FIRFILT(_create_rect)(unsigned int _n);               \
                                                                \
/* re-create filter                                         */  \
/*  _q      : original filter object                        */  \
/*  _h      : pointer to filter coefficients [size: _n x 1] */  \
/*  _n      : filter length, _n > 0                         */  \
FIRFILT() FIRFILT(_recreate)(FIRFILT()    _q,                   \
                             TC *         _h,                   \
                             unsigned int _n);                  \
                                                                \
/* destroy filter object and free all internal memory       */  \
void FIRFILT(_destroy)(FIRFILT() _q);                           \
                                                                \
/* reset filter object's internal buffer                    */  \
void FIRFILT(_reset)(FIRFILT() _q);                             \
                                                                \
/* print filter object information                          */  \
void FIRFILT(_print)(FIRFILT() _q);                             \
                                                                \
/* set output scaling for filter                            */  \
void FIRFILT(_set_scale)(FIRFILT() _q,                          \
                         TC        _scale);                     \
                                                                \
/* push sample into filter object's internal buffer         */  \
/*  _q      : filter object                                 */  \
/*  _x      : single input sample                           */  \
void FIRFILT(_push)(FIRFILT() _q,                               \
                    TI        _x);                              \
                                                                \
/* execute the filter on internal buffer and coefficients   */  \
/*  _q      : filter object                                 */  \
/*  _y      : pointer to single output sample               */  \
void FIRFILT(_execute)(FIRFILT() _q,                            \
                       TO *      _y);                           \
                                                                \
/* execute the filter on a block of input samples; the      */  \
/* input and output buffers may be the same                 */  \
/*  _q      : filter object                                 */  \
/*  _x      : pointer to input array [size: _n x 1]         */  \
/*  _n      : number of input, output samples               */  \
/*  _y      : pointer to output array [size: _n x 1]        */  \
void FIRFILT(_execute_block)(FIRFILT()    _q,                   \
                             TI *         _x,                   \
                             unsigned int _n,                   \
                             TO *         _y);                  \
                                                                \
/* return length of filter object                           */  \
unsigned int FIRFILT(_get_length)(FIRFILT() _q);                \
                                                                \
/* compute complex frequency response of filter object      */  \
/*  _q      : filter object                                 */  \
/*  _fc     : frequency to evaluate                         */  \
/*  _H      : pointer to output complex frequency response  */  \
void FIRFILT(_freqresponse)(FIRFILT()              _q,          \
                            float                  _fc,         \
                            liquid_float_complex * _H);         \
                                                                \
/* compute and return group delay of filter object          */  \
/*  _q      : filter object                                 */  \
/*  _fc     : frequency to evaluate                         */  \
float FIRFILT(_groupdelay)(FIRFILT() _q,                        \
                           float     _fc);                      \

LIQUID_FIRFILT_DEFINE_API(LIQUID_FIRFILT_MANGLE_RRRF,
                          float,
                          float,
                          float)

LIQUID_FIRFILT_DEFINE_API(LIQUID_FIRFILT_MANGLE_CRCF,
                          liquid_float_complex,
                          float,
                          liquid_float_complex)

LIQUID_FIRFILT_DEFINE_API(LIQUID_FIRFILT_MANGLE_CCCF,
                          liquid_float_complex,
                          liquid_float_complex,
                          liquid_float_complex)

//
// FIR Hilbert transform
//  2:1 real-to-complex decimator
//  1:2 complex-to-real interpolator
//

#define LIQUID_FIRHILB_MANGLE_FLOAT(name)  LIQUID_CONCAT(firhilbf, name)
//#define LIQUID_FIRHILB_MANGLE_DOUBLE(name) LIQUID_CONCAT(firhilb, name)

// NOTES:
//   Although firhilb is a placeholder for both decimation and
//   interpolation, separate objects should be used for each task.
#define LIQUID_FIRHILB_DEFINE_API(FIRHILB,T,TC)                 \
typedef struct FIRHILB(_s) * FIRHILB();                         \
                                                                \
/* create finite impulse reponse Hilbert transform          */  \
/*  _m      : filter semi-length, delay is 2*m+1            */  \
/*  _As     : filter stop-band attenuation [dB]             */  \
FIRHILB() FIRHILB(_create)(unsigned int _m,                     \
                           float        _As);                   \
                                                                \
/* destroy finite impulse reponse Hilbert transform         */  \
void FIRHILB(_destroy)(FIRHILB() _q);                           \
                                                                \
/* print firhilb object internals to stdout                 */  \
void FIRHILB(_print)(FIRHILB() _q);                             \
                                                                \
/* reset firhilb object internal state                      */  \
void FIRHILB(_reset)(FIRHILB() _q);                             \
                                                                \
/* execute Hilbert transform (real to complex)              */  \
/*  _q      :   Hilbert transform object                    */  \
/*  _x      :   real-valued input sample                    */  \
/*  _y      :   complex-valued output sample                */  \
void FIRHILB(_r2c_execute)(FIRHILB() _q,                        \
                           T         _x,                        \
                           TC *      _y);                       \
                                                                \
/* execute Hilbert transform (complex to real)              */  \
/*  _q      :   Hilbert transform object                    */  \
/*  _x      :   complex-valued input sample                 */  \
/*  _y      :   real-valued output sample                   */  \
void FIRHILB(_c2r_execute)(FIRHILB() _q,                        \
                           TC        _x,                        \
                           T *       _y);                       \
                                                                \
/* execute Hilbert transform decimator (real to complex)    */  \
/*  _q      :   Hilbert transform object                    */  \
/*  _x      :   real-valued input array [size: 2 x 1]       */  \
/*  _y      :   complex-valued output sample                */  \
void FIRHILB(_decim_execute)(FIRHILB() _q,                      \
                             T *       _x,                      \
                             TC *      _y);                     \
                                                                \
/* execute Hilbert transform decimator (real to complex) on */  \
/* a block of samples                                       */  \
/*  _q      :   Hilbert transform object                    */  \
/*  _x      :   real-valued input array [size: 2*_n x 1]    */  \
/*  _n      :   number of *output* samples                  */  \
/*  _y      :   complex-valued output array [size: _n x 1]  */  \
void FIRHILB(_decim_execute_block)(FIRHILB()    _q,             \
                                   T *          _x,             \
                                   unsigned int _n,             \
                                   TC *         _y);            \
                                                                \
/* execute Hilbert transform interpolator (real to complex) */  \
/*  _q      :   Hilbert transform object                    */  \
/*  _x      :   complex-valued input sample                 */  \
/*  _y      :   real-valued output array [size: 2 x 1]      */  \
void FIRHILB(_interp_execute)(FIRHILB() _q,                     \
                              TC        _x,                     \
                              T *       _y);                    \
                                                                \
/* execute Hilbert transform interpolator (complex to real) */  \
/* on a block of samples                                    */  \
/*  _q      :   Hilbert transform object                    */  \
/*  _x      :   complex-valued input array [size: _n x 1]   */  \
/*  _n      :   number of *input* samples                   */  \
/*  _y      :   real-valued output array [size: 2*_n x 1]   */  \
void FIRHILB(_interp_execute_block)(FIRHILB()    _q,            \
                                    TC *         _x,            \
                                    unsigned int _n,            \
                                    T *          _y);           \

LIQUID_FIRHILB_DEFINE_API(LIQUID_FIRHILB_MANGLE_FLOAT, float, liquid_float_complex)
//LIQUID_FIRHILB_DEFINE_API(LIQUID_FIRHILB_MANGLE_DOUBLE, double, liquid_double_complex)


//
// FFT-based finite impulse response filter
//

#define LIQUID_FFTFILT_MANGLE_RRRF(name) LIQUID_CONCAT(fftfilt_rrrf,name)
#define LIQUID_FFTFILT_MANGLE_CRCF(name) LIQUID_CONCAT(fftfilt_crcf,name)
#define LIQUID_FFTFILT_MANGLE_CCCF(name) LIQUID_CONCAT(fftfilt_cccf,name)

// Macro:
//   FFTFILT : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_FFTFILT_DEFINE_API(FFTFILT,TO,TC,TI)             \
typedef struct FFTFILT(_s) * FFTFILT();                         \
                                                                \
/* create FFT-based FIR filter using external coefficients  */  \
/*  _h      : filter coefficients [size: _h_len x 1]        */  \
/*  _h_len  : filter length, _h_len > 0                     */  \
/*  _n      : block size = nfft/2, at least _h_len-1        */  \
FFTFILT() FFTFILT(_create)(TC *         _h,                     \
                           unsigned int _h_len,                 \
                           unsigned int _n);                    \
                                                                \
/* destroy filter object and free all internal memory       */  \
void FFTFILT(_destroy)(FFTFILT() _q);                           \
                                                                \
/* reset filter object's internal buffer                    */  \
void FFTFILT(_reset)(FFTFILT() _q);                             \
                                                                \
/* print filter object information                          */  \
void FFTFILT(_print)(FFTFILT() _q);                             \
                                                                \
/* set output scaling for filter                            */  \
void FFTFILT(_set_scale)(FFTFILT() _q,                          \
                         TC        _scale);                     \
                                                                \
/* execute the filter on internal buffer and coefficients   */  \
/*  _q      : filter object                                 */  \
/*  _x      : pointer to input data array  [size: _n x 1]   */  \
/*  _y      : pointer to output data array [size: _n x 1]   */  \
void FFTFILT(_execute)(FFTFILT() _q,                            \
                       TI *      _x,                            \
                       TO *      _y);                           \
                                                                \
/* return length of filter object's internal coefficients   */  \
unsigned int FFTFILT(_get_length)(FFTFILT() _q);                \

LIQUID_FFTFILT_DEFINE_API(LIQUID_FFTFILT_MANGLE_RRRF,
                          float,
                          float,
                          float)

LIQUID_FFTFILT_DEFINE_API(LIQUID_FFTFILT_MANGLE_CRCF,
                          liquid_float_complex,
                          float,
                          liquid_float_complex)

LIQUID_FFTFILT_DEFINE_API(LIQUID_FFTFILT_MANGLE_CCCF,
                          liquid_float_complex,
                          liquid_float_complex,
                          liquid_float_complex)


//
// Infinite impulse response filter
//

#define LIQUID_IIRFILT_MANGLE_RRRF(name) LIQUID_CONCAT(iirfilt_rrrf,name)
#define LIQUID_IIRFILT_MANGLE_CRCF(name) LIQUID_CONCAT(iirfilt_crcf,name)
#define LIQUID_IIRFILT_MANGLE_CCCF(name) LIQUID_CONCAT(iirfilt_cccf,name)

// Macro:
//   IIRFILT : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_IIRFILT_DEFINE_API(IIRFILT,TO,TC,TI)             \
                                                                \
typedef struct IIRFILT(_s) * IIRFILT();                         \
                                                                \
/* create infinite impulse reponse filter                   */  \
/*  _b      : feed-forward coefficients [size: _nb x 1]     */  \
/*  _nb     : number of feed-forward coefficients           */  \
/*  _a      : feed-back coefficients [size: _na x 1]        */  \
/*  _na     : number of feed-back coefficients              */  \
IIRFILT() IIRFILT(_create)(TC *         _b,                     \
                           unsigned int _nb,                    \
                           TC *         _a,                     \
                           unsigned int _na);                   \
                                                                \
/* create IIR filter using 2nd-order secitons               */  \
/*  _B      : feed-forward coefficients [size: _nsos x 3]   */  \
/*  _A      : feed-back coefficients    [size: _nsos x 3]   */  \
IIRFILT() IIRFILT(_create_sos)(TC *         _B,                 \
                               TC *         _A,                 \
                               unsigned int _nsos);             \
                                                                \
/* create IIR filter from design template                   */  \
/*  _ftype  : filter type (e.g. LIQUID_IIRDES_BUTTER)       */  \
/*  _btype  : band type (e.g. LIQUID_IIRDES_BANDPASS)       */  \
/*  _format : coefficients format (e.g. LIQUID_IIRDES_SOS)  */  \
/*  _order  : filter order                                  */  \
/*  _fc     : low-pass prototype cut-off frequency          */  \
/*  _f0     : center frequency (band-pass, band-stop)       */  \
/*  _Ap     : pass-band ripple in dB                        */  \
/*  _As     : stop-band ripple in dB                        */  \
IIRFILT() IIRFILT(_create_prototype)(                           \
            liquid_iirdes_filtertype _ftype,                    \
            liquid_iirdes_bandtype   _btype,                    \
            liquid_iirdes_format     _format,                   \
            unsigned int             _order,                    \
            float _fc,                                          \
            float _f0,                                          \
            float _Ap,                                          \
            float _As);                                         \
                                                                \
/* create simplified low-pass Butterworth IIR filter */         \
/*  _order  : filter order                                  */  \
/*  _fc     : low-pass prototype cut-off frequency          */  \
IIRFILT() IIRFILT(_create_lowpass)(                             \
            unsigned int _order,                                \
            float        _fc);                                  \
                                                                \
/* create 8th-order integrator filter                       */  \
IIRFILT() IIRFILT(_create_integrator)();                        \
                                                                \
/* create 8th-order differentiator filter                   */  \
IIRFILT() IIRFILT(_create_differentiator)();                    \
                                                                \
/* create simple DC-blocking filter                         */  \
IIRFILT() IIRFILT(_create_dc_blocker)(float _alpha);            \
                                                                \
/* create phase-locked loop iirfilt object                  */  \
/*  _w      : filter bandwidth                              */  \
/*  _zeta   : damping factor (1/sqrt(2) suggested)          */  \
/*  _K      : loop gain (1000 suggested)                    */  \
IIRFILT() IIRFILT(_create_pll)(float _w,                        \
                               float _zeta,                     \
                               float _K);                       \
                                                                \
/* destroy iirfilt object, freeing all internal memory      */  \
void IIRFILT(_destroy)(IIRFILT() _q);                           \
                                                                \
/* print iirfilt object properties to stdout                */  \
void IIRFILT(_print)(IIRFILT() _q);                             \
                                                                \
/* clear/reset iirfilt object internals                     */  \
void IIRFILT(_reset)(IIRFILT() _q);                             \
                                                                \
/* compute filter output                                    */  \
/*  _q      : iirfilt object                                */  \
/*  _x      : input sample                                  */  \
/*  _y      : output sample pointer                         */  \
void IIRFILT(_execute)(IIRFILT() _q,                            \
                       TI        _x,                            \
                       TO *      _y);                           \
                                                                \
/* execute the filter on a block of input samples; the      */  \
/* input and output buffers may be the same                 */  \
/*  _q      : filter object                                 */  \
/*  _x      : pointer to input array [size: _n x 1]         */  \
/*  _n      : number of input, output samples               */  \
/*  _y      : pointer to output array [size: _n x 1]        */  \
void IIRFILT(_execute_block)(IIRFILT()    _q,                   \
                             TI *         _x,                   \
                             unsigned int _n,                   \
                             TO *         _y);                  \
                                                                \
/* return iirfilt object's filter length (order + 1)        */  \
unsigned int IIRFILT(_get_length)(IIRFILT() _q);                \
                                                                \
/* compute complex frequency response of filter object      */  \
/*  _q      : filter object                                 */  \
/*  _fc     : frequency to evaluate                         */  \
/*  _H      : pointer to output complex frequency response  */  \
void IIRFILT(_freqresponse)(IIRFILT()              _q,          \
                            float                  _fc,         \
                            liquid_float_complex * _H);         \
                                                                \
/* compute and return group delay of filter object          */  \
/*  _q      : filter object                                 */  \
/*  _fc     : frequency to evaluate                         */  \
float IIRFILT(_groupdelay)(IIRFILT() _q, float _fc);            \

LIQUID_IIRFILT_DEFINE_API(LIQUID_IIRFILT_MANGLE_RRRF,
                          float,
                          float,
                          float)

LIQUID_IIRFILT_DEFINE_API(LIQUID_IIRFILT_MANGLE_CRCF,
                          liquid_float_complex,
                          float,
                          liquid_float_complex)

LIQUID_IIRFILT_DEFINE_API(LIQUID_IIRFILT_MANGLE_CCCF,
                          liquid_float_complex,
                          liquid_float_complex,
                          liquid_float_complex)


//
// FIR Polyphase filter bank
//
#define LIQUID_FIRPFB_MANGLE_RRRF(name) LIQUID_CONCAT(firpfb_rrrf,name)
#define LIQUID_FIRPFB_MANGLE_CRCF(name) LIQUID_CONCAT(firpfb_crcf,name)
#define LIQUID_FIRPFB_MANGLE_CCCF(name) LIQUID_CONCAT(firpfb_cccf,name)

// Macro:
//   FIRPFB : name-mangling macro
//   TO     : output data type
//   TC     : coefficients data type
//   TI     : input data type
#define LIQUID_FIRPFB_DEFINE_API(FIRPFB,TO,TC,TI)               \
                                                                \
typedef struct FIRPFB(_s) * FIRPFB();                           \
                                                                \
/* create firpfb from external coefficients                 */  \
/*  _M      : number of filters in the bank                 */  \
/*  _h      : coefficients [size: _M*_h_len x 1]            */  \
/*  _h_len  : filter delay (symbols)                        */  \
FIRPFB() FIRPFB(_create)(unsigned int _M,                       \
                         TC *         _h,                       \
                         unsigned int _h_len);                  \
                                                                \
/* create firpfb from external coefficients                 */  \
/*  _M      : number of filters in the bank                 */  \
/*  _m      : filter semi-length [samples]                  */  \
/*  _fc     : filter cut-off frequency 0 < _fc < 0.5        */  \
/*  _As     : filter stop-band suppression [dB]             */  \
FIRPFB() FIRPFB(_create_kaiser)(unsigned int _M,                \
                                unsigned int _m,                \
                                float        _fc,               \
                                float        _As);              \
                                                                \
/* create firpfb from square-root Nyquist prototype         */  \
/*  _type   : filter type (e.g. LIQUID_FIRFILT_RRC)         */  \
/*  _npfb   : number of filters in the bank                 */  \
/*  _k      : nominal samples/symbol                        */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _beta   : rolloff factor (0 < beta <= 1)                */  \
FIRPFB() FIRPFB(_create_rnyquist)(int          _type,           \
                                  unsigned int _npfb,           \
                                  unsigned int _k,              \
                                  unsigned int _m,              \
                                  float        _beta);          \
                                                                \
/* create from square-root derivative Nyquist prototype     */  \
/*  _type   : filter type (e.g. LIQUID_FIRFILT_RRC)         */  \
/*  _npfb   : number of filters in the bank                 */  \
/*  _k      : nominal samples/symbol                        */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _beta   : rolloff factor (0 < beta <= 1)                */  \
FIRPFB() FIRPFB(_create_drnyquist)(int          _type,          \
                                   unsigned int _npfb,          \
                                   unsigned int _k,             \
                                   unsigned int _m,             \
                                   float        _beta);         \
                                                                \
/* re-create filterbank object                              */  \
/*  _q      : original firpfb object                        */  \
/*  _M      : number of filters in the bank                 */  \
/*  _h      : coefficients [size: _M x _h_len]              */  \
/*  _h_len  : length of each filter                         */  \
FIRPFB() FIRPFB(_recreate)(FIRPFB()     _q,                     \
                           unsigned int _M,                     \
                           TC *         _h,                     \
                           unsigned int _h_len);                \
                                                                \
/* destroy firpfb object, freeing all internal memory       */  \
void FIRPFB(_destroy)(FIRPFB() _q);                             \
                                                                \
/* print firpfb object's parameters                         */  \
void FIRPFB(_print)(FIRPFB() _q);                               \
                                                                \
/* set output scaling for filter                            */  \
void FIRPFB(_set_scale)(FIRPFB() _q,                            \
                        TC       _g);                           \
                                                                \
/* clear/reset firpfb object internal state                 */  \
void FIRPFB(_reset)(FIRPFB() _q);                               \
                                                                \
/* push sample into firpfb internal buffer                  */  \
void FIRPFB(_push)(FIRPFB() _q, TI _x);                         \
                                                                \
/* execute the filter on internal buffer and coefficients   */  \
/*  _q      : firpfb object                                 */  \
/*  _i      : index of filter to use                        */  \
/*  _y      : pointer to output sample                      */  \
void FIRPFB(_execute)(FIRPFB()     _q,                          \
                      unsigned int _i,                          \
                      TO *         _y);                         \
                                                                \
/* execute the filter on a block of input samples; the      */  \
/* input and output buffers may be the same                 */  \
/*  _q      : firpfb object                                 */  \
/*  _i      : index of filter to use                        */  \
/*  _x      : pointer to input array [size: _n x 1]         */  \
/*  _n      : number of input, output samples               */  \
/*  _y      : pointer to output array [size: _n x 1]        */  \
void FIRPFB(_execute_block)(FIRPFB()     _q,                    \
                            unsigned int _i,                    \
                            TI *         _x,                    \
                            unsigned int _n,                    \
                            TO *         _y);                   \

LIQUID_FIRPFB_DEFINE_API(LIQUID_FIRPFB_MANGLE_RRRF,
                         float,
                         float,
                         float)

LIQUID_FIRPFB_DEFINE_API(LIQUID_FIRPFB_MANGLE_CRCF,
                         liquid_float_complex,
                         float,
                         liquid_float_complex)

LIQUID_FIRPFB_DEFINE_API(LIQUID_FIRPFB_MANGLE_CCCF,
                         liquid_float_complex,
                         liquid_float_complex,
                         liquid_float_complex)

// 
// Interpolators
//

// firinterp : finite impulse response interpolator
#define LIQUID_FIRINTERP_MANGLE_RRRF(name) LIQUID_CONCAT(firinterp_rrrf,name)
#define LIQUID_FIRINTERP_MANGLE_CRCF(name) LIQUID_CONCAT(firinterp_crcf,name)
#define LIQUID_FIRINTERP_MANGLE_CCCF(name) LIQUID_CONCAT(firinterp_cccf,name)

#define LIQUID_FIRINTERP_DEFINE_API(FIRINTERP,TO,TC,TI)         \
                                                                \
typedef struct FIRINTERP(_s) * FIRINTERP();                     \
                                                                \
/* create interpolator from external coefficients           */  \
/*  _M      : interpolation factor                          */  \
/*  _h      : filter coefficients [size: _h_len x 1]        */  \
/*  _h_len  : filter length                                 */  \
FIRINTERP() FIRINTERP(_create)(unsigned int _M,                 \
                               TC *         _h,                 \
                               unsigned int _h_len);            \
                                                                \
/* create interpolator from Kaiser prototype                */  \
/*  _M      : interpolation factor                          */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _As     : stop-band attenuation [dB]                    */  \
FIRINTERP() FIRINTERP(_create_kaiser)(unsigned int _M,          \
                                      unsigned int _m,          \
                                      float        _As);        \
                                                                \
/* create prorotype (root-)Nyquist interpolator             */  \
/*  _type   : filter type (e.g. LIQUID_FIRFILT_RCOS)        */  \
/*  _k      :   samples/symbol,          _k > 1             */  \
/*  _m      :   filter delay (symbols),  _m > 0             */  \
/*  _beta   :   excess bandwidth factor, _beta < 1          */  \
/*  _dt     :   fractional sample delay, _dt in (-1, 1)     */  \
FIRINTERP() FIRINTERP(_create_prototype)(int          _type,    \
                                         unsigned int _k,       \
                                         unsigned int _m,       \
                                         float        _beta,    \
                                         float        _dt);     \
                                                                \
/* destroy firinterp object, freeing all internal memory    */  \
void FIRINTERP(_destroy)(FIRINTERP() _q);                       \
                                                                \
/* print firinterp object's internal properties to stdout   */  \
void FIRINTERP(_print)(FIRINTERP() _q);                         \
                                                                \
/* reset internal state                                     */  \
void FIRINTERP(_reset)(FIRINTERP() _q);                         \
                                                                \
/* execute interpolation on single input sample             */  \
/*  _q      : firinterp object                              */  \
/*  _x      : input sample                                  */  \
/*  _y      : output sample array [size: _M x 1]            */  \
void FIRINTERP(_execute)(FIRINTERP() _q,                        \
                         TI          _x,                        \
                         TO *        _y);                       \
                                                                \
/* execute interpolation on block of input samples          */  \
/*  _q      : firinterp object                              */  \
/*  _x      : input array [size: _n x 1]                    */  \
/*  _n      : size of input array                           */  \
/*  _y      : output sample array [size: _M*_n x 1]         */  \
void FIRINTERP(_execute_block)(FIRINTERP()  _q,                 \
                               TI *         _x,                 \
                               unsigned int _n,                 \
                               TO *         _y);                \

LIQUID_FIRINTERP_DEFINE_API(LIQUID_FIRINTERP_MANGLE_RRRF,
                            float,
                            float,
                            float)

LIQUID_FIRINTERP_DEFINE_API(LIQUID_FIRINTERP_MANGLE_CRCF,
                            liquid_float_complex,
                            float,
                            liquid_float_complex)

LIQUID_FIRINTERP_DEFINE_API(LIQUID_FIRINTERP_MANGLE_CCCF,
                            liquid_float_complex,
                            liquid_float_complex,
                            liquid_float_complex)

// iirinterp : infinite impulse response interpolator
#define LIQUID_IIRINTERP_MANGLE_RRRF(name) LIQUID_CONCAT(iirinterp_rrrf,name)
#define LIQUID_IIRINTERP_MANGLE_CRCF(name) LIQUID_CONCAT(iirinterp_crcf,name)
#define LIQUID_IIRINTERP_MANGLE_CCCF(name) LIQUID_CONCAT(iirinterp_cccf,name)

#define LIQUID_IIRINTERP_DEFINE_API(IIRINTERP,TO,TC,TI)         \
typedef struct IIRINTERP(_s) * IIRINTERP();                     \
                                                                \
/* create interpolator from external coefficients           */  \
/*  _M      : interpolation factor                          */  \
/*  _b      : feed-back coefficients [size: _nb x 1]        */  \
/*  _nb     : feed-back coefficients length                 */  \
/*  _a      : feed-forward coefficients [size: _na x 1]     */  \
/*  _na     : feed-forward coefficients length              */  \
IIRINTERP() IIRINTERP(_create)(unsigned int _M,                 \
                               TC *         _b,                 \
                               unsigned int _nb,                \
                               TC *         _a,                 \
                               unsigned int _na);               \
                                                                \
/* create decimator with default Butterworth prototype      */  \
/*  _M      : decimation factor                             */  \
/*  _order  : filter order                                  */  \
IIRINTERP() IIRINTERP(_create_default)(unsigned int _M,         \
                                       unsigned int _order);    \
                                                                \
/* create interpolator from prototype                       */  \
/*  _M      : interpolation factor                          */  \
IIRINTERP() IIRINTERP(_create_prototype)(                       \
                unsigned int _M,                                \
                liquid_iirdes_filtertype _ftype,                \
                liquid_iirdes_bandtype   _btype,                \
                liquid_iirdes_format     _format,               \
                unsigned int _order,                            \
                float _fc,                                      \
                float _f0,                                      \
                float _Ap,                                      \
                float _As);                                     \
                                                                \
/* destroy interpolator object and free internal memory     */  \
void IIRINTERP(_destroy)(IIRINTERP() _q);                       \
                                                                \
/* print interpolator object internals                      */  \
void IIRINTERP(_print)(IIRINTERP() _q);                         \
                                                                \
/* reset interpolator object                                */  \
void IIRINTERP(_reset)(IIRINTERP() _q);                         \
                                                                \
/* execute interpolation on single input sample             */  \
/*  _q      : iirinterp object                              */  \
/*  _x      : input sample                                  */  \
/*  _y      : output sample array [size: _M x 1]            */  \
void IIRINTERP(_execute)(IIRINTERP() _q,                        \
                         TI          _x,                        \
                         TO *        _y);                       \
                                                                \
/* execute interpolation on block of input samples          */  \
/*  _q      : iirinterp object                              */  \
/*  _x      : input array [size: _n x 1]                    */  \
/*  _n      : size of input array                           */  \
/*  _y      : output sample array [size: _M*_n x 1]         */  \
void IIRINTERP(_execute_block)(IIRINTERP()  _q,                 \
                               TI *         _x,                 \
                               unsigned int _n,                 \
                               TO *         _y);                \
                                                                \
/* get system group delay at frequency _fc                  */  \
float IIRINTERP(_groupdelay)(IIRINTERP() _q, float _fc);        \

LIQUID_IIRINTERP_DEFINE_API(LIQUID_IIRINTERP_MANGLE_RRRF,
                            float,
                            float,
                            float)

LIQUID_IIRINTERP_DEFINE_API(LIQUID_IIRINTERP_MANGLE_CRCF,
                            liquid_float_complex,
                            float,
                            liquid_float_complex)

LIQUID_IIRINTERP_DEFINE_API(LIQUID_IIRINTERP_MANGLE_CCCF,
                            liquid_float_complex,
                            liquid_float_complex,
                            liquid_float_complex)

// 
// Decimators
//

// firdecim : finite impulse response decimator
#define LIQUID_FIRDECIM_MANGLE_RRRF(name) LIQUID_CONCAT(firdecim_rrrf,name)
#define LIQUID_FIRDECIM_MANGLE_CRCF(name) LIQUID_CONCAT(firdecim_crcf,name)
#define LIQUID_FIRDECIM_MANGLE_CCCF(name) LIQUID_CONCAT(firdecim_cccf,name)

#define LIQUID_FIRDECIM_DEFINE_API(FIRDECIM,TO,TC,TI)           \
typedef struct FIRDECIM(_s) * FIRDECIM();                       \
                                                                \
/* create decimator from external coefficients              */  \
/*  _M      : decimation factor                             */  \
/*  _h      : filter coefficients [size: _h_len x 1]        */  \
/*  _h_len  : filter coefficients length                    */  \
FIRDECIM() FIRDECIM(_create)(unsigned int _M,                   \
                             TC *         _h,                   \
                             unsigned int _h_len);              \
                                                                \
/* create decimator from Kaiser prototype                   */  \
/*  _M      : decimation factor                             */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _As     : stop-band attenuation [dB]                    */  \
FIRDECIM() FIRDECIM(_create_kaiser)(unsigned int _M,            \
                                    unsigned int _m,            \
                                    float        _As);          \
                                                                \
/* create square-root Nyquist decimator                     */  \
/*  _type   : filter type (e.g. LIQUID_FIRFILT_RRC)         */  \
/*  _M      : samples/symbol (decimation factor)            */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _beta   : rolloff factor (0 < beta <= 1)                */  \
/*  _dt     : fractional sample delay                       */  \
FIRDECIM() FIRDECIM(_create_prototype)(int          _type,      \
                                       unsigned int _M,         \
                                       unsigned int _m,         \
                                       float        _beta,      \
                                       float        _dt);       \
                                                                \
/* destroy decimator object                                 */  \
void FIRDECIM(_destroy)(FIRDECIM() _q);                         \
                                                                \
/* print decimator object propreties to stdout              */  \
void FIRDECIM(_print)(FIRDECIM() _q);                           \
                                                                \
/* reset decimator object internal state                    */  \
void FIRDECIM(_reset)(FIRDECIM() _q);                           \
                                                                \
/* execute decimator on _M input samples                    */  \
/*  _q      : decimator object                              */  \
/*  _x      : input samples [size: _M x 1]                  */  \
/*  _y      : output sample pointer                         */  \
void FIRDECIM(_execute)(FIRDECIM() _q,                          \
                        TI *       _x,                          \
                        TO *       _y);                         \
                                                                \
/* execute decimator on block of _n*_M input samples        */  \
/*  _q      : decimator object                              */  \
/*  _x      : input array [size: _n*_M x 1]                 */  \
/*  _n      : number of _output_ samples                    */  \
/*  _y      : output array [_size: _n x 1]                  */  \
void FIRDECIM(_execute_block)(FIRDECIM()   _q,                  \
                              TI *         _x,                  \
                              unsigned int _n,                  \
                              TO *         _y);                 \

LIQUID_FIRDECIM_DEFINE_API(LIQUID_FIRDECIM_MANGLE_RRRF,
                           float,
                           float,
                           float)

LIQUID_FIRDECIM_DEFINE_API(LIQUID_FIRDECIM_MANGLE_CRCF,
                           liquid_float_complex,
                           float,
                           liquid_float_complex)

LIQUID_FIRDECIM_DEFINE_API(LIQUID_FIRDECIM_MANGLE_CCCF,
                           liquid_float_complex,
                           liquid_float_complex,
                           liquid_float_complex)


// iirdecim : infinite impulse response decimator
#define LIQUID_IIRDECIM_MANGLE_RRRF(name) LIQUID_CONCAT(iirdecim_rrrf,name)
#define LIQUID_IIRDECIM_MANGLE_CRCF(name) LIQUID_CONCAT(iirdecim_crcf,name)
#define LIQUID_IIRDECIM_MANGLE_CCCF(name) LIQUID_CONCAT(iirdecim_cccf,name)

#define LIQUID_IIRDECIM_DEFINE_API(IIRDECIM,TO,TC,TI)           \
typedef struct IIRDECIM(_s) * IIRDECIM();                       \
                                                                \
/* create decimator from external coefficients              */  \
/*  _M      : decimation factor                             */  \
/*  _b      : feed-back coefficients [size: _nb x 1]        */  \
/*  _nb     : feed-back coefficients length                 */  \
/*  _a      : feed-forward coefficients [size: _na x 1]     */  \
/*  _na     : feed-forward coefficients length              */  \
IIRDECIM() IIRDECIM(_create)(unsigned int _M,                   \
                             TC *         _b,                   \
                             unsigned int _nb,                  \
                             TC *         _a,                   \
                             unsigned int _na);                 \
                                                                \
/* create decimator with default Butterworth prototype      */  \
/*  _M      : decimation factor                             */  \
/*  _order  : filter order                                  */  \
IIRDECIM() IIRDECIM(_create_default)(unsigned int _M,           \
                                     unsigned int _order);      \
                                                                \
/* create decimator from prototype                          */  \
/*  _M      : decimation factor                             */  \
/*  _ftype  : filter type (e.g. LIQUID_IIRDES_BUTTER)       */  \
/*  _btype  : band type (e.g. LIQUID_IIRDES_BANDPASS)       */  \
/*  _format : coefficients format (e.g. LIQUID_IIRDES_SOS)  */  \
/*  _n      : filter order                                  */  \
/*  _fc     : low-pass prototype cut-off frequency          */  \
/*  _f0     : center frequency (band-pass, band-stop)       */  \
/*  _Ap     : pass-band ripple in dB                        */  \
/*  _As     : stop-band ripple in dB                        */  \
IIRDECIM() IIRDECIM(_create_prototype)(                         \
                unsigned int             _M,                    \
                liquid_iirdes_filtertype _ftype,                \
                liquid_iirdes_bandtype   _btype,                \
                liquid_iirdes_format     _format,               \
                unsigned int             _order,                \
                float                    _fc,                   \
                float                    _f0,                   \
                float                    _Ap,                   \
                float                    _As);                  \
                                                                \
/* destroy decimator object and free internal memory        */  \
void IIRDECIM(_destroy)(IIRDECIM() _q);                         \
                                                                \
/* print decimator object internals                         */  \
void IIRDECIM(_print)(IIRDECIM() _q);                           \
                                                                \
/* reset decimator object                                   */  \
void IIRDECIM(_reset)(IIRDECIM() _q);                           \
                                                                \
/* execute decimator on _M input samples                    */  \
/*  _q      : decimator object                              */  \
/*  _x      : input samples [size: _M x 1]                  */  \
/*  _y      : output sample pointer                         */  \
void IIRDECIM(_execute)(IIRDECIM() _q,                          \
                        TI *       _x,                          \
                        TO *       _y);                         \
                                                                \
/* execute decimator on block of _n*_M input samples        */  \
/*  _q      : decimator object                              */  \
/*  _x      : input array [size: _n*_M x 1]                 */  \
/*  _n      : number of _output_ samples                    */  \
/*  _y      : output array [_sze: _n x 1]                   */  \
void IIRDECIM(_execute_block)(IIRDECIM()   _q,                  \
                              TI *         _x,                  \
                              unsigned int _n,                  \
                              TO *         _y);                 \
                                                                \
/* get system group delay at frequency _fc                  */  \
float IIRDECIM(_groupdelay)(IIRDECIM() _q, float _fc);          \

LIQUID_IIRDECIM_DEFINE_API(LIQUID_IIRDECIM_MANGLE_RRRF,
                           float,
                           float,
                           float)

LIQUID_IIRDECIM_DEFINE_API(LIQUID_IIRDECIM_MANGLE_CRCF,
                           liquid_float_complex,
                           float,
                           liquid_float_complex)

LIQUID_IIRDECIM_DEFINE_API(LIQUID_IIRDECIM_MANGLE_CCCF,
                           liquid_float_complex,
                           liquid_float_complex,
                           liquid_float_complex)



// 
// Half-band resampler
//
#define LIQUID_RESAMP2_MANGLE_RRRF(name) LIQUID_CONCAT(resamp2_rrrf,name)
#define LIQUID_RESAMP2_MANGLE_CRCF(name) LIQUID_CONCAT(resamp2_crcf,name)
#define LIQUID_RESAMP2_MANGLE_CCCF(name) LIQUID_CONCAT(resamp2_cccf,name)

#define LIQUID_RESAMP2_DEFINE_API(RESAMP2,TO,TC,TI)             \
typedef struct RESAMP2(_s) * RESAMP2();                         \
                                                                \
/* create half-band resampler                               */  \
/*  _m      :   filter semi-length (h_len = 4*m+1)          */  \
/*  _f0     :   filter center frequency                     */  \
/*  _As     :   stop-band attenuation [dB]                  */  \
RESAMP2() RESAMP2(_create)(unsigned int _m,                     \
                           float        _f0,                    \
                           float        _As);                   \
                                                                \
/* re-create half-band resampler with new properties        */  \
/*  _q      :   original half-band resampler object         */  \
/*  _m      :   filter semi-length (h_len = 4*m+1)          */  \
/*  _f0     :   filter center frequency                     */  \
/*  _As     :   stop-band attenuation [dB]                  */  \
RESAMP2() RESAMP2(_recreate)(RESAMP2()    _q,                   \
                             unsigned int _m,                   \
                             float        _f0,                  \
                             float        _As);                 \
                                                                \
/* destroy half-band resampler                              */  \
void RESAMP2(_destroy)(RESAMP2() _q);                           \
                                                                \
/* print resamp2 object's internals                         */  \
void RESAMP2(_print)(RESAMP2() _q);                             \
                                                                \
/* reset internal buffer                                    */  \
void RESAMP2(_reset)(RESAMP2() _q);                             \
                                                                \
/* get resampler filter delay (semi-length m)               */  \
unsigned int RESAMP2(_get_delay)(RESAMP2() _q);                 \
                                                                \
/* execute resamp2 as half-band filter                      */  \
/*  _q      :   resamp2 object                              */  \
/*  _x      :   input sample                                */  \
/*  _y0     :   output sample pointer (low frequency)       */  \
/*  _y1     :   output sample pointer (high frequency)      */  \
void RESAMP2(_filter_execute)(RESAMP2() _q,                     \
                              TI        _x,                     \
                              TO *      _y0,                    \
                              TO *      _y1);                   \
                                                                \
/* execute resamp2 as half-band analysis filterbank         */  \
/*  _q      :   resamp2 object                              */  \
/*  _x      :   input array  [size: 2 x 1]                  */  \
/*  _y      :   output array [size: 2 x 1]                  */  \
void RESAMP2(_analyzer_execute)(RESAMP2() _q,                   \
                                TI *      _x,                   \
                                TO *      _y);                  \
                                                                \
/* execute resamp2 as half-band synthesis filterbank        */  \
/*  _q      :   resamp2 object                              */  \
/*  _x      :   input array  [size: 2 x 1]                  */  \
/*  _y      :   output array [size: 2 x 1]                  */  \
void RESAMP2(_synthesizer_execute)(RESAMP2() _q,                \
                                   TI *      _x,                \
                                   TO *      _y);               \
                                                                \
/* execute resamp2 as half-band decimator                   */  \
/*  _q      :   resamp2 object                              */  \
/*  _x      :   input array  [size: 2 x 1]                  */  \
/*  _y      :   output sample pointer                       */  \
void RESAMP2(_decim_execute)(RESAMP2() _q,                      \
                             TI *      _x,                      \
                             TO *      _y);                     \
                                                                \
/* execute resamp2 as half-band interpolator                */  \
/*  _q      :   resamp2 object                              */  \
/*  _x      :   input sample                                */  \
/*  _y      :   output array [size: 2 x 1]                  */  \
void RESAMP2(_interp_execute)(RESAMP2() _q,                     \
                              TI        _x,                     \
                              TO *      _y);                    \

LIQUID_RESAMP2_DEFINE_API(LIQUID_RESAMP2_MANGLE_RRRF,
                          float,
                          float,
                          float)

LIQUID_RESAMP2_DEFINE_API(LIQUID_RESAMP2_MANGLE_CRCF,
                          liquid_float_complex,
                          float,
                          liquid_float_complex)

LIQUID_RESAMP2_DEFINE_API(LIQUID_RESAMP2_MANGLE_CCCF,
                          liquid_float_complex,
                          liquid_float_complex,
                          liquid_float_complex)


// 
// Arbitrary resampler
//
#define LIQUID_RESAMP_MANGLE_RRRF(name) LIQUID_CONCAT(resamp_rrrf,name)
#define LIQUID_RESAMP_MANGLE_CRCF(name) LIQUID_CONCAT(resamp_crcf,name)
#define LIQUID_RESAMP_MANGLE_CCCF(name) LIQUID_CONCAT(resamp_cccf,name)

#define LIQUID_RESAMP_DEFINE_API(RESAMP,TO,TC,TI)               \
typedef struct RESAMP(_s) * RESAMP();                           \
                                                                \
/* create arbitrary resampler object                        */  \
/*  _rate   : arbitrary resampling rate                     */  \
/*  _m      : filter semi-length (delay)                    */  \
/*  _fc     : filter cutoff frequency, 0 < _fc < 0.5        */  \
/*  _As     : filter stop-band attenuation [dB]             */  \
/*  _npfb   : number of filters in the bank                 */  \
RESAMP() RESAMP(_create)(float        _rate,                    \
                         unsigned int _m,                       \
                         float        _fc,                      \
                         float        _As,                      \
                         unsigned int _npfb);                   \
                                                                \
/* create arbitrary resampler object with a specified input */  \
/* resampling rate and default parameters                   */  \
/*  m    : (filter semi-length) = 7                         */  \
/*  fc   : (filter cutoff frequency) = 0.25                 */  \
/*  As   : (filter stop-band attenuation) = 60 dB           */  \
/*  npfb : (number of filters in the bank) = 64             */  \
RESAMP() RESAMP(_create_default)(float _rate);                  \
                                                                \
/* destroy arbitrary resampler object                       */  \
void RESAMP(_destroy)(RESAMP() _q);                             \
                                                                \
/* print resamp object internals to stdout                  */  \
void RESAMP(_print)(RESAMP() _q);                               \
                                                                \
/* reset resamp object internals                            */  \
void RESAMP(_reset)(RESAMP() _q);                               \
                                                                \
/* get resampler delay (output samples)                     */  \
unsigned int RESAMP(_get_delay)(RESAMP() _q);                   \
                                                                \
/* set rate of arbitrary resampler                          */  \
/*  _q      : resampling object                             */  \
/*  _rate   : new sampling rate, _rate > 0                  */  \
void RESAMP(_set_rate)(RESAMP() _q,                             \
                       float    _rate);                         \
                                                                \
/* adjust rate of arbitrary resampler                       */  \
/*  _q      : resampling object                             */  \
/*  _delta  : rate adjustment; _rate <- _rate + _delta      */  \
void RESAMP(_adjust_rate)(RESAMP() _q,                          \
                          float    _delta);                     \
                                                                \
/* set resampling timing phase                              */  \
/*  _q      : resampling object                             */  \
/*  _tau    : sample timing                                 */  \
void RESAMP(_set_timing_phase)(RESAMP() _q,                     \
                               float    _tau);                  \
                                                                \
/* adjust resampling timing phase                           */  \
/*  _q      : resampling object                             */  \
/*  _delta  : sample timing adjustment                      */  \
void RESAMP(_adjust_timing_phase)(RESAMP() _q,                  \
                                  float    _delta);             \
                                                                \
/* execute arbitrary resampler                              */  \
/*  _q              :   resamp object                       */  \
/*  _x              :   single input sample                 */  \
/*  _y              :   output sample array (pointer)       */  \
/*  _num_written    :   number of samples written to _y     */  \
void RESAMP(_execute)(RESAMP()       _q,                        \
                      TI             _x,                        \
                      TO *           _y,                        \
                      unsigned int * _num_written);             \
                                                                \
/* execute arbitrary resampler on a block of samples        */  \
/*  _q              :   resamp object                       */  \
/*  _x              :   input buffer [size: _nx x 1]        */  \
/*  _nx             :   input buffer                        */  \
/*  _y              :   output sample array (pointer)       */  \
/*  _ny             :   number of samples written to _y     */  \
void RESAMP(_execute_block)(RESAMP()       _q,                  \
                            TI *           _x,                  \
                            unsigned int   _nx,                 \
                            TO *           _y,                  \
                            unsigned int * _ny);                \

LIQUID_RESAMP_DEFINE_API(LIQUID_RESAMP_MANGLE_RRRF,
                         float,
                         float,
                         float)

LIQUID_RESAMP_DEFINE_API(LIQUID_RESAMP_MANGLE_CRCF,
                         liquid_float_complex,
                         float,
                         liquid_float_complex)

LIQUID_RESAMP_DEFINE_API(LIQUID_RESAMP_MANGLE_CCCF,
                         liquid_float_complex,
                         liquid_float_complex,
                         liquid_float_complex)


// 
// Multi-stage half-band resampler
//

// resampling type (interpolator/decimator)
typedef enum {
    LIQUID_RESAMP_INTERP=0, // interpolator
    LIQUID_RESAMP_DECIM,    // decimator
} liquid_resamp_type;

#define LIQUID_MSRESAMP2_MANGLE_RRRF(name) LIQUID_CONCAT(msresamp2_rrrf,name)
#define LIQUID_MSRESAMP2_MANGLE_CRCF(name) LIQUID_CONCAT(msresamp2_crcf,name)
#define LIQUID_MSRESAMP2_MANGLE_CCCF(name) LIQUID_CONCAT(msresamp2_cccf,name)

#define LIQUID_MSRESAMP2_DEFINE_API(MSRESAMP2,TO,TC,TI)         \
typedef struct MSRESAMP2(_s) * MSRESAMP2();                     \
                                                                \
/* create multi-stage half-band resampler                   */  \
/*  _type       : resampler type (e.g. LIQUID_RESAMP_DECIM) */  \
/*  _num_stages : number of resampling stages               */  \
/*  _fc         : filter cut-off frequency 0 < _fc < 0.5    */  \
/*  _f0         : filter center frequency                   */  \
/*  _As         : stop-band attenuation [dB]                */  \
MSRESAMP2() MSRESAMP2(_create)(int          _type,              \
                               unsigned int _num_stages,        \
                               float        _fc,                \
                               float        _f0,                \
                               float        _As);               \
                                                                \
/* destroy multi-stage half-bandresampler                   */  \
void MSRESAMP2(_destroy)(MSRESAMP2() _q);                       \
                                                                \
/* print msresamp object internals to stdout                */  \
void MSRESAMP2(_print)(MSRESAMP2() _q);                         \
                                                                \
/* reset msresamp object internal state                     */  \
void MSRESAMP2(_reset)(MSRESAMP2() _q);                         \
                                                                \
/* get group delay (number of output samples)               */  \
float MSRESAMP2(_get_delay)(MSRESAMP2() _q);                    \
                                                                \
/* execute multi-stage resampler, M = 2^num_stages          */  \
/*  LIQUID_RESAMP_INTERP:   input: 1,   output: M           */  \
/*  LIQUID_RESAMP_DECIM:    input: M,   output: 1           */  \
/*  _q      : msresamp object                               */  \
/*  _x      : input sample array                            */  \
/*  _y      : output sample array                           */  \
void MSRESAMP2(_execute)(MSRESAMP2() _q,                        \
                         TI *        _x,                        \
                         TO *        _y);                       \

LIQUID_MSRESAMP2_DEFINE_API(LIQUID_MSRESAMP2_MANGLE_RRRF,
                            float,
                            float,
                            float)

LIQUID_MSRESAMP2_DEFINE_API(LIQUID_MSRESAMP2_MANGLE_CRCF,
                            liquid_float_complex,
                            float,
                            liquid_float_complex)

LIQUID_MSRESAMP2_DEFINE_API(LIQUID_MSRESAMP2_MANGLE_CCCF,
                            liquid_float_complex,
                            liquid_float_complex,
                            liquid_float_complex)


// 
// Multi-stage arbitrary resampler
//
#define LIQUID_MSRESAMP_MANGLE_RRRF(name) LIQUID_CONCAT(msresamp_rrrf,name)
#define LIQUID_MSRESAMP_MANGLE_CRCF(name) LIQUID_CONCAT(msresamp_crcf,name)
#define LIQUID_MSRESAMP_MANGLE_CCCF(name) LIQUID_CONCAT(msresamp_cccf,name)

#define LIQUID_MSRESAMP_DEFINE_API(MSRESAMP,TO,TC,TI)           \
typedef struct MSRESAMP(_s) * MSRESAMP();                       \
                                                                \
/* create multi-stage arbitrary resampler                   */  \
/*  _r      :   resampling rate [output/input]              */  \
/*  _As     :   stop-band attenuation [dB]                  */  \
MSRESAMP() MSRESAMP(_create)(float _r,                          \
                             float _As);                        \
                                                                \
/* destroy multi-stage arbitrary resampler                  */  \
void MSRESAMP(_destroy)(MSRESAMP() _q);                         \
                                                                \
/* print msresamp object internals to stdout                */  \
void MSRESAMP(_print)(MSRESAMP() _q);                           \
                                                                \
/* reset msresamp object internal state                     */  \
void MSRESAMP(_reset)(MSRESAMP() _q);                           \
                                                                \
/* get filter delay (output samples)                        */  \
float MSRESAMP(_get_delay)(MSRESAMP() _q);                      \
                                                                \
/* execute multi-stage resampler                            */  \
/*  _q      :   msresamp object                             */  \
/*  _x      :   input sample array  [size: _nx x 1]         */  \
/*  _nx     :   input sample array size                     */  \
/*  _y      :   output sample array [size: variable]        */  \
/*  _ny     :   number of samples written to _y             */  \
void MSRESAMP(_execute)(MSRESAMP()     _q,                      \
                        TI *           _x,                      \
                        unsigned int   _nx,                     \
                        TO *           _y,                      \
                        unsigned int * _ny);                    \

LIQUID_MSRESAMP_DEFINE_API(LIQUID_MSRESAMP_MANGLE_RRRF,
                           float,
                           float,
                           float)

LIQUID_MSRESAMP_DEFINE_API(LIQUID_MSRESAMP_MANGLE_CRCF,
                           liquid_float_complex,
                           float,
                           liquid_float_complex)

LIQUID_MSRESAMP_DEFINE_API(LIQUID_MSRESAMP_MANGLE_CCCF,
                           liquid_float_complex,
                           liquid_float_complex,
                           liquid_float_complex)


// 
// Symbol timing recovery (symbol synchronizer)
//
#define LIQUID_SYMSYNC_MANGLE_RRRF(name) LIQUID_CONCAT(symsync_rrrf,name)
#define LIQUID_SYMSYNC_MANGLE_CRCF(name) LIQUID_CONCAT(symsync_crcf,name)

#define LIQUID_SYMSYNC_DEFINE_API(SYMSYNC,TO,TC,TI)             \
                                                                \
typedef struct SYMSYNC(_s) * SYMSYNC();                         \
                                                                \
/* create synchronizer object from external coefficients    */  \
/*  _k      : samples per symbol                            */  \
/*  _M      : number of filters in the bank                 */  \
/*  _h      : matched filter coefficients [size:            */  \
/*  _h_len  : length of matched filter                      */  \
SYMSYNC() SYMSYNC(_create)(unsigned int _k,                     \
                           unsigned int _M,                     \
                           TC *         _h,                     \
                           unsigned int _h_len);                \
                                                                \
/* create square-root Nyquist symbol synchronizer           */  \
/*  _type   : filter type (e.g. LIQUID_FIRFILT_RRC)         */  \
/*  _k      : samples/symbol                                */  \
/*  _m      : symbol delay                                  */  \
/*  _beta   : rolloff factor, beta in (0,1]                 */  \
/*  _M      : number of filters in the bank                 */  \
SYMSYNC() SYMSYNC(_create_rnyquist)(int          _type,         \
                                    unsigned int _k,            \
                                    unsigned int _m,            \
                                    float        _beta,         \
                                    unsigned int _M);           \
                                                                \
/* create symsync using Kaiser filter interpolator; useful  */  \
/* when the input signal has matched filter applied already */  \
/*  _k      : input samples/symbol                          */  \
/*  _m      : symbol delay                                  */  \
/*  _beta   : rolloff factor, beta in (0,1]                 */  \
/*  _M      : number of filters in the bank                 */  \
SYMSYNC() SYMSYNC(_create_kaiser)(unsigned int _k,              \
                                  unsigned int _m,              \
                                  float        _beta,           \
                                  unsigned int _M);             \
                                                                \
/* destroy symsync object, freeing all internal memory      */  \
void SYMSYNC(_destroy)(SYMSYNC() _q);                           \
                                                                \
/* print symsync object's parameters                        */  \
void SYMSYNC(_print)(SYMSYNC() _q);                             \
                                                                \
/* reset symsync internal state                             */  \
void SYMSYNC(_reset)(SYMSYNC() _q);                             \
                                                                \
/* lock/unlock loop control                                 */  \
void SYMSYNC(_lock)(  SYMSYNC() _q);                            \
void SYMSYNC(_unlock)(SYMSYNC() _q);                            \
                                                                \
/* set synchronizer output rate (samples/symbol)            */  \
/*  _q      : synchronizer object                           */  \
/*  _k_out  : output samples/symbol                         */  \
void SYMSYNC(_set_output_rate)(SYMSYNC()    _q,                 \
                               unsigned int _k_out);            \
                                                                \
/* set loop-filter bandwidth                                */  \
/*  _q      : synchronizer object                           */  \
/*  _bt     : loop bandwidth                                */  \
void SYMSYNC(_set_lf_bw)(SYMSYNC() _q,                          \
                         float     _bt);                        \
                                                                \
/* return instantaneous fractional timing offset estimate   */  \
float SYMSYNC(_get_tau)(SYMSYNC() _q);                          \
                                                                \
/* execute synchronizer on input data array                 */  \
/*  _q      : synchronizer object                           */  \
/*  _x      : input data array                              */  \
/*  _nx     : number of input samples                       */  \
/*  _y      : output data array                             */  \
/*  _ny     : number of samples written to output buffer    */  \
void SYMSYNC(_execute)(SYMSYNC()      _q,                       \
                       TI *           _x,                       \
                       unsigned int   _nx,                      \
                       TO *           _y,                       \
                       unsigned int * _ny);                     \

LIQUID_SYMSYNC_DEFINE_API(LIQUID_SYMSYNC_MANGLE_RRRF,
                          float,
                          float,
                          float)

LIQUID_SYMSYNC_DEFINE_API(LIQUID_SYMSYNC_MANGLE_CRCF,
                          liquid_float_complex,
                          float,
                          liquid_float_complex)


//
// Finite impulse response Farrow filter
//

#define LIQUID_FIRFARROW_MANGLE_RRRF(name) LIQUID_CONCAT(firfarrow_rrrf,name)
#define LIQUID_FIRFARROW_MANGLE_CRCF(name) LIQUID_CONCAT(firfarrow_crcf,name)
//#define LIQUID_FIRFARROW_MANGLE_CCCF(name) LIQUID_CONCAT(firfarrow_cccf,name)

// Macro:
//   FIRFARROW  : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_FIRFARROW_DEFINE_API(FIRFARROW,TO,TC,TI)         \
                                                                \
typedef struct FIRFARROW(_s) * FIRFARROW();                     \
                                                                \
/* create firfarrow object                                  */  \
/*  _h_len      : filter length                             */  \
/*  _p          : polynomial order                          */  \
/*  _fc         : filter cutoff frequency                   */  \
/*  _As         : stopband attenuation [dB]                 */  \
FIRFARROW() FIRFARROW(_create)(unsigned int _h_len,             \
                               unsigned int _p,                 \
                               float        _fc,                \
                               float        _As);               \
                                                                \
/* destroy firfarrow object, freeing all internal memory    */  \
void FIRFARROW(_destroy)(FIRFARROW() _q);                       \
                                                                \
/* print firfarrow object's internal properties             */  \
void FIRFARROW(_print)(FIRFARROW() _q);                         \
                                                                \
/* reset firfarrow object's internal state                  */  \
void FIRFARROW(_reset)(FIRFARROW() _q);                         \
                                                                \
/* push sample into firfarrow object                        */  \
/*  _q      : firfarrow object                              */  \
/*  _x      : input sample                                  */  \
void FIRFARROW(_push)(FIRFARROW() _q,                           \
                      TI          _x);                          \
                                                                \
/* set fractional delay of firfarrow object                 */  \
/*  _q      : firfarrow object                              */  \
/*  _mu     : fractional sample delay                       */  \
void FIRFARROW(_set_delay)(FIRFARROW() _q,                      \
                           float       _mu);                    \
                                                                \
/* execute firfarrow internal dot product                   */  \
/*  _q      : firfarrow object                              */  \
/*  _y      : output sample pointer                         */  \
void FIRFARROW(_execute)(FIRFARROW() _q,                        \
                         TO *        _y);                       \
                                                                \
/* compute firfarrow filter on block of samples; the input  */  \
/* and output arrays may have the same pointer              */  \
/*  _q      : firfarrow object                              */  \
/*  _x      : input array [size: _n x 1]                    */  \
/*  _n      : input, output array size                      */  \
/*  _y      : output array [size: _n x 1]                   */  \
void FIRFARROW(_execute_block)(FIRFARROW()  _q,                 \
                               TI *         _x,                 \
                               unsigned int _n,                 \
                               TO *         _y);                \
                                                                \
/* get length of firfarrow object (number of filter taps)   */  \
unsigned int FIRFARROW(_get_length)(FIRFARROW() _q);            \
                                                                \
/* get coefficients of firfarrow object                     */  \
/*  _q      : firfarrow object                              */  \
/*  _h      : output coefficients pointer                   */  \
void FIRFARROW(_get_coefficients)(FIRFARROW() _q,               \
                                  float *     _h);              \
                                                                \
/* compute complex frequency response                       */  \
/*  _q      : filter object                                 */  \
/*  _fc     : frequency                                     */  \
/*  _H      : output frequency response                     */  \
void FIRFARROW(_freqresponse)(FIRFARROW()            _q,        \
                              float                  _fc,       \
                              liquid_float_complex * _H);       \
                                                                \
/* compute group delay [samples]                            */  \
/*  _q      :   filter object                               */  \
/*  _fc     :   frequency                                   */  \
float FIRFARROW(_groupdelay)(FIRFARROW() _q,                    \
                             float       _fc);                  \

LIQUID_FIRFARROW_DEFINE_API(LIQUID_FIRFARROW_MANGLE_RRRF,
                            float,
                            float,
                            float)

LIQUID_FIRFARROW_DEFINE_API(LIQUID_FIRFARROW_MANGLE_CRCF,
                            liquid_float_complex,
                            float,
                            liquid_float_complex)



//
// MODULE : framing
//

// framesyncstats : generic frame synchronizer statistic structure

typedef struct {
    // signal quality
    float evm;      // error vector magnitude [dB]
    float rssi;     // received signal strength indicator [dB]
    float cfo;      // carrier frequency offset (f/Fs)

    // demodulated frame symbols
    liquid_float_complex * framesyms;   // pointer to array [size: framesyms x 1]
    unsigned int num_framesyms;         // length of framesyms

    // modulation/coding scheme etc.
    unsigned int mod_scheme;    // modulation scheme
    unsigned int mod_bps;       // modulation depth (bits/symbol)
    unsigned int check;         // data validity check (crc, checksum)
    unsigned int fec0;          // forward error-correction (inner)
    unsigned int fec1;          // forward error-correction (outer)
} framesyncstats_s;

// external framesyncstats default object
extern framesyncstats_s framesyncstats_default;

// initialize framesyncstats object on default
void framesyncstats_init_default(framesyncstats_s * _stats);

// print framesyncstats object
void framesyncstats_print(framesyncstats_s * _stats);


// framedatastats : gather frame data
typedef struct {
    unsigned int      num_frames_detected;
    unsigned int      num_headers_valid;
    unsigned int      num_payloads_valid;
    unsigned long int num_bytes_received;
} framedatastats_s;

// reset framedatastats object
void framedatastats_reset(framedatastats_s * _stats);

// print framedatastats object
void framedatastats_print(framedatastats_s * _stats);


// Generic frame synchronizer callback function type
//  _header         :   header data [size: 8 bytes]
//  _header_valid   :   is header valid? (0:no, 1:yes)
//  _payload        :   payload data [size: _payload_len]
//  _payload_len    :   length of payload (bytes)
//  _payload_valid  :   is payload valid? (0:no, 1:yes)
//  _stats          :   frame statistics object
//  _userdata       :   pointer to userdata
typedef int (*framesync_callback)(unsigned char *  _header,
                                  int              _header_valid,
                                  unsigned char *  _payload,
                                  unsigned int     _payload_len,
                                  int              _payload_valid,
                                  framesyncstats_s _stats,
                                  void *           _userdata);

// framesync csma callback functions invoked when signal levels is high or low
//  _userdata       :   user-defined data pointer
typedef void (*framesync_csma_callback)(void * _userdata);

//
// packet encoder/decoder
//

typedef struct qpacketmodem_s * qpacketmodem;

// create packet encoder
qpacketmodem qpacketmodem_create ();
void         qpacketmodem_destroy(qpacketmodem _q);
void         qpacketmodem_reset  (qpacketmodem _q);
void         qpacketmodem_print  (qpacketmodem _q);

int qpacketmodem_configure(qpacketmodem _q,
                           unsigned int _payload_len,
                           crc_scheme   _check,
                           fec_scheme   _fec0,
                           fec_scheme   _fec1,
                           int          _ms);

// get length of encoded frame in symbols
unsigned int qpacketmodem_get_frame_len(qpacketmodem _q);

// get unencoded/decoded payload length (bytes)
unsigned int qpacketmodem_get_payload_len(qpacketmodem _q);

// regular access methods
unsigned int qpacketmodem_get_crc      (qpacketmodem _q);
unsigned int qpacketmodem_get_fec0     (qpacketmodem _q);
unsigned int qpacketmodem_get_fec1     (qpacketmodem _q);
unsigned int qpacketmodem_get_modscheme(qpacketmodem _q);

// encode packet into un-modulated frame symbol indices
//  _q          :   qpacketmodem object
//  _payload    :   unencoded payload bytes
//  _syms       :   encoded but un-modulated payload symbol indices
void qpacketmodem_encode_syms(qpacketmodem          _q,
                              const unsigned char * _payload,
                              unsigned char *       _syms);

// decode packet from demodulated frame symbol indices (hard-decision decoding)
//  _q          :   qpacketmodem object
//  _syms       :   received hard-decision symbol indices [size: frame_len x 1]
//  _payload    :   recovered decoded payload bytes
int qpacketmodem_decode_syms(qpacketmodem    _q,
                             unsigned char * _syms,
                             unsigned char * _payload);

// decode packet from demodulated frame bits (soft-decision decoding)
//  _q          :   qpacketmodem object
//  _bits       :   received soft-decision bits, [size: bps*frame_len x 1]
//  _payload    :   recovered decoded payload bytes
int qpacketmodem_decode_bits(qpacketmodem    _q,
                             unsigned char * _bits,
                             unsigned char * _payload);

// encode and modulate packet into modulated frame samples
//  _q          :   qpacketmodem object
//  _payload    :   unencoded payload bytes
//  _frame      :   encoded/modulated payload symbols
void qpacketmodem_encode(qpacketmodem           _q,
                         const unsigned char *  _payload,
                         liquid_float_complex * _frame);

// decode packet from modulated frame samples, returning flag if CRC passed
// NOTE: hard-decision decoding
//  _q          :   qpacketmodem object
//  _frame      :   encoded/modulated payload symbols
//  _payload    :   recovered decoded payload bytes
int qpacketmodem_decode(qpacketmodem           _q,
                        liquid_float_complex * _frame,
                        unsigned char *        _payload);

// decode packet from modulated frame samples, returning flag if CRC passed
// NOTE: soft-decision decoding
//  _q          :   qpacketmodem object
//  _frame      :   encoded/modulated payload symbols
//  _payload    :   recovered decoded payload bytes
int qpacketmodem_decode_soft(qpacketmodem           _q,
                             liquid_float_complex * _frame,
                             unsigned char *        _payload);

//
// pilot generator for streaming applications
//
typedef struct qpilotgen_s * qpilotgen;

// create packet encoder
qpilotgen qpilotgen_create(unsigned int _payload_len,
                           unsigned int _pilot_spacing);

qpilotgen qpilotgen_recreate(qpilotgen    _q,
                             unsigned int _payload_len,
                             unsigned int _pilot_spacing);

void qpilotgen_destroy(qpilotgen _q);
void qpilotgen_reset(  qpilotgen _q);
void qpilotgen_print(  qpilotgen _q);

unsigned int qpilotgen_get_frame_len(qpilotgen _q);

// insert pilot symbols
void qpilotgen_execute(qpilotgen              _q,
                       liquid_float_complex * _payload,
                       liquid_float_complex * _frame);

//
// pilot synchronizer for streaming applications
//
typedef struct qpilotsync_s * qpilotsync;

// create packet encoder
qpilotsync qpilotsync_create(unsigned int _payload_len,
                             unsigned int _pilot_spacing);

qpilotsync qpilotsync_recreate(qpilotsync   _q,
                               unsigned int _payload_len,
                               unsigned int _pilot_spacing);

void qpilotsync_destroy(qpilotsync _q);
void qpilotsync_reset(  qpilotsync _q);
void qpilotsync_print(  qpilotsync _q);

unsigned int qpilotsync_get_frame_len(qpilotsync _q);

// recover frame symbols from received frame
void qpilotsync_execute(qpilotsync             _q,
                        liquid_float_complex * _frame,
                        liquid_float_complex * _payload);

// get estimates
float qpilotsync_get_dphi(qpilotsync _q);
float qpilotsync_get_phi (qpilotsync _q);
float qpilotsync_get_gain(qpilotsync _q);


//
// Basic frame generator (64 bytes data payload)
//

// frame length in samples
#define LIQUID_FRAME64_LEN (1440)

typedef struct framegen64_s * framegen64;

// create frame generator
framegen64 framegen64_create();

// destroy frame generator
void framegen64_destroy(framegen64 _q);

// print frame generator internal properties
void framegen64_print(framegen64 _q);

// generate frame
//  _q          :   frame generator object
//  _header     :   8-byte header data
//  _payload    :   64-byte payload data
//  _frame      :   output frame samples [size: LIQUID_FRAME64_LEN x 1]
void framegen64_execute(framegen64             _q,
                        unsigned char *        _header,
                        unsigned char *        _payload,
                        liquid_float_complex * _frame);

typedef struct framesync64_s * framesync64;

// create framesync64 object
//  _callback   :   callback function
//  _userdata   :   user data pointer passed to callback function
framesync64 framesync64_create(framesync_callback _callback,
                               void *             _userdata);

// destroy frame synchronizer
void framesync64_destroy(framesync64 _q);

// print frame synchronizer internal properties
void framesync64_print(framesync64 _q);

// reset frame synchronizer internal state
void framesync64_reset(framesync64 _q);

// push samples through frame synchronizer
//  _q      :   frame synchronizer object
//  _x      :   input samples [size: _n x 1]
//  _n      :   number of input samples
void framesync64_execute(framesync64            _q,
                         liquid_float_complex * _x,
                         unsigned int           _n);

// enable/disable debugging
void framesync64_debug_enable(framesync64 _q);
void framesync64_debug_disable(framesync64 _q);
void framesync64_debug_print(framesync64 _q, const char * _filename);

#if 0
// advanced modes
void framesync64_set_csma_callbacks(framesync64             _q,
                                    framesync_csma_callback _csma_lock,
                                    framesync_csma_callback _csma_unlock,
                                    void *                  _csma_userdata);
#endif

//
// Flexible frame : adjustable payload, mod scheme, etc., but bring
//                  your own error correction, redundancy check
//

// frame generator
typedef struct {
    unsigned int check;         // data validity check
    unsigned int fec0;          // forward error-correction scheme (inner)
    unsigned int fec1;          // forward error-correction scheme (outer)
    unsigned int mod_scheme;    // modulation scheme
} flexframegenprops_s;

void flexframegenprops_init_default(flexframegenprops_s * _fgprops);

typedef struct flexframegen_s * flexframegen;

// create flexframegen object
//  _props  :   frame properties (modulation scheme, etc.)
flexframegen flexframegen_create(flexframegenprops_s * _props);

// destroy flexframegen object
void flexframegen_destroy(flexframegen _q);

// print flexframegen object internals
void flexframegen_print(flexframegen _q);

// reset flexframegen object internals
void flexframegen_reset(flexframegen _q);

// is frame assembled?
int flexframegen_is_assembled(flexframegen _q);

// get frame properties
void flexframegen_getprops(flexframegen _q, flexframegenprops_s * _props);

// set frame properties
int flexframegen_setprops(flexframegen _q, flexframegenprops_s * _props);

// get length of assembled frame (samples)
unsigned int flexframegen_getframelen(flexframegen _q);

// assemble a frame from an array of data
//  _q              :   frame generator object
//  _header         :   frame header
//  _payload        :   payload data [size: _payload_len x 1]
//  _payload_len    :   payload data length
void flexframegen_assemble(flexframegen          _q,
                           const unsigned char * _header,
                           const unsigned char * _payload,
                           unsigned int          _payload_len);

// write samples of assembled frame, two samples at a time, returning
// '1' when frame is complete, '0' otherwise. Zeros will be written
// to the buffer if the frame is not assembled
//  _q          :   frame generator object
//  _buffer     :   output buffer [size: _buffer_len x 1]
//  _buffer_len :   output buffer length
int flexframegen_write_samples(flexframegen           _q,
                               liquid_float_complex * _buffer,
                               unsigned int           _buffer_len);

// frame synchronizer

typedef struct flexframesync_s * flexframesync;

// create flexframesync object
//  _callback   :   callback function
//  _userdata   :   user data pointer passed to callback function
flexframesync flexframesync_create(framesync_callback _callback,
                                   void *             _userdata);

// destroy frame synchronizer
void flexframesync_destroy(flexframesync _q);

// print frame synchronizer internal properties
void flexframesync_print(flexframesync _q);

// reset frame synchronizer internal state
void flexframesync_reset(flexframesync _q);

// has frame been detected?
int flexframesync_is_frame_open(flexframesync _q);

// push samples through frame synchronizer
//  _q      :   frame synchronizer object
//  _x      :   input samples [size: _n x 1]
//  _n      :   number of input samples
void flexframesync_execute(flexframesync          _q,
                           liquid_float_complex * _x,
                           unsigned int           _n);

// frame data statistics
void             flexframesync_reset_framedatastats(flexframesync _q);
framedatastats_s flexframesync_get_framedatastats  (flexframesync _q);

// enable/disable debugging
void flexframesync_debug_enable(flexframesync _q);
void flexframesync_debug_disable(flexframesync _q);
void flexframesync_debug_print(flexframesync _q,
                               const char *  _filename);

//
// bpacket : binary packet suitable for data streaming
//

// 
// bpacket generator/encoder
//
typedef struct bpacketgen_s * bpacketgen;

// create bpacketgen object
//  _m              :   p/n sequence length (ignored)
//  _dec_msg_len    :   decoded message length (original uncoded data)
//  _crc            :   data validity check (e.g. cyclic redundancy check)
//  _fec0           :   inner forward error-correction code scheme
//  _fec1           :   outer forward error-correction code scheme
bpacketgen bpacketgen_create(unsigned int _m,
                             unsigned int _dec_msg_len,
                             int _crc,
                             int _fec0,
                             int _fec1);

// re-create bpacketgen object from old object
//  _q              :   old bpacketgen object
//  _m              :   p/n sequence length (ignored)
//  _dec_msg_len    :   decoded message length (original uncoded data)
//  _crc            :   data validity check (e.g. cyclic redundancy check)
//  _fec0           :   inner forward error-correction code scheme
//  _fec1           :   outer forward error-correction code scheme
bpacketgen bpacketgen_recreate(bpacketgen _q,
                               unsigned int _m,
                               unsigned int _dec_msg_len,
                               int _crc,
                               int _fec0,
                               int _fec1);

// destroy bpacketgen object, freeing all internally-allocated memory
void bpacketgen_destroy(bpacketgen _q);

// print bpacketgen internals
void bpacketgen_print(bpacketgen _q);

// return length of full packet
unsigned int bpacketgen_get_packet_len(bpacketgen _q);

// encode packet
void bpacketgen_encode(bpacketgen _q,
                       unsigned char * _msg_dec,
                       unsigned char * _packet);

// 
// bpacket synchronizer/decoder
//
typedef struct bpacketsync_s * bpacketsync;
typedef int (*bpacketsync_callback)(unsigned char *  _payload,
                                    int              _payload_valid,
                                    unsigned int     _payload_len,
                                    framesyncstats_s _stats,
                                    void *           _userdata);
bpacketsync bpacketsync_create(unsigned int _m,
                               bpacketsync_callback _callback,
                               void * _userdata);
void bpacketsync_destroy(bpacketsync _q);
void bpacketsync_print(bpacketsync _q);
void bpacketsync_reset(bpacketsync _q);

// run synchronizer on array of input bytes
//  _q      :   bpacketsync object
//  _bytes  :   input data array [size: _n x 1]
//  _n      :   input array size
void bpacketsync_execute(bpacketsync _q,
                         unsigned char * _bytes,
                         unsigned int _n);

// run synchronizer on input byte
//  _q      :   bpacketsync object
//  _byte   :   input byte
void bpacketsync_execute_byte(bpacketsync _q,
                              unsigned char _byte);

// run synchronizer on input symbol
//  _q      :   bpacketsync object
//  _sym    :   input symbol with _bps significant bits
//  _bps    :   number of bits in input symbol
void bpacketsync_execute_sym(bpacketsync _q,
                             unsigned char _sym,
                             unsigned int _bps);

// execute one bit at a time
void bpacketsync_execute_bit(bpacketsync _q,
                             unsigned char _bit);

//
// GMSK frame generator
//

typedef struct gmskframegen_s * gmskframegen;

// create GMSK frame generator
gmskframegen gmskframegen_create();
void gmskframegen_destroy       (gmskframegen _q);
int  gmskframegen_is_assembled  (gmskframegen _q);
void gmskframegen_print         (gmskframegen _q);
void gmskframegen_reset         (gmskframegen _q);
void gmskframegen_assemble      (gmskframegen          _q,
                                 const unsigned char * _header,
                                 const unsigned char * _payload,
                                 unsigned int          _payload_len,
                                 crc_scheme            _check,
                                 fec_scheme            _fec0,
                                 fec_scheme            _fec1);
unsigned int gmskframegen_getframelen(gmskframegen _q);
int gmskframegen_write_samples(gmskframegen _q,
                               liquid_float_complex * _y);


//
// GMSK frame synchronizer
//

typedef struct gmskframesync_s * gmskframesync;

// create GMSK frame synchronizer
//  _callback   :   callback function
//  _userdata   :   user data pointer passed to callback function
gmskframesync gmskframesync_create(framesync_callback _callback,
                                   void *             _userdata);
void gmskframesync_destroy(gmskframesync _q);
void gmskframesync_print(gmskframesync _q);
void gmskframesync_reset(gmskframesync _q);
int  gmskframesync_is_frame_open(gmskframesync _q);
void gmskframesync_execute(gmskframesync _q,
                           liquid_float_complex * _x,
                           unsigned int _n);

// debugging
void gmskframesync_debug_enable(gmskframesync _q);
void gmskframesync_debug_disable(gmskframesync _q);
void gmskframesync_debug_print(gmskframesync _q, const char * _filename);



// 
// OFDM flexframe generator
//

// ofdm frame generator properties
typedef struct {
    unsigned int check;         // data validity check
    unsigned int fec0;          // forward error-correction scheme (inner)
    unsigned int fec1;          // forward error-correction scheme (outer)
    unsigned int mod_scheme;    // modulation scheme
    //unsigned int block_size;  // framing block size
} ofdmflexframegenprops_s;
void ofdmflexframegenprops_init_default(ofdmflexframegenprops_s * _props);

typedef struct ofdmflexframegen_s * ofdmflexframegen;

// create OFDM flexible framing generator object
//  _M          :   number of subcarriers, >10 typical
//  _cp_len     :   cyclic prefix length
//  _taper_len  :   taper length (OFDM symbol overlap)
//  _p          :   subcarrier allocation (null, pilot, data), [size: _M x 1]
//  _fgprops    :   frame properties (modulation scheme, etc.)
ofdmflexframegen ofdmflexframegen_create(unsigned int              _M,
                                         unsigned int              _cp_len,
                                         unsigned int              _taper_len,
                                         unsigned char *           _p,
                                         ofdmflexframegenprops_s * _fgprops);

// destroy ofdmflexframegen object
void ofdmflexframegen_destroy(ofdmflexframegen _q);

// print parameters, properties, etc.
void ofdmflexframegen_print(ofdmflexframegen _q);

// reset ofdmflexframegen object internals
void ofdmflexframegen_reset(ofdmflexframegen _q);

// is frame assembled?
int ofdmflexframegen_is_assembled(ofdmflexframegen _q);

// get properties
void ofdmflexframegen_getprops(ofdmflexframegen _q,
                               ofdmflexframegenprops_s * _props);

// set properties
void ofdmflexframegen_setprops(ofdmflexframegen _q,
                               ofdmflexframegenprops_s * _props);

// get length of frame (symbols)
//  _q              :   OFDM frame generator object
unsigned int ofdmflexframegen_getframelen(ofdmflexframegen _q);

// assemble a frame from an array of data (NULL pointers will use random data)
//  _q              :   OFDM frame generator object
//  _header         :   frame header [8 bytes]
//  _payload        :   payload data [size: _payload_len x 1]
//  _payload_len    :   payload data length
void ofdmflexframegen_assemble(ofdmflexframegen      _q,
                               const unsigned char * _header,
                               const unsigned char * _payload,
                               unsigned int          _payload_len);

// write samples of assembled frame
//  _q              :   OFDM frame generator object
//  _buf            :   output buffer [size: _buf_len x 1]
//  _buf_len        :   output buffer length
int ofdmflexframegen_write(ofdmflexframegen       _q,
                          liquid_float_complex * _buf,
                          unsigned int           _buf_len);

// 
// OFDM flex frame synchronizer
//

typedef struct ofdmflexframesync_s * ofdmflexframesync;

// create OFDM flexible framing synchronizer object
//  _M          :   number of subcarriers
//  _cp_len     :   cyclic prefix length
//  _taper_len  :   taper length (OFDM symbol overlap)
//  _p          :   subcarrier allocation (null, pilot, data), [size: _M x 1]
//  _callback   :   user-defined callback function
//  _userdata   :   user-defined data pointer
ofdmflexframesync ofdmflexframesync_create(unsigned int       _M,
                                           unsigned int       _cp_len,
                                           unsigned int       _taper_len,
                                           unsigned char *    _p,
                                           framesync_callback _callback,
                                           void *             _userdata);

void ofdmflexframesync_destroy(ofdmflexframesync _q);
void ofdmflexframesync_print(ofdmflexframesync _q);
void ofdmflexframesync_reset(ofdmflexframesync _q);
int  ofdmflexframesync_is_frame_open(ofdmflexframesync _q);
void ofdmflexframesync_execute(ofdmflexframesync _q,
                               liquid_float_complex * _x,
                               unsigned int _n);

// query the received signal strength indication
float ofdmflexframesync_get_rssi(ofdmflexframesync _q);

// query the received carrier offset estimate
float ofdmflexframesync_get_cfo(ofdmflexframesync _q);

// enable/disable debugging
void ofdmflexframesync_debug_enable(ofdmflexframesync _q);
void ofdmflexframesync_debug_disable(ofdmflexframesync _q);
void ofdmflexframesync_debug_print(ofdmflexframesync _q,
                                   const char *      _filename);



//
// Binary P/N synchronizer
//
#define LIQUID_BSYNC_MANGLE_RRRF(name) LIQUID_CONCAT(bsync_rrrf,name)
#define LIQUID_BSYNC_MANGLE_CRCF(name) LIQUID_CONCAT(bsync_crcf,name)
#define LIQUID_BSYNC_MANGLE_CCCF(name) LIQUID_CONCAT(bsync_cccf,name)

// Macro:
//   BSYNC  : name-mangling macro
//   TO     : output data type
//   TC     : coefficients data type
//   TI     : input data type
#define LIQUID_BSYNC_DEFINE_API(BSYNC,TO,TC,TI)                 \
typedef struct BSYNC(_s) * BSYNC();                             \
                                                                \
BSYNC() BSYNC(_create)(unsigned int _n, TC * _v);               \
                                                                \
/* create binary synchronizer from m-sequence               */  \
/*  _g      :   m-sequence generator polynomial             */  \
/*  _k      :   samples/symbol (over-sampling factor)       */  \
BSYNC() BSYNC(_create_msequence)(unsigned int _g,               \
                                 unsigned int _k);              \
void BSYNC(_destroy)(BSYNC() _fs);                              \
void BSYNC(_print)(BSYNC() _fs);                                \
void BSYNC(_correlate)(BSYNC() _fs, TI _sym, TO * _y);

LIQUID_BSYNC_DEFINE_API(LIQUID_BSYNC_MANGLE_RRRF,
                        float,
                        float,
                        float)

LIQUID_BSYNC_DEFINE_API(LIQUID_BSYNC_MANGLE_CRCF,
                        liquid_float_complex,
                        float,
                        liquid_float_complex)

LIQUID_BSYNC_DEFINE_API(LIQUID_BSYNC_MANGLE_CCCF,
                        liquid_float_complex,
                        liquid_float_complex,
                        liquid_float_complex)


//
// Pre-demodulation synchronizers (binary and otherwise)
//
#define  LIQUID_PRESYNC_MANGLE_CCCF(name) LIQUID_CONCAT( presync_cccf,name)
#define LIQUID_BPRESYNC_MANGLE_CCCF(name) LIQUID_CONCAT(bpresync_cccf,name)

// Macro:
//   PRESYNC   : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_PRESYNC_DEFINE_API(PRESYNC,TO,TC,TI)             \
typedef struct PRESYNC(_s) * PRESYNC();                         \
                                                                \
/* create pre-demod synchronizer                            */  \
/*  _v          :   baseband sequence                       */  \
/*  _n          :   baseband sequence length                */  \
/*  _dphi_max   :   maximum absolute frequency deviation    */  \
/*  _m          :   number of correlators                   */  \
PRESYNC() PRESYNC(_create)(TC *         _v,                     \
                           unsigned int _n,                     \
                           float        _dphi_max,              \
                           unsigned int _m);                    \
                                                                \
/* destroy pre-demod synchronizer                           */  \
void PRESYNC(_destroy)(PRESYNC() _q);                           \
                                                                \
/* print pre-demod synchronizer internal state              */  \
void PRESYNC(_print)(PRESYNC() _q);                             \
                                                                \
/* reset pre-demod synchronizer internal state              */  \
void PRESYNC(_reset)(PRESYNC() _q);                             \
                                                                \
/* push input sample into pre-demod synchronizer            */  \
/*  _q          :   pre-demod synchronizer object           */  \
/*  _x          :   input sample                            */  \
void PRESYNC(_push)(PRESYNC() _q,                               \
                    TI        _x);                              \
                                                                \
/* correlate input sequence                                 */  \
/*  _q          :   pre-demod synchronizer object           */  \
/*  _rxy        :   output cross correlation                */  \
/*  _dphi_hat   :   output frequency offset estiamte        */  \
void PRESYNC(_correlate)(PRESYNC() _q,                          \
                         TO *      _rxy,                        \
                         float *   _dphi_hat);                  \

// non-binary pre-demodulation synchronizer
LIQUID_PRESYNC_DEFINE_API(LIQUID_PRESYNC_MANGLE_CCCF,
                          liquid_float_complex,
                          liquid_float_complex,
                          liquid_float_complex)

// binary pre-demodulation synchronizer
LIQUID_PRESYNC_DEFINE_API(LIQUID_BPRESYNC_MANGLE_CCCF,
                          liquid_float_complex,
                          liquid_float_complex,
                          liquid_float_complex)

//
// Frame detector
//

typedef struct qdetector_cccf_s * qdetector_cccf;

// create detector with generic sequence
//  _s      :   sample sequence
//  _s_len  :   length of sample sequence
qdetector_cccf qdetector_cccf_create(liquid_float_complex * _s,
                                     unsigned int           _s_len);

// create detector from sequence of symbols using internal linear interpolator
//  _sequence       :   symbol sequence
//  _sequence_len   :   length of symbol sequence
//  _ftype          :   filter prototype (e.g. LIQUID_FIRFILT_RRC)
//  _k              :   samples/symbol
//  _m              :   filter delay
//  _beta           :   excess bandwidth factor
qdetector_cccf qdetector_cccf_create_linear(liquid_float_complex * _sequence,
                                            unsigned int           _sequence_len,
                                            int                    _ftype,
                                            unsigned int           _k,
                                            unsigned int           _m,
                                            float                  _beta);

// create detector from sequence of GMSK symbols
//  _sequence       :   bit sequence
//  _sequence_len   :   length of bit sequence
//  _k              :   samples/symbol
//  _m              :   filter delay
//  _beta           :   excess bandwidth factor
qdetector_cccf qdetector_cccf_create_gmsk(unsigned char * _sequence,
                                          unsigned int    _sequence_len,
                                          unsigned int    _k,
                                          unsigned int    _m,
                                          float           _beta);

void qdetector_cccf_destroy(qdetector_cccf _q);
void qdetector_cccf_print  (qdetector_cccf _q);
void qdetector_cccf_reset  (qdetector_cccf _q);

// run detector, looking for sequence; return pointer to aligned, buffered samples
void * qdetector_cccf_execute(qdetector_cccf       _q,
                              liquid_float_complex _x);

// set detection threshold (should be between 0 and 1, good starting point is 0.5)
void qdetector_cccf_set_threshold(qdetector_cccf _q,
                                  float          _threshold);

// set carrier offset search range
void qdetector_cccf_set_range(qdetector_cccf _q,
                              float          _dphi_max);

// access methods
unsigned int qdetector_cccf_get_seq_len (qdetector_cccf _q); // sequence length
const void * qdetector_cccf_get_sequence(qdetector_cccf _q); // pointer to sequence
unsigned int qdetector_cccf_get_buf_len (qdetector_cccf _q); // buffer length
float        qdetector_cccf_get_tau     (qdetector_cccf _q); // fractional timing offset estimate
float        qdetector_cccf_get_gamma   (qdetector_cccf _q); // channel gain
float        qdetector_cccf_get_dphi    (qdetector_cccf _q); // carrier frequency offset estimate
float        qdetector_cccf_get_phi     (qdetector_cccf _q); // carrier phase offset estimate

//
// Pre-demodulation detector
//

typedef struct detector_cccf_s * detector_cccf;

// create pre-demod detector
//  _s          :   sequence
//  _n          :   sequence length
//  _threshold  :   detection threshold (default: 0.7)
//  _dphi_max   :   maximum carrier offset
detector_cccf detector_cccf_create(liquid_float_complex * _s,
                                   unsigned int           _n,
                                   float                  _threshold,
                                   float                  _dphi_max);

// destroy pre-demo detector object
void detector_cccf_destroy(detector_cccf _q);

// print pre-demod detector internal state
void detector_cccf_print(detector_cccf _q);

// reset pre-demod detector internal state
void detector_cccf_reset(detector_cccf _q);

// Run sample through pre-demod detector's correlator.
// Returns '1' if signal was detected, '0' otherwise
//  _q          :   pre-demod detector
//  _x          :   input sample
//  _tau_hat    :   fractional sample offset estimate (set when detected)
//  _dphi_hat   :   carrier frequency offset estimate (set when detected)
//  _gamma_hat  :   channel gain estimate (set when detected)
int detector_cccf_correlate(detector_cccf        _q,
                            liquid_float_complex _x,
                            float *              _tau_hat,
                            float *              _dphi_hat,
                            float *              _gamma_hat);


// 
// symbol streaming for testing (no meaningful data, just symbols)
//
#define LIQUID_SYMSTREAM_MANGLE_CFLOAT(name) LIQUID_CONCAT(symstreamcf,name)

#define LIQUID_SYMSTREAM_DEFINE_API(SYMSTREAM,TO)               \
                                                                \
typedef struct SYMSTREAM(_s) * SYMSTREAM();                     \
                                                                \
/* create default symstream object                          */  \
/* (LIQUID_RNYQUIST_ARKAISER, k=2, m=7, beta=0.3, QPSK)     */  \
SYMSTREAM() SYMSTREAM(_create)(void);                           \
                                                                \
/* create symstream object with linear modulation           */  \
/*  _ftype  : filter type (e.g. LIQUID_RNYQUIST_RRC)        */  \
/*  _k      : samples per symbol                            */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _beta   : filter excess bandwidth                       */  \
/*  _ms     : modulation scheme (e.g. LIQUID_MODEM_QPSK)    */  \
SYMSTREAM() SYMSTREAM(_create_linear)(int          _ftype,      \
                                      unsigned int _k,          \
                                      unsigned int _m,          \
                                      float        _beta,       \
                                      int          _ms);        \
                                                                \
/* destroy symstream object, freeing all internal memory    */  \
void SYMSTREAM(_destroy)(SYMSTREAM() _q);                       \
                                                                \
/* print symstream object's parameters                      */  \
void SYMSTREAM(_print)(SYMSTREAM() _q);                         \
                                                                \
/* reset symstream internal state                           */  \
void SYMSTREAM(_reset)(SYMSTREAM() _q);                         \
                                                                \
/* write block of samples to output buffer                  */  \
/*  _q      : synchronizer object                           */  \
/*  _buf    : output buffer [size: _buf_len x 1]            */  \
/*  _buf_len: output buffer size                            */  \
void SYMSTREAM(_write_samples)(SYMSTREAM()  _q,                 \
                               TO *         _buf,               \
                               unsigned int _buf_len);          \
    
LIQUID_SYMSTREAM_DEFINE_API(LIQUID_SYMSTREAM_MANGLE_CFLOAT, liquid_float_complex)



//
// multi-signal source for testing (no meaningful data, just signals)
//
#define LIQUID_MSOURCE_MANGLE_CFLOAT(name) LIQUID_CONCAT(msourcecf,name)

#define LIQUID_MSOURCE_DEFINE_API(MSOURCE,TO)                   \
                                                                \
typedef struct MSOURCE(_s) * MSOURCE();                         \
                                                                \
/* create default msource object                            */  \
MSOURCE() MSOURCE(_create)(void);                               \
                                                                \
/* destroy msource object                                   */  \
void MSOURCE(_destroy)(MSOURCE() _q);                           \
                                                                \
/* print msrouce object                                     */  \
void MSOURCE(_print)(MSOURCE() _q);                             \
                                                                \
/* reset msrouce object                                     */  \
void MSOURCE(_reset)(MSOURCE() _q);                             \
                                                                \
/* add signal sources                                       */  \
int MSOURCE(_add_tone) (MSOURCE() _q);                          \
int MSOURCE(_add_noise)(MSOURCE() _q, float _bandwidth);        \
int MSOURCE(_add_modem)(MSOURCE()    _q,                        \
                        int          _ms,                       \
                        unsigned int _k,                        \
                        unsigned int _m,                        \
                        float        _beta);                    \
                                                                \
/* remove signal                                            */  \
void MSOURCE(_remove)(MSOURCE() _q, int _id);                   \
                                                                \
/* enable/disable signal                                    */  \
void MSOURCE(_enable) (MSOURCE() _q, int _id);                  \
void MSOURCE(_disable)(MSOURCE() _q, int _id);                  \
                                                                \
/* set signal gain                                          */  \
/*  _q      :   msource object                              */  \
/*  _id     :   source id                                   */  \
/*  _gain   :   signal gain                                 */  \
void MSOURCE(_set_gain)(MSOURCE() _q,                           \
                        int       _id,                          \
                        float     _gain_dB);                    \
                                                                \
/* set carrier offset to signal                             */  \
/*  _q      :   msource object                              */  \
/*  _id     :   source id                                   */  \
/*  _fc     :   carrier offset, fc in [-0.5,0.5]            */  \
void MSOURCE(_set_frequency)(MSOURCE() _q,                      \
                             int       _id,                     \
                             float     _dphi);                  \
                                                                \
/* write block of samples to output buffer                  */  \
/*  _q      : synchronizer object                           */  \
/*  _buf    : output buffer [size: _buf_len x 1]            */  \
/*  _buf_len: output buffer size                            */  \
void MSOURCE(_write_samples)(MSOURCE()    _q,                   \
                             TO *         _buf,                 \
                             unsigned int _buf_len);            \
    
LIQUID_MSOURCE_DEFINE_API(LIQUID_MSOURCE_MANGLE_CFLOAT, liquid_float_complex)




// 
// Symbol tracking: AGC > symsync > EQ > carrier recovery
//
#define LIQUID_SYMTRACK_MANGLE_RRRF(name) LIQUID_CONCAT(symtrack_rrrf,name)
#define LIQUID_SYMTRACK_MANGLE_CCCF(name) LIQUID_CONCAT(symtrack_cccf,name)

// large macro
//   SYMTRACK   : name-mangling macro
//   T          : data type, primitive
//   TO         : data type, output
//   TC         : data type, coefficients
//   TI         : data type, input
#define LIQUID_SYMTRACK_DEFINE_API(SYMTRACK,T,TO,TC,TI)         \
                                                                \
typedef struct SYMTRACK(_s) * SYMTRACK();                       \
                                                                \
/* create symtrack object with default parameters           */  \
/*  _ftype  : filter type (e.g. LIQUID_RNYQUIST_RRC)        */  \
/*  _k      : samples per symbol                            */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _beta   : filter excess bandwidth                       */  \
/*  _ms     : modulation scheme (e.g. LIQUID_MODEM_QPSK)    */  \
SYMTRACK() SYMTRACK(_create)(int          _ftype,               \
                             unsigned int _k,                   \
                             unsigned int _m,                   \
                             float        _beta,                \
                             int          _ms);                 \
                                                                \
/* create symtrack object using default parameters          */  \
SYMTRACK() SYMTRACK(_create_default)();                         \
                                                                \
/* destroy symtrack object, freeing all internal memory     */  \
void SYMTRACK(_destroy)(SYMTRACK() _q);                         \
                                                                \
/* print symtrack object's parameters                       */  \
void SYMTRACK(_print)(SYMTRACK() _q);                           \
                                                                \
/* reset symtrack internal state                            */  \
void SYMTRACK(_reset)(SYMTRACK() _q);                           \
                                                                \
/* set symtrack modulation scheme                           */  \
void SYMTRACK(_set_modscheme)(SYMTRACK() _q, int _ms);          \
                                                                \
/* set symtrack internal bandwidth                          */  \
void SYMTRACK(_set_bandwidth)(SYMTRACK() _q, float _bw);        \
                                                                \
/* adjust internal nco by requested phase                   */  \
void SYMTRACK(_adjust_phase)(SYMTRACK() _q, T _dphi);           \
                                                                \
/* execute synchronizer on single input sample              */  \
/*  _q      : synchronizer object                           */  \
/*  _x      : input data sample                             */  \
/*  _y      : output data array                             */  \
/*  _ny     : number of samples written to output buffer    */  \
void SYMTRACK(_execute)(SYMTRACK()     _q,                      \
                        TI             _x,                      \
                        TO *           _y,                      \
                        unsigned int * _ny);                    \
                                                                \
/* execute synchronizer on input data array                 */  \
/*  _q      : synchronizer object                           */  \
/*  _x      : input data array                              */  \
/*  _nx     : number of input samples                       */  \
/*  _y      : output data array                             */  \
/*  _ny     : number of samples written to output buffer    */  \
void SYMTRACK(_execute_block)(SYMTRACK()     _q,                \
                              TI *           _x,                \
                              unsigned int   _nx,               \
                              TO *           _y,                \
                              unsigned int * _ny);              \
    
LIQUID_SYMTRACK_DEFINE_API(LIQUID_SYMTRACK_MANGLE_RRRF,
                           float,
                           float,
                           float,
                           float)

LIQUID_SYMTRACK_DEFINE_API(LIQUID_SYMTRACK_MANGLE_CCCF,
                           float,
                           liquid_float_complex,
                           liquid_float_complex,
                           liquid_float_complex)



//
// MODULE : math
//

// ln( Gamma(z) )
float liquid_lngammaf(float _z);

// Gamma(z)
float liquid_gammaf(float _z);

// ln( gamma(z,alpha) ) : lower incomplete gamma function
float liquid_lnlowergammaf(float _z, float _alpha);

// ln( Gamma(z,alpha) ) : upper incomplete gamma function
float liquid_lnuppergammaf(float _z, float _alpha);

// gamma(z,alpha) : lower incomplete gamma function
float liquid_lowergammaf(float _z, float _alpha);

// Gamma(z,alpha) : upper incomplete gamma function
float liquid_uppergammaf(float _z, float _alpha);

// n!
float liquid_factorialf(unsigned int _n);



// ln(I_v(z)) : log Modified Bessel function of the first kind
float liquid_lnbesselif(float _nu, float _z);

// I_v(z) : Modified Bessel function of the first kind
float liquid_besselif(float _nu, float _z);

// I_0(z) : Modified Bessel function of the first kind (order zero)
float liquid_besseli0f(float _z);

// J_v(z) : Bessel function of the first kind
float liquid_besseljf(float _nu, float _z);

// J_0(z) : Bessel function of the first kind (order zero)
float liquid_besselj0f(float _z);


// Q function
float liquid_Qf(float _z);

// Marcum Q-function
float liquid_MarcumQf(int _M,
                      float _alpha,
                      float _beta);

// Marcum Q-function (M=1)
float liquid_MarcumQ1f(float _alpha,
                       float _beta);

// sin(pi x) / (pi x)
float sincf(float _x);

// next power of 2 : y = ceil(log2(_x))
unsigned int liquid_nextpow2(unsigned int _x);

// (n choose k) = n! / ( k! (n-k)! )
float liquid_nchoosek(unsigned int _n, unsigned int _k);

// 
// Windowing functions
//

// Modulation schemes available
#define LIQUID_WINDOW_NUM_FUNCTIONS (10)

// prototypes
typedef enum {
    LIQUID_WINDOW_UNKNOWN=0,        // unknown/unsupported scheme

    LIQUID_WINDOW_HAMMING,          // Hamming
    LIQUID_WINDOW_HANN,             // Hann
    LIQUID_WINDOW_BLACKMANHARRIS,   // Blackman-harris (4-term)
    LIQUID_WINDOW_BLACKMANHARRIS7,  // Blackman-harris (7-term)
    LIQUID_WINDOW_KAISER,           // Kaiser (beta factor unspecified)
    LIQUID_WINDOW_FLATTOP,          // flat top (includes negative values)
    LIQUID_WINDOW_TRIANGULAR,       // triangular
    LIQUID_WINDOW_RCOSTAPER,        // raised-cosine taper (taper size unspecified)
    LIQUID_WINDOW_KBD,              // Kaiser-Bessel derived window (beta factor unspecified)
} liquid_window_type;

// pretty names for window
extern const char * liquid_window_str[LIQUID_WINDOW_NUM_FUNCTIONS][2];

// Print compact list of existing and available windowing functions
void liquid_print_windows();

// returns modulation_scheme based on input string
liquid_window_type liquid_getopt_str2window(const char * _str);

// Kaiser-Bessel derived window (single sample)
//  _n      :   index (0 <= _n < _N)
//  _N      :   length of filter (must be even)
//  _beta   :   Kaiser window parameter (_beta > 0)
float liquid_kbd(unsigned int _n, unsigned int _N, float _beta);

// Kaiser-Bessel derived window (full window)
//  _n      :   length of filter (must be even)
//  _beta   :   Kaiser window parameter (_beta > 0)
//  _w      :   resulting window
void liquid_kbd_window(unsigned int _n, float _beta, float * _w);

// Kaiser window
//  _n      :   window index
//  _N      :   full window length
//  _beta   :   Kaiser-Bessel window shape parameter
//  _dt     :   fractional sample offset
float kaiser(unsigned int _n,
             unsigned int _N,
             float        _beta,
             float        _dt);

// Hamming window
//  _n      :   window index
//  _N      :   full window length
float hamming(unsigned int _n,
              unsigned int _N);

// Hann window
//  _n      :   window index
//  _N      :   full window length
float hann(unsigned int _n,
           unsigned int _N);

// Blackman-harris window
//  _n      :   window index
//  _N      :   full window length
float blackmanharris(unsigned int _n,
                     unsigned int _N);

// 7th order Blackman-harris window
// _n			:	window index
// _N			:	full window length
float blackmanharris7(unsigned int _n,
                      unsigned int _N);

// Flat-top window
// _n			:	window index
// _N			:	full window length
float flattop(unsigned int _n,
              unsigned int _N);

// Triangular window
// _n			:	window index
// _N			:	full window length
// _L			:	triangle length, _L in {_N, _N+1, _N-1}
float triangular(unsigned int _n,
                 unsigned int _N,
                 unsigned int _L);

// raised-cosine tapering window
//  _n      :   window index
//  _t      :   taper length
//  _N      :   full window length
float liquid_rcostaper_windowf(unsigned int _n,
                               unsigned int _t,
                               unsigned int _N);


// polynomials


#define LIQUID_POLY_MANGLE_DOUBLE(name)  LIQUID_CONCAT(poly,   name)
#define LIQUID_POLY_MANGLE_FLOAT(name)   LIQUID_CONCAT(polyf,  name)

#define LIQUID_POLY_MANGLE_CDOUBLE(name) LIQUID_CONCAT(polyc,  name)
#define LIQUID_POLY_MANGLE_CFLOAT(name)  LIQUID_CONCAT(polycf, name)

// large macro
//   POLY   : name-mangling macro
//   T      : data type
//   TC     : data type (complex)
#define LIQUID_POLY_DEFINE_API(POLY,T,TC)                       \
/* evaluate polynomial _p (order _k-1) at value _x  */          \
T POLY(_val)(T * _p, unsigned int _k, T _x);                    \
                                                                \
/* least-squares polynomial fit (order _k-1) */                 \
void POLY(_fit)(T * _x,                                         \
                T * _y,                                         \
                unsigned int _n,                                \
                T * _p,                                         \
                unsigned int _k);                               \
                                                                \
/* Lagrange polynomial exact fit (order _n-1) */                \
void POLY(_fit_lagrange)(T * _x,                                \
                         T * _y,                                \
                         unsigned int _n,                       \
                         T * _p);                               \
                                                                \
/* Lagrange polynomial interpolation */                         \
T POLY(_interp_lagrange)(T * _x,                                \
                         T * _y,                                \
                         unsigned int _n,                       \
                         T   _x0);                              \
                                                                \
/* Lagrange polynomial fit (barycentric form) */                \
void POLY(_fit_lagrange_barycentric)(T * _x,                    \
                                     unsigned int _n,           \
                                     T * _w);                   \
                                                                \
/* Lagrange polynomial interpolation (barycentric form) */      \
T POLY(_val_lagrange_barycentric)(T * _x,                       \
                                  T * _y,                       \
                                  T * _w,                       \
                                  T   _x0,                      \
                                  unsigned int _n);             \
                                                                \
/* expands the polynomial:                                      \
 *  P_n(x) = (1+x)^n                                            \
 * as                                                           \
 *  P_n(x) = p[0] + p[1]*x + p[2]*x^2 + ... + p[n]x^n           \
 * NOTE: _p has order n=m+k (array is length n+1)               \
 */                                                             \
void POLY(_expandbinomial)(unsigned int _n,                     \
                           T * _p);                             \
                                                                \
/* expands the polynomial:                                      \
 *  P_n(x) = (1+x)^m * (1-x)^k                                  \
 * as                                                           \
 *  P_n(x) = p[0] + p[1]*x + p[2]*x^2 + ... + p[n]x^n           \
 * NOTE: _p has order n=m+k (array is length n+1)               \
 */                                                             \
void POLY(_expandbinomial_pm)(unsigned int _m,                  \
                              unsigned int _k,                  \
                              T * _p);                          \
                                                                \
/* expands the polynomial:                                      \
 *  P_n(x) = (x-r[0]) * (x-r[1]) * ... * (x-r[n-1])             \
 * as                                                           \
 *  P_n(x) = c[0] + c[1]*x + ... + c[n]*x^n                     \
 * where r[0],r[1],...,r[n-1] are the roots of P_n(x)           \
 * NOTE: _c has order _n (array is length _n+1)                 \
 */                                                             \
void POLY(_expandroots)(T * _a,                                 \
                        unsigned int _n,                        \
                        T * _c);                                \
                                                                \
/* expands the polynomial:                                      \
 *  P_n(x) =                                                    \
 *    (x*b[0]-a[0]) * (x*b[1]-a[1]) * ... * (x*b[n-1]-a[n-1])   \
 * as                                                           \
 *  P_n(x) = c[0] + c[1]*x + ... + c[n]*x^n                     \
 * NOTE: _c has order _n (array is length _n+1)                 \
 */                                                             \
void POLY(_expandroots2)(T * _a,                                \
                         T * _b,                                \
                         unsigned int _n,                       \
                         T * _c);                               \
                                                                \
/* find roots of the polynomial (complex)                   */  \
/*  _poly   : poly array, ascending powers [size: _k x 1]   */  \
/*  _k      : poly length (poly order = _k - 1)             */  \
/*  _roots  : resulting complex roots [size: _k-1 x 1]      */  \
void POLY(_findroots)(T *          _poly,                       \
                      unsigned int _n,                          \
                      TC *         _roots);                     \
                                                                \
/* find the complex roots of the polynomial using the       */  \
/* Durand-Kerner method                                     */  \
void POLY(_findroots_durandkerner)(T *          _poly,          \
                                   unsigned int _k,             \
                                   TC *         _roots);        \
                                                                \
/* find the complex roots of the polynomial using           */  \
/* Bairstow's method                                        */  \
void POLY(_findroots_bairstow)(T *          _poly,              \
                               unsigned int _k,                 \
                               TC *         _roots);            \
                                                                \
/* expands the multiplication of two polynomials */             \
void POLY(_mul)(T *          _a,                                \
                unsigned int _order_a,                          \
                T *          _b,                                \
                unsigned int _order_b,                          \
                T *          _c);                               \

LIQUID_POLY_DEFINE_API(LIQUID_POLY_MANGLE_DOUBLE,
                       double,
                       liquid_double_complex)

LIQUID_POLY_DEFINE_API(LIQUID_POLY_MANGLE_FLOAT,
                       float,
                       liquid_float_complex)

LIQUID_POLY_DEFINE_API(LIQUID_POLY_MANGLE_CDOUBLE,
                       liquid_double_complex,
                       liquid_double_complex)

LIQUID_POLY_DEFINE_API(LIQUID_POLY_MANGLE_CFLOAT,
                       liquid_float_complex,
                       liquid_float_complex)

#if 0
// expands the polynomial: (1+x)^n
void poly_binomial_expand(unsigned int _n, int * _c);

// expands the polynomial: (1+x)^k * (1-x)^(n-k)
void poly_binomial_expand_pm(unsigned int _n,
                             unsigned int _k,
                             int * _c);
#endif

// 
// modular arithmetic, etc.
//

// maximum number of factors
#define LIQUID_MAX_FACTORS (40)

// is number prime?
int liquid_is_prime(unsigned int _n);

// compute number's prime factors
//  _n          :   number to factor
//  _factors    :   pre-allocated array of factors [size: LIQUID_MAX_FACTORS x 1]
//  _num_factors:   number of factors found, sorted ascending
void liquid_factor(unsigned int   _n,
                   unsigned int * _factors,
                   unsigned int * _num_factors);

// compute number's unique prime factors
//  _n          :   number to factor
//  _factors    :   pre-allocated array of factors [size: LIQUID_MAX_FACTORS x 1]
//  _num_factors:   number of unique factors found, sorted ascending
void liquid_unique_factor(unsigned int   _n,
                          unsigned int * _factors,
                          unsigned int * _num_factors);

// compute c = base^exp (mod n)
unsigned int liquid_modpow(unsigned int _base,
                           unsigned int _exp,
                           unsigned int _n);

// find smallest primitive root of _n
unsigned int liquid_primitive_root(unsigned int _n);

// find smallest primitive root of _n, assuming _n is prime
unsigned int liquid_primitive_root_prime(unsigned int _n);

// Euler's totient function
unsigned int liquid_totient(unsigned int _n);


//
// MODULE : matrix
//

#define LIQUID_MATRIX_MANGLE_DOUBLE(name)  LIQUID_CONCAT(matrix,   name)
#define LIQUID_MATRIX_MANGLE_FLOAT(name)   LIQUID_CONCAT(matrixf,  name)

#define LIQUID_MATRIX_MANGLE_CDOUBLE(name) LIQUID_CONCAT(matrixc,  name)
#define LIQUID_MATRIX_MANGLE_CFLOAT(name)  LIQUID_CONCAT(matrixcf, name)

// large macro
//   MATRIX : name-mangling macro
//   T      : data type
#define LIQUID_MATRIX_DEFINE_API(MATRIX,T)                      \
                                                                \
/* print array as matrix                                    */  \
/*  _x      : input matrix [size: _r x _c]                  */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_print)(T *          _x,                            \
                    unsigned int _r,                            \
                    unsigned int _c);                           \
                                                                \
/* add two matrices _x and _y saving the result in _z       */  \
/*  _x      : input matrix  [size: _r x _c]                 */  \
/*  _y      : input matrix  [size: _r x _c]                 */  \
/*  _z      : output matrix [size: _r x _c]                 */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_add)(T *          _x,                              \
                  T *          _y,                              \
                  T *          _z,                              \
                  unsigned int _r,                              \
                  unsigned int _c);                             \
                                                                \
/* subtract two matrices _x and _y saving the result in _z  */  \
/*  _x      : input matrix  [size: _r x _c]                 */  \
/*  _y      : input matrix  [size: _r x _c]                 */  \
/*  _z      : output matrix [size: _r x _c]                 */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_sub)(T *          _x,                              \
                  T *          _y,                              \
                  T *          _z,                              \
                  unsigned int _r,                              \
                  unsigned int _c);                             \
                                                                \
/* perform point-wise multiplication of two matrices _x     */  \
/* and _y saving the result in _z                           */  \
/*  _x      : input matrix  [size: _r x _c]                 */  \
/*  _y      : input matrix  [size: _r x _c]                 */  \
/*  _z      : output matrix [size: _r x _c]                 */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_pmul)(T *          _x,                             \
                   T *          _y,                             \
                   T *          _z,                             \
                   unsigned int _r,                             \
                   unsigned int _c);                            \
                                                                \
/* perform point-wise division of two matrices _x and _y    */  \
/* saving the result in _z                                  */  \
/*  _x      : input matrix  [size: _r x _c]                 */  \
/*  _y      : input matrix  [size: _r x _c]                 */  \
/*  _z      : output matrix [size: _r x _c]                 */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_pdiv)(T *          _x,                             \
                   T *          _y,                             \
                   T *          _z,                             \
                   unsigned int _r,                             \
                   unsigned int _c);                            \
                                                                \
/* multiply two matrices _x and _y storing the result in _z */  \
/* NOTE: _rz = _rx, _cz = _cy, and _cx = _ry                */  \
/*  _x      : input matrix  [size: _rx x _cx]               */  \
/*  _y      : input matrix  [size: _ry x _cy]               */  \
/*  _z      : output matrix [size: _rz x _cz]               */  \
void MATRIX(_mul)(T * _x, unsigned int _rx, unsigned int _cx,   \
                  T * _y, unsigned int _ry, unsigned int _cy,   \
                  T * _z, unsigned int _rz, unsigned int _cz);  \
                                                                \
/* solve _x = _y*_z for _z for square matrices of size _n   */  \
/*  _x      : input matrix  [size: _n x _n]                 */  \
/*  _y      : input matrix  [size: _n x _n]                 */  \
/*  _z      : output matrix [size: _n x _n]                 */  \
void MATRIX(_div)(T *          _x,                              \
                  T *          _y,                              \
                  T *          _z,                              \
                  unsigned int _n);                             \
                                                                \
/* compute the determinant of a square matrix _x            */  \
/*  _x      : input matrix [size: _r x _c]                  */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
T MATRIX(_det)(T *          _x,                                 \
               unsigned int _r,                                 \
               unsigned int _c);                                \
                                                                \
/* compute the in-place transpose of the matrix _x          */  \
/*  _x      : input matrix [size: _r x _c]                  */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_trans)(T *          _x,                            \
                    unsigned int _r,                            \
                    unsigned int _c);                           \
                                                                \
/* compute the in-place Hermitian transpose of _x           */  \
/*  _x      : input matrix [size: _r x _c]                  */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_hermitian)(T *          _x,                        \
                        unsigned int _r,                        \
                        unsigned int _c);                       \
                                                                \
/* compute x*x' on [m x n] matrix, result: [m x m]          */  \
/*  _x      : input matrix [size: _m x _n]                  */  \
/*  _m      : input rows                                    */  \
/*  _n      : input columns                                 */  \
/*  _xxT    : output matrix [size: _m x _m]                 */  \
void MATRIX(_mul_transpose)(T *          _x,                    \
                            unsigned int _m,                    \
                            unsigned int _n,                    \
                            T *          _xxT);                 \
                                                                \
/* compute x'*x on [m x n] matrix, result: [n x n]          */  \
/*  _x      : input matrix [size: _m x _n]                  */  \
/*  _m      : input rows                                    */  \
/*  _n      : input columns                                 */  \
/*  _xTx    : output matrix [size: _n x _n]                 */  \
void MATRIX(_transpose_mul)(T *          _x,                    \
                            unsigned int _m,                    \
                            unsigned int _n,                    \
                            T *          _xTx);                 \
                                                                \
/* compute x*x.' on [m x n] matrix, result: [m x m]         */  \
/*  _x      : input matrix [size: _m x _n]                  */  \
/*  _m      : input rows                                    */  \
/*  _n      : input columns                                 */  \
/*  _xxH    : output matrix [size: _m x _m]                 */  \
void MATRIX(_mul_hermitian)(T *          _x,                    \
                            unsigned int _m,                    \
                            unsigned int _n,                    \
                            T *          _xxH);                 \
                                                                \
/* compute x.'*x on [m x n] matrix, result: [n x n]         */  \
/*  _x      : input matrix [size: _m x _n]                  */  \
/*  _m      : input rows                                    */  \
/*  _n      : input columns                                 */  \
/*  _xHx    : output matrix [size: _n x _n]                 */  \
void MATRIX(_hermitian_mul)(T *          _x,                    \
                            unsigned int _m,                    \
                            unsigned int _n,                    \
                            T *          _xHx);                 \
                                                                \
                                                                \
/* augment two matrices _x and _y storing the result in _z  */  \
/* NOTE: _rz = _rx = _ry, _rx = _ry, and _cz = _cx + _cy    */  \
/*  _x      : input matrix  [size: _rx x _cx]               */  \
/*  _y      : input matrix  [size: _ry x _cy]               */  \
/*  _z      : output matrix [size: _rz x _cz]               */  \
void MATRIX(_aug)(T * _x, unsigned int _rx, unsigned int _cx,   \
                  T * _y, unsigned int _ry, unsigned int _cy,   \
                  T * _z, unsigned int _rz, unsigned int _cz);  \
                                                                \
/* compute the inverse of a square matrix _x                */  \
/*  _x      : input/output matrix [size: _r x _c]           */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_inv)(T *          _x,                              \
                  unsigned int _r,                              \
                  unsigned int _c);                             \
                                                                \
/* generate the identity square matrix of size _n           */  \
/*  _x      : output matrix [size: _n x _n]                 */  \
/*  _n      : dimensions of _x                              */  \
void MATRIX(_eye)(T *          _x,                              \
                  unsigned int _n);                             \
                                                                \
/* generate the all-ones matrix of size _n                  */  \
/*  _x      : output matrix [size: _r x _c]                 */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_ones)(T *          _n,                             \
                   unsigned int _r,                             \
                   unsigned int _c);                            \
                                                                \
/* generate the all-zeros matrix of size _n                 */  \
/*  _x      : output matrix [size: _r x _c]                 */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_zeros)(T *          _x,                            \
                    unsigned int _r,                            \
                    unsigned int _c);                           \
                                                                \
/* perform Gauss-Jordan elimination on matrix _x            */  \
/*  _x      : input/output matrix [size: _r x _c]           */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
void MATRIX(_gjelim)(T *          _x,                           \
                     unsigned int _r,                           \
                     unsigned int _c);                          \
                                                                \
/* pivot on element _x[_r,_c]                               */  \
/*  _x      : output matrix [size: _rx x _cx]               */  \
/*  _rx     : rows of _x                                    */  \
/*  _cx     : columns of _x                                 */  \
/*  _r      : pivot row                                     */  \
/*  _c      : pivot column                                  */  \
void MATRIX(_pivot)(T *          _x,                            \
                    unsigned int _rx,                           \
                    unsigned int _cx,                           \
                    unsigned int _r,                            \
                    unsigned int _c);                           \
                                                                \
/* swap rows _r1 and _r2 of matrix _x                       */  \
/*  _x      : input/output matrix [size: _rx x _cx]         */  \
/*  _rx     : rows of _x                                    */  \
/*  _cx     : columns of _x                                 */  \
/*  _r1     : first row to swap                             */  \
/*  _r2     : second row to swap                            */  \
void MATRIX(_swaprows)(T *          _x,                         \
                       unsigned int _rx,                        \
                       unsigned int _cx,                        \
                       unsigned int _r1,                        \
                       unsigned int _r2);                       \
                                                                \
/* solve linear system of _n equations: _A*_x = _b          */  \
/*  _A      :   system matrix [size: _n x _n]               */  \
/*  _n      :   system size                                 */  \
/*  _b      :   equality vector [size: _n x 1]              */  \
/*  _x      :   solution vector [size: _n x 1]              */  \
/*  _opts   :   options (ignored for now)                   */  \
void MATRIX(_linsolve)(T *          _A,                         \
                       unsigned int _n,                         \
                       T *          _b,                         \
                       T *          _x,                         \
                       void *       _opts);                     \
                                                                \
/* solve linear system of equations using conjugate         */  \
/* gradient method                                          */  \
/*  _A      :   symmetric positive definite square matrix   */  \
/*  _n      :   system dimension                            */  \
/*  _b      :   equality [size: _n x 1]                     */  \
/*  _x      :   solution estimate [size: _n x 1]            */  \
/*  _opts   :   options (ignored for now)                   */  \
void MATRIX(_cgsolve)(T *          _A,                          \
                      unsigned int _n,                          \
                      T *          _b,                          \
                      T *          _x,                          \
                      void *       _opts);                      \
                                                                \
/* L/U/P decomposition, Crout's method                      */  \
/*  _x      : input/output matrix [size: _rx x _cx]         */  \
/*  _rx     : rows of _x                                    */  \
/*  _cx     : columns of _x                                 */  \
/*  _L      : first row to swap                             */  \
/*  _U      : first row to swap                             */  \
/*  _P      : first row to swap                             */  \
void MATRIX(_ludecomp_crout)(T *          _x,                   \
                             unsigned int _rx,                  \
                             unsigned int _cx,                  \
                             T *          _L,                   \
                             T *          _U,                   \
                             T *          _P);                  \
                                                                \
/* L/U/P decomposition, Doolittle's method                  */  \
/*  _x      : input/output matrix [size: _rx x _cx]         */  \
/*  _rx     : rows of _x                                    */  \
/*  _cx     : columns of _x                                 */  \
/*  _L      : first row to swap                             */  \
/*  _U      : first row to swap                             */  \
/*  _P      : first row to swap                             */  \
void MATRIX(_ludecomp_doolittle)(T *          _x,               \
                                 unsigned int _rx,              \
                                 unsigned int _cx,              \
                                 T *          _L,               \
                                 T *          _U,               \
                                 T *          _P);              \
                                                                \
/* Orthnormalization using the Gram-Schmidt algorithm       */  \
/*  _A      : input matrix [size: _r x _c]                  */  \
/*  _r      : rows                                          */  \
/*  _c      : columns                                       */  \
/*  _v      : output matrix                                 */  \
void MATRIX(_gramschmidt)(T *          _A,                      \
                          unsigned int _r,                      \
                          unsigned int _c,                      \
                          T *          _v);                     \
                                                                \
/* Q/R decomposition using the Gram-Schmidt algorithm such  */  \
/* that _A = _Q*_R and _Q^T * _Q = _In and _R is a diagonal */  \
/* matrix                                                   */  \
/* NOTE: all matrices are square                            */  \
/*  _A      : input matrix [size: _m x _m]                  */  \
/*  _m      : rows                                          */  \
/*  _n      : columns (same as cols)                        */  \
/*  _Q      : output matrix [size: _m x _m]                 */  \
/*  _R      : output matrix [size: _m x _m]                 */  \
void MATRIX(_qrdecomp_gramschmidt)(T *          _A,             \
                                   unsigned int _m,             \
                                   unsigned int _n,             \
                                   T *          _Q,             \
                                   T *          _R);            \
                                                                \
/* Compute Cholesky decomposition of a symmetric/Hermitian  */  \
/* positive-definite matrix as A = L * L^T                  */  \
/*  _A      :   input square matrix [size: _n x _n]         */  \
/*  _n      :   input matrix dimension                      */  \
/*  _L      :   output lower-triangular matrix              */  \
void MATRIX(_chol)(T *          _A,                             \
                   unsigned int _n,                             \
                   T *          _L);                            \

#define matrix_access(X,R,C,r,c) ((X)[(r)*(C)+(c)])

#define matrixc_access(X,R,C,r,c)   matrix_access(X,R,C,r,c)
#define matrixf_access(X,R,C,r,c)   matrix_access(X,R,C,r,c)
#define matrixcf_access(X,R,C,r,c)  matrix_access(X,R,C,r,c)

LIQUID_MATRIX_DEFINE_API(LIQUID_MATRIX_MANGLE_FLOAT,   float)
LIQUID_MATRIX_DEFINE_API(LIQUID_MATRIX_MANGLE_DOUBLE,  double)

LIQUID_MATRIX_DEFINE_API(LIQUID_MATRIX_MANGLE_CFLOAT,  liquid_float_complex)
LIQUID_MATRIX_DEFINE_API(LIQUID_MATRIX_MANGLE_CDOUBLE, liquid_double_complex)


#define LIQUID_SMATRIX_MANGLE_BOOL(name)  LIQUID_CONCAT(smatrixb,  name)
#define LIQUID_SMATRIX_MANGLE_FLOAT(name) LIQUID_CONCAT(smatrixf,  name)
#define LIQUID_SMATRIX_MANGLE_INT(name)   LIQUID_CONCAT(smatrixi,  name)

// sparse 'alist' matrix type (similar to MacKay, Davey Lafferty convention)
// large macro
//   SMATRIX    : name-mangling macro
//   T          : primitive data type
#define LIQUID_SMATRIX_DEFINE_API(SMATRIX,T)                    \
typedef struct SMATRIX(_s) * SMATRIX();                         \
                                                                \
/* create _M x _N matrix, initialized with zeros */             \
SMATRIX() SMATRIX(_create)(unsigned int _M,                     \
                           unsigned int _N);                    \
                                                                \
/* create _M x _N matrix, initialized on array */               \
SMATRIX() SMATRIX(_create_array)(T *          _x,               \
                                 unsigned int _m,               \
                                 unsigned int _n);              \
                                                                \
/* destroy object */                                            \
void SMATRIX(_destroy)(SMATRIX() _q);                           \
                                                                \
/* print compact form */                                        \
void SMATRIX(_print)(SMATRIX() _q);                             \
                                                                \
/* print expanded form */                                       \
void SMATRIX(_print_expanded)(SMATRIX() _q);                    \
                                                                \
/* query properties methods */                                  \
void SMATRIX(_size)(SMATRIX()      _q,                          \
                    unsigned int * _m,                          \
                    unsigned int * _n);                         \
                                                                \
/* zero all elements and keep memory                        */  \
void SMATRIX(_clear)(SMATRIX() _q);                             \
                                                                \
/* zero all elements and clear memory                       */  \
void SMATRIX(_reset)(SMATRIX() _q);                             \
                                                                \
/* determine if value has been set (allocated memory) */        \
int SMATRIX(_isset)(SMATRIX()    _q,                            \
                    unsigned int _m,                            \
                    unsigned int _n);                           \
                                                                \
/* inserts/deletes element at index (memory allocation) */      \
void SMATRIX(_insert)(SMATRIX()    _q,                          \
                      unsigned int _m,                          \
                      unsigned int _n,                          \
                      T            _v);                         \
void SMATRIX(_delete)(SMATRIX()    _q,                          \
                      unsigned int _m,                          \
                      unsigned int _n);                         \
                                                                \
/* sets/gets the value (with memory allocation if needed) */    \
void SMATRIX(_set)(SMATRIX()    _q,                             \
                   unsigned int _m,                             \
                   unsigned int _n,                             \
                   T            _v);                            \
T SMATRIX(_get)(SMATRIX()    _q,                                \
                unsigned int _m,                                \
                unsigned int _n);                               \
                                                                \
/* initialize to identity matrix */                             \
void SMATRIX(_eye)(SMATRIX() _q);                               \
                                                                \
/* multiply two sparse binary matrices */                       \
void SMATRIX(_mul)(SMATRIX() _x,                                \
                   SMATRIX() _y,                                \
                   SMATRIX() _z);                               \
                                                                \
/* multiply sparse matrix by vector         */                  \
/*  _q  :   sparse matrix                   */                  \
/*  _x  :   input vector [size: _N x 1]     */                  \
/*  _y  :   output vector [size: _M x 1]    */                  \
void SMATRIX(_vmul)(SMATRIX() _q,                               \
                    T *       _x,                               \
                    T *       _y);                              \

LIQUID_SMATRIX_DEFINE_API(LIQUID_SMATRIX_MANGLE_BOOL,  unsigned char)
LIQUID_SMATRIX_DEFINE_API(LIQUID_SMATRIX_MANGLE_FLOAT, float)
LIQUID_SMATRIX_DEFINE_API(LIQUID_SMATRIX_MANGLE_INT,   short int)

// 
// smatrix cross methods
//

// multiply sparse binary matrix by floating-point matrix
//  _q  :   sparse matrix [size: A->M x A->N]
//  _x  :   input vector  [size:  mx  x  nx ]
//  _y  :   output vector [size:  my  x  ny ]
void smatrixb_mulf(smatrixb     _A,
                   float *      _x,
                   unsigned int _mx,
                   unsigned int _nx,
                   float *      _y,
                   unsigned int _my,
                   unsigned int _ny);

// multiply sparse binary matrix by floating-point vector
//  _q  :   sparse matrix
//  _x  :   input vector [size: _N x 1]
//  _y  :   output vector [size: _M x 1]
void smatrixb_vmulf(smatrixb _q,
                    float *  _x,
                    float *  _y);


//
// MODULE : modem (modulator/demodulator)
//

// Maximum number of allowed bits per symbol
#define MAX_MOD_BITS_PER_SYMBOL 8

// Modulation schemes available
#define LIQUID_MODEM_NUM_SCHEMES      (52)

typedef enum {
    LIQUID_MODEM_UNKNOWN=0, // Unknown modulation scheme

    // Phase-shift keying (PSK)
    LIQUID_MODEM_PSK2,      LIQUID_MODEM_PSK4,
    LIQUID_MODEM_PSK8,      LIQUID_MODEM_PSK16,
    LIQUID_MODEM_PSK32,     LIQUID_MODEM_PSK64,
    LIQUID_MODEM_PSK128,    LIQUID_MODEM_PSK256,

    // Differential phase-shift keying (DPSK)
    LIQUID_MODEM_DPSK2,     LIQUID_MODEM_DPSK4,
    LIQUID_MODEM_DPSK8,     LIQUID_MODEM_DPSK16,
    LIQUID_MODEM_DPSK32,    LIQUID_MODEM_DPSK64,
    LIQUID_MODEM_DPSK128,   LIQUID_MODEM_DPSK256,

    // amplitude-shift keying
    LIQUID_MODEM_ASK2,      LIQUID_MODEM_ASK4,
    LIQUID_MODEM_ASK8,      LIQUID_MODEM_ASK16,
    LIQUID_MODEM_ASK32,     LIQUID_MODEM_ASK64,
    LIQUID_MODEM_ASK128,    LIQUID_MODEM_ASK256,

    // rectangular quadrature amplitude-shift keying (QAM)
    LIQUID_MODEM_QAM4,
    LIQUID_MODEM_QAM8,      LIQUID_MODEM_QAM16,
    LIQUID_MODEM_QAM32,     LIQUID_MODEM_QAM64,
    LIQUID_MODEM_QAM128,    LIQUID_MODEM_QAM256,

    // amplitude phase-shift keying (APSK)
    LIQUID_MODEM_APSK4,
    LIQUID_MODEM_APSK8,     LIQUID_MODEM_APSK16,
    LIQUID_MODEM_APSK32,    LIQUID_MODEM_APSK64,
    LIQUID_MODEM_APSK128,   LIQUID_MODEM_APSK256,

    // specific modem types
    LIQUID_MODEM_BPSK,      // Specific: binary PSK
    LIQUID_MODEM_QPSK,      // specific: quaternary PSK
    LIQUID_MODEM_OOK,       // Specific: on/off keying
    LIQUID_MODEM_SQAM32,    // 'square' 32-QAM
    LIQUID_MODEM_SQAM128,   // 'square' 128-QAM
    LIQUID_MODEM_V29,       // V.29 star constellation
    LIQUID_MODEM_ARB16OPT,  // optimal 16-QAM
    LIQUID_MODEM_ARB32OPT,  // optimal 32-QAM
    LIQUID_MODEM_ARB64OPT,  // optimal 64-QAM
    LIQUID_MODEM_ARB128OPT, // optimal 128-QAM
    LIQUID_MODEM_ARB256OPT, // optimal 256-QAM
    LIQUID_MODEM_ARB64VT,   // Virginia Tech logo

    // arbitrary modem type
    LIQUID_MODEM_ARB        // arbitrary QAM
} modulation_scheme;

// structure for holding full modulation type descriptor
struct modulation_type_s {
    const char * name;          // short name (e.g. 'bpsk')
    const char * fullname;      // full name (e.g. 'binary phase-shift keying')
    modulation_scheme scheme;   // modulation scheme (e.g. LIQUID_MODEM_BPSK)
    unsigned int bps;           // modulation depth (e.g. 1)
};

// full modulation type descriptor
extern const struct modulation_type_s modulation_types[LIQUID_MODEM_NUM_SCHEMES];

// Print compact list of existing and available modulation schemes
void liquid_print_modulation_schemes();

// returns modulation_scheme based on input string
modulation_scheme liquid_getopt_str2mod(const char * _str);

// query basic modulation types
int liquid_modem_is_psk(modulation_scheme _ms);
int liquid_modem_is_dpsk(modulation_scheme _ms);
int liquid_modem_is_ask(modulation_scheme _ms);
int liquid_modem_is_qam(modulation_scheme _ms);
int liquid_modem_is_apsk(modulation_scheme _ms);

// useful functions

// counts the number of different bits between two symbols
unsigned int count_bit_errors(unsigned int _s1, unsigned int _s2);

// counts the number of different bits between two arrays of symbols
//  _msg0   :   original message [size: _n x 1]
//  _msg1   :   copy of original message [size: _n x 1]
//  _n      :   message size
unsigned int count_bit_errors_array(unsigned char * _msg0,
                                    unsigned char * _msg1,
                                    unsigned int _n);

// converts binary-coded decimal (BCD) to gray, ensuring successive values
// differ by exactly one bit
unsigned int gray_encode(unsigned int symbol_in);

// converts a gray-encoded symbol to binary-coded decimal (BCD)
unsigned int gray_decode(unsigned int symbol_in);

// pack soft bits into symbol
//  _soft_bits  :   soft input bits [size: _bps x 1]
//  _bps        :   bits per symbol
//  _sym_out    :   output symbol, value in [0,2^_bps)
void liquid_pack_soft_bits(unsigned char * _soft_bits,
                           unsigned int _bps,
                           unsigned int * _sym_out);

// unpack soft bits into symbol
//  _sym_in     :   input symbol, value in [0,2^_bps)
//  _bps        :   bits per symbol
//  _soft_bits  :   soft output bits [size: _bps x 1]
void liquid_unpack_soft_bits(unsigned int _sym_in,
                             unsigned int _bps,
                             unsigned char * _soft_bits);


//
// Linear modem
//

#define LIQUID_MODEM_MANGLE_FLOAT(name) LIQUID_CONCAT(modem,name)

// Macro    :   MODEM
//  MODEM   :   name-mangling macro
//  T       :   primitive data type
//  TC      :   primitive data type (complex)
#define LIQUID_MODEM_DEFINE_API(MODEM,T,TC)                     \
typedef struct MODEM(_s) * MODEM();                             \
                                                                \
/* create digital modem object                              */  \
MODEM() MODEM(_create)(modulation_scheme _scheme);              \
                                                                \
/* create arbitrary digital modem object                    */  \
/*  _table  :   array of complex constellation points       */  \
/*  _M      :   modulation order and table size             */  \
MODEM() MODEM(_create_arbitrary)(TC *         _table,           \
                                 unsigned int _M);              \
                                                                \
/* recreate modulation scheme, re-allocating memory as      */  \
/* necessary                                                */  \
MODEM() MODEM(_recreate)(MODEM()           _q,                  \
                         modulation_scheme _scheme);            \
                                                                \
void MODEM(_destroy)(MODEM() _q);                               \
void MODEM(_print)(  MODEM() _q);                               \
void MODEM(_reset)(  MODEM() _q);                               \
                                                                \
/* generate random symbol                                   */  \
unsigned int MODEM(_gen_rand_sym)(MODEM() _q);                  \
                                                                \
/* Accessor functions */                                        \
unsigned int      MODEM(_get_bps)   (MODEM() _q);               \
modulation_scheme MODEM(_get_scheme)(MODEM() _q);               \
                                                                \
/* generic modulate function; simply queries modem scheme   */  \
/* and calls appropriate subroutine                         */  \
/*  _q  :   modem object                                    */  \
/*  _s  :   input symbol                                    */  \
/*  _x  :   output sample                                   */  \
void MODEM(_modulate)(MODEM()      _q,                          \
                      unsigned int _s,                          \
                      TC *         _y);                         \
                                                                \
/* generic hard-decision demodulation function              */  \
/*  _q  :   modem object                                    */  \
/*  _x  :   input sample                                    */  \
/*  _s  :   output symbol                                   */  \
void MODEM(_demodulate)(MODEM()        _q,                      \
                        TC             _x,                      \
                        unsigned int * _s);                     \
                                                                \
/* generic soft-decision demodulation function              */  \
/*  _q          :   modem object                            */  \
/*  _x          :   input sample                            */  \
/*  _s          :   output hard symbol                      */  \
/*  _soft_bits  :   output soft bits                        */  \
void MODEM(_demodulate_soft)(MODEM()         _q,                \
                             TC              _x,                \
                             unsigned int  * _s,                \
                             unsigned char * _soft_bits);       \
                                                                \
/* get demodulator's estimated transmit sample */               \
void MODEM(_get_demodulator_sample)(MODEM() _q,                 \
                                    TC *    _x_hat);            \
                                                                \
/* get demodulator phase error */                               \
float MODEM(_get_demodulator_phase_error)(MODEM() _q);          \
                                                                \
/* get demodulator error vector magnitude */                    \
float MODEM(_get_demodulator_evm)(MODEM() _q);                  \

// define modem APIs
LIQUID_MODEM_DEFINE_API(LIQUID_MODEM_MANGLE_FLOAT,float,liquid_float_complex)


//
// continuous-phase modulation
//

// gmskmod : GMSK modulator
typedef struct gmskmod_s * gmskmod;

// create gmskmod object
//  _k      :   samples/symbol
//  _m      :   filter delay (symbols)
//  _BT     :   excess bandwidth factor
gmskmod gmskmod_create(unsigned int _k,
                       unsigned int _m,
                       float        _BT);
void gmskmod_destroy(gmskmod _q);
void gmskmod_print(gmskmod _q);
void gmskmod_reset(gmskmod _q);
void gmskmod_modulate(gmskmod _q,
                      unsigned int _sym,
                      liquid_float_complex * _y);


// gmskdem : GMSK demodulator
typedef struct gmskdem_s * gmskdem;

// create gmskdem object
//  _k      :   samples/symbol
//  _m      :   filter delay (symbols)
//  _BT     :   excess bandwidth factor
gmskdem gmskdem_create(unsigned int _k,
                       unsigned int _m,
                       float        _BT);
void gmskdem_destroy(gmskdem _q);
void gmskdem_print(gmskdem _q);
void gmskdem_reset(gmskdem _q);
void gmskdem_set_eq_bw(gmskdem _q, float _bw);
void gmskdem_demodulate(gmskdem _q,
                        liquid_float_complex * _y,
                        unsigned int * _sym);

//
// continuous phase frequency-shift keying (CP-FSK) modems
//

// CP-FSK filter prototypes
typedef enum {
    LIQUID_CPFSK_SQUARE=0,      // square pulse
    LIQUID_CPFSK_RCOS_FULL,     // raised-cosine (full response)
    LIQUID_CPFSK_RCOS_PARTIAL,  // raised-cosine (partial response)
    LIQUID_CPFSK_GMSK,          // Gauss minimum-shift keying pulse
} liquid_cpfsk_filter;

// CP-FSK modulator
typedef struct cpfskmod_s * cpfskmod;

// create cpfskmod object (frequency modulator)
//  _bps    :   bits per symbol, _bps > 0
//  _h      :   modulation index, _h > 0
//  _k      :   samples/symbol, _k > 1, _k even
//  _m      :   filter delay (symbols), _m > 0
//  _beta   :   filter bandwidth parameter, _beta > 0
//  _type   :   filter type (e.g. LIQUID_CPFSK_SQUARE)
cpfskmod cpfskmod_create(unsigned int _bps,
                         float        _h,
                         unsigned int _k,
                         unsigned int _m,
                         float        _beta,
                         int          _type);
//cpfskmod cpfskmod_create_msk(unsigned int _k);
//cpfskmod cpfskmod_create_gmsk(unsigned int _k, float _BT);

// destroy cpfskmod object
void cpfskmod_destroy(cpfskmod _q);

// print cpfskmod object internals
void cpfskmod_print(cpfskmod _q);

// reset state
void cpfskmod_reset(cpfskmod _q);

// get transmit delay [symbols]
unsigned int cpfskmod_get_delay(cpfskmod _q);

// modulate sample
//  _q      :   frequency modulator object
//  _s      :   input symbol
//  _y      :   output sample array [size: _k x 1]
void cpfskmod_modulate(cpfskmod               _q,
                       unsigned int           _s,
                       liquid_float_complex * _y);



// CP-FSK demodulator
typedef struct cpfskdem_s * cpfskdem;

// create cpfskdem object (frequency modulator)
//  _bps    :   bits per symbol, _bps > 0
//  _h      :   modulation index, _h > 0
//  _k      :   samples/symbol, _k > 1, _k even
//  _m      :   filter delay (symbols), _m > 0
//  _beta   :   filter bandwidth parameter, _beta > 0
//  _type   :   filter type (e.g. LIQUID_CPFSK_SQUARE)
cpfskdem cpfskdem_create(unsigned int _bps,
                         float        _h,
                         unsigned int _k,
                         unsigned int _m,
                         float        _beta,
                         int          _type);
//cpfskdem cpfskdem_create_msk(unsigned int _k);
//cpfskdem cpfskdem_create_gmsk(unsigned int _k, float _BT);

// destroy cpfskdem object
void cpfskdem_destroy(cpfskdem _q);

// print cpfskdem object internals
void cpfskdem_print(cpfskdem _q);

// reset state
void cpfskdem_reset(cpfskdem _q);

// get receive delay [symbols]
unsigned int cpfskdem_get_delay(cpfskdem _q);

#if 0
// demodulate array of samples
//  _q      :   continuous-phase frequency demodulator object
//  _y      :   input sample array [size: _n x 1]
//  _n      :   input sample array length
//  _s      :   output symbol array
//  _nw     :   number of output symbols written
void cpfskdem_demodulate(cpfskdem               _q,
                         liquid_float_complex * _y,
                         unsigned int           _n,
                         unsigned int         * _s,
                         unsigned int         * _nw);
#else
// demodulate array of samples, assuming perfect timing
//  _q      :   continuous-phase frequency demodulator object
//  _y      :   input sample array [size: _k x 1]
unsigned int cpfskdem_demodulate(cpfskdem               _q,
                                 liquid_float_complex * _y);
#endif



//
// M-ary frequency-shift keying (MFSK) modems
//

// FSK modulator
typedef struct fskmod_s * fskmod;

// create fskmod object (frequency modulator)
//  _m          :   bits per symbol, _bps > 0
//  _k          :   samples/symbol, _k >= 2^_m
//  _bandwidth  :   total signal bandwidth, (0,0.5)
fskmod fskmod_create(unsigned int _m,
                     unsigned int _k,
                     float        _bandwidth);

// destroy fskmod object
void fskmod_destroy(fskmod _q);

// print fskmod object internals
void fskmod_print(fskmod _q);

// reset state
void fskmod_reset(fskmod _q);

// modulate sample
//  _q      :   frequency modulator object
//  _s      :   input symbol
//  _y      :   output sample array [size: _k x 1]
void fskmod_modulate(fskmod                 _q,
                     unsigned int           _s,
                     liquid_float_complex * _y);



// FSK demodulator
typedef struct fskdem_s * fskdem;

// create fskdem object (frequency demodulator)
//  _m          :   bits per symbol, _bps > 0
//  _k          :   samples/symbol, _k >= 2^_m
//  _bandwidth  :   total signal bandwidth, (0,0.5)
fskdem fskdem_create(unsigned int _m,
                     unsigned int _k,
                     float        _bandwidth);

// destroy fskdem object
void fskdem_destroy(fskdem _q);

// print fskdem object internals
void fskdem_print(fskdem _q);

// reset state
void fskdem_reset(fskdem _q);

// demodulate symbol, assuming perfect symbol timing
//  _q      :   fskdem object
//  _y      :   input sample array [size: _k x 1]
unsigned int fskdem_demodulate(fskdem                 _q,
                               liquid_float_complex * _y);

// get demodulator frequency error
float fskdem_get_frequency_error(fskdem _q);


// 
// Analog frequency modulator
//
#define LIQUID_FREQMOD_MANGLE_FLOAT(name) LIQUID_CONCAT(freqmod,name)

// Macro    :   FREQMOD (analog frequency modulator)
//  FREQMOD :   name-mangling macro
//  T       :   primitive data type
//  TC      :   primitive data type (complex)
#define LIQUID_FREQMOD_DEFINE_API(FREQMOD,T,TC)                 \
typedef struct FREQMOD(_s) * FREQMOD();                         \
                                                                \
/* create freqmod object (frequency modulator)              */  \
/*  _kf     :   modulation factor                           */  \
FREQMOD() FREQMOD(_create)(float _kf);                          \
                                                                \
/* destroy freqmod object                                   */  \
void FREQMOD(_destroy)(FREQMOD() _q);                           \
                                                                \
/* print freqmod object internals                           */  \
void FREQMOD(_print)(FREQMOD() _q);                             \
                                                                \
/* reset state                                              */  \
void FREQMOD(_reset)(FREQMOD() _q);                             \
                                                                \
/* modulate single sample                                   */  \
/*  _q      :   frequency modulator object                  */  \
/*  _m      :   message signal m(t)                         */  \
/*  _s      :   complex baseband signal s(t)                */  \
void FREQMOD(_modulate)(FREQMOD() _q,                           \
                        T         _m,                           \
                        TC *      _s);                          \
                                                                \
/* modulate block of samples                                */  \
/*  _q      :   frequency modulator object                  */  \
/*  _m      :   message signal m(t), [size: _n x 1]         */  \
/*  _n      :   number of input, output samples             */  \
/*  _s      :   complex baseband signal s(t) [size: _n x 1] */  \
void FREQMOD(_modulate_block)(FREQMOD()    _q,                  \
                              T *          _m,                  \
                              unsigned int _n,                  \
                              TC *         _s);                 \

// define freqmod APIs
LIQUID_FREQMOD_DEFINE_API(LIQUID_FREQMOD_MANGLE_FLOAT,float,liquid_float_complex)

// 
// Analog frequency demodulator
//

#define LIQUID_FREQDEM_MANGLE_FLOAT(name) LIQUID_CONCAT(freqdem,name)

// Macro    :   FREQDEM (analog frequency modulator)
//  FREQDEM :   name-mangling macro
//  T       :   primitive data type
//  TC      :   primitive data type (complex)
#define LIQUID_FREQDEM_DEFINE_API(FREQDEM,T,TC)                 \
typedef struct FREQDEM(_s) * FREQDEM();                         \
                                                                \
/* create freqdem object (frequency modulator)              */  \
/*  _kf      :   modulation factor                          */  \
FREQDEM() FREQDEM(_create)(float _kf);                          \
                                                                \
/* destroy freqdem object                                   */  \
void FREQDEM(_destroy)(FREQDEM() _q);                           \
                                                                \
/* print freqdem object internals                           */  \
void FREQDEM(_print)(FREQDEM() _q);                             \
                                                                \
/* reset state                                              */  \
void FREQDEM(_reset)(FREQDEM() _q);                             \
                                                                \
/* demodulate sample                                        */  \
/*  _q      :   frequency modulator object                  */  \
/*  _r      :   received signal r(t)                        */  \
/*  _m      :   output message signal m(t)                  */  \
void FREQDEM(_demodulate)(FREQDEM() _q,                         \
                          TC        _r,                         \
                          T *       _m);                        \
                                                                \
/* demodulate block of samples                              */  \
/*  _q      :   frequency demodulator object                */  \
/*  _r      :   received signal r(t) [size: _n x 1]         */  \
/*  _n      :   number of input, output samples             */  \
/*  _m      :   message signal m(t), [size: _n x 1]         */  \
void FREQDEM(_demodulate_block)(FREQDEM()    _q,                \
                                TC *         _r,                \
                                unsigned int _n,                \
                                T *          _m);               \

// define freqdem APIs
LIQUID_FREQDEM_DEFINE_API(LIQUID_FREQDEM_MANGLE_FLOAT,float,liquid_float_complex)



// amplitude modulation types
typedef enum {
    LIQUID_AMPMODEM_DSB=0,  // double side-band
    LIQUID_AMPMODEM_USB,    // single side-band (upper)
    LIQUID_AMPMODEM_LSB     // single side-band (lower)
} liquid_ampmodem_type;

typedef struct ampmodem_s * ampmodem;

// create ampmodem object
//  _m                  :   modulation index
//  _fc                 :   carrier frequency, range: [-0.5,0.5]
//  _type               :   AM type (e.g. LIQUID_AMPMODEM_DSB)
//  _suppressed_carrier :   carrier suppression flag
ampmodem ampmodem_create(float _m,
                         float _fc,
                         liquid_ampmodem_type _type,
                         int _suppressed_carrier);

// destroy ampmodem object
void ampmodem_destroy(ampmodem _fm);

// print ampmodem object internals
void ampmodem_print(ampmodem _fm);

// reset ampmodem object state
void ampmodem_reset(ampmodem _fm);

// modulate sample
void ampmodem_modulate(ampmodem _fm,
                       float _x,
                       liquid_float_complex *_y);

void ampmodem_modulate_block(ampmodem _q,
                             float * _m,
                             unsigned int _n,
                             liquid_float_complex *_s);

// demodulate sample
void ampmodem_demodulate(ampmodem _fm,
                         liquid_float_complex _y,
                         float *_x);

void ampmodem_demodulate_block(ampmodem _q,
                               liquid_float_complex * _r,
                               unsigned int _n,
                               float * _m);

//
// MODULE : multichannel
//


#define FIRPFBCH_NYQUIST        0
#define FIRPFBCH_ROOTNYQUIST    1

#define LIQUID_ANALYZER         0
#define LIQUID_SYNTHESIZER      1


//
// Finite impulse response polyphase filterbank channelizer
//

#define LIQUID_FIRPFBCH_MANGLE_CRCF(name) LIQUID_CONCAT(firpfbch_crcf,name)
#define LIQUID_FIRPFBCH_MANGLE_CCCF(name) LIQUID_CONCAT(firpfbch_cccf,name)

// Macro:
//   FIRPFBCH   : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_FIRPFBCH_DEFINE_API(FIRPFBCH,TO,TC,TI)           \
typedef struct FIRPFBCH(_s) * FIRPFBCH();                       \
                                                                \
/* create finite impulse response polyphase filter-bank     */  \
/* channelizer object from external coefficients            */  \
/*  _type   : channelizer type, e.g. LIQUID_ANALYZER        */  \
/*  _M      : number of channels                            */  \
/*  _p      : number of coefficients for each channel       */  \
/*  _h      : coefficients [size: _M*_p x 1]                */  \
FIRPFBCH() FIRPFBCH(_create)(int          _type,                \
                             unsigned int _M,                   \
                             unsigned int _p,                   \
                             TC *         _h);                  \
                                                                \
/* create FIR polyphase filterbank channelizer object with  */  \
/* prototype filter based on windowed Kaiser design         */  \
/*  _type   : type (LIQUID_ANALYZER | LIQUID_SYNTHESIZER)   */  \
/*  _M      : number of channels                            */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _As     : stop-band attentuation [dB]                   */  \
FIRPFBCH() FIRPFBCH(_create_kaiser)(int          _type,         \
                                    unsigned int _M,            \
                                    unsigned int _m,            \
                                    float        _As);          \
                                                                \
/* create FIR polyphase filterbank channelizer object with  */  \
/* prototype root-Nyquist filter                            */  \
/*  _type   : type (LIQUID_ANALYZER | LIQUID_SYNTHESIZER)   */  \
/*  _M      : number of channels                            */  \
/*  _m      : filter delay (symbols)                        */  \
/*  _beta   : filter excess bandwidth factor, in [0,1]      */  \
/*  _ftype  : filter prototype (rrcos, rkaiser, etc.)       */  \
FIRPFBCH() FIRPFBCH(_create_rnyquist)(int          _type,       \
                                      unsigned int _M,          \
                                      unsigned int _m,          \
                                      float        _beta,       \
                                      int          _ftype);     \
                                                                \
/* destroy firpfbch object                                  */  \
void FIRPFBCH(_destroy)(FIRPFBCH() _q);                         \
                                                                \
/* clear/reset firpfbch internal state                      */  \
void FIRPFBCH(_reset)(FIRPFBCH() _q);                           \
                                                                \
/* print firpfbch internal parameters to stdout             */  \
void FIRPFBCH(_print)(FIRPFBCH() _q);                           \
                                                                \
/* execute filterbank as synthesizer on block of samples    */  \
/*  _q      : filterbank channelizer object                 */  \
/*  _x      : channelized input, [size: num_channels x 1]   */  \
/*  _y      : output time series, [size: num_channels x 1]  */  \
void FIRPFBCH(_synthesizer_execute)(FIRPFBCH() _q,              \
                                    TI *       _x,              \
                                    TO *       _y);             \
                                                                \
/* execute filterbank as analyzer on block of samples       */  \
/*  _q      : filterbank channelizer object                 */  \
/*  _x      : input time series, [size: num_channels x 1]   */  \
/*  _y      : channelized output, [size: num_channels x 1]  */  \
void FIRPFBCH(_analyzer_execute)(FIRPFBCH() _q,                 \
                                 TI *       _x,                 \
                                 TO *       _y);                \


LIQUID_FIRPFBCH_DEFINE_API(LIQUID_FIRPFBCH_MANGLE_CRCF,
                           liquid_float_complex,
                           float,
                           liquid_float_complex)

LIQUID_FIRPFBCH_DEFINE_API(LIQUID_FIRPFBCH_MANGLE_CCCF,
                           liquid_float_complex,
                           liquid_float_complex,
                           liquid_float_complex)


//
// Finite impulse response polyphase filterbank channelizer
// with output rate 2 Fs / M
//

#define LIQUID_FIRPFBCH2_MANGLE_CRCF(name) LIQUID_CONCAT(firpfbch2_crcf,name)

// Macro:
//   FIRPFBCH2  : name-mangling macro
//   TO         : output data type
//   TC         : coefficients data type
//   TI         : input data type
#define LIQUID_FIRPFBCH2_DEFINE_API(FIRPFBCH2,TO,TC,TI)         \
typedef struct FIRPFBCH2(_s) * FIRPFBCH2();                     \
                                                                \
/* create firpfbch2 object                                  */  \
/*  _type   :   channelizer type (e.g. LIQUID_ANALYZER)     */  \
/*  _M      :   number of channels (must be even)           */  \
/*  _m      :   prototype filter semi-lenth, length=2*M*m   */  \
/*  _h      :   prototype filter coefficient array          */  \
FIRPFBCH2() FIRPFBCH2(_create)(int          _type,              \
                               unsigned int _M,                 \
                               unsigned int _m,                 \
                               TC *         _h);                \
                                                                \
/* create firpfbch2 object using Kaiser window prototype    */  \
/*  _type   :   channelizer type (e.g. LIQUID_ANALYZER)     */  \
/*  _M      :   number of channels (must be even)           */  \
/*  _m      :   prototype filter semi-lenth, length=2*M*m+1 */  \
/*  _As     :   filter stop-band attenuation [dB]           */  \
FIRPFBCH2() FIRPFBCH2(_create_kaiser)(int          _type,       \
                                      unsigned int _M,          \
                                      unsigned int _m,          \
                                      float        _As);        \
                                                                \
/* destroy firpfbch2 object, freeing internal memory        */  \
void FIRPFBCH2(_destroy)(FIRPFBCH2() _q);                       \
                                                                \
/* reset firpfbch2 object internals                         */  \
void FIRPFBCH2(_reset)(FIRPFBCH2() _q);                         \
                                                                \
/* print firpfbch2 object internals                         */  \
void FIRPFBCH2(_print)(FIRPFBCH2() _q);                         \
                                                                \
/* execute filterbank channelizer                           */  \
/* LIQUID_ANALYZER:     input: M/2, output: M               */  \
/* LIQUID_SYNTHESIZER:  input: M,   output: M/2             */  \
/*  _x      :   channelizer input                           */  \
/*  _y      :   channelizer output                          */  \
void FIRPFBCH2(_execute)(FIRPFBCH2() _q,                        \
                         TI *        _x,                        \
                         TO *        _y);                       \


LIQUID_FIRPFBCH2_DEFINE_API(LIQUID_FIRPFBCH2_MANGLE_CRCF,
                            liquid_float_complex,
                            float,
                            liquid_float_complex)



#define OFDMFRAME_SCTYPE_NULL   0
#define OFDMFRAME_SCTYPE_PILOT  1
#define OFDMFRAME_SCTYPE_DATA   2

// initialize default subcarrier allocation
//  _M      :   number of subcarriers
//  _p      :   output subcarrier allocation array, [size: _M x 1]
void ofdmframe_init_default_sctype(unsigned int    _M,
                                   unsigned char * _p);

// initialize default subcarrier allocation
//  _M      :   number of subcarriers
//  _f0     :   lower frequency band, _f0 in [-0.5,0.5]
//  _f1     :   upper frequency band, _f1 in [-0.5,0.5]
//  _p      :   output subcarrier allocation array, [size: _M x 1]
void ofdmframe_init_sctype_range(unsigned int    _M,
                                 float           _f0,
                                 float           _f1,
                                 unsigned char * _p);

// validate subcarrier type (count number of null, pilot, and data
// subcarriers in the allocation)
//  _p          :   subcarrier allocation array, [size: _M x 1]
//  _M          :   number of subcarriers
//  _M_null     :   output number of null subcarriers
//  _M_pilot    :   output number of pilot subcarriers
//  _M_data     :   output number of data subcarriers
void ofdmframe_validate_sctype(unsigned char * _p,
                               unsigned int _M,
                               unsigned int * _M_null,
                               unsigned int * _M_pilot,
                               unsigned int * _M_data);

// print subcarrier allocation to screen
//  _p      :   output subcarrier allocation array, [size: _M x 1]
//  _M      :   number of subcarriers
void ofdmframe_print_sctype(unsigned char * _p,
                            unsigned int    _M);


// 
// OFDM frame (symbol) generator
//
typedef struct ofdmframegen_s * ofdmframegen;

// create OFDM framing generator object
//  _M          :   number of subcarriers, >10 typical
//  _cp_len     :   cyclic prefix length
//  _taper_len  :   taper length (OFDM symbol overlap)
//  _p          :   subcarrier allocation (null, pilot, data), [size: _M x 1]
ofdmframegen ofdmframegen_create(unsigned int    _M,
                                 unsigned int    _cp_len,
                                 unsigned int    _taper_len,
                                 unsigned char * _p);

void ofdmframegen_destroy(ofdmframegen _q);

void ofdmframegen_print(ofdmframegen _q);

void ofdmframegen_reset(ofdmframegen _q);

// write first S0 symbol
void ofdmframegen_write_S0a(ofdmframegen _q,
                            liquid_float_complex *_y);

// write second S0 symbol
void ofdmframegen_write_S0b(ofdmframegen _q,
                            liquid_float_complex *_y);

// write S1 symbol
void ofdmframegen_write_S1(ofdmframegen _q,
                           liquid_float_complex *_y);

// write data symbol
void ofdmframegen_writesymbol(ofdmframegen _q,
                              liquid_float_complex * _x,
                              liquid_float_complex *_y);

// write tail
void ofdmframegen_writetail(ofdmframegen _q,
                            liquid_float_complex * _x);

// 
// OFDM frame (symbol) synchronizer
//
typedef int (*ofdmframesync_callback)(liquid_float_complex * _y,
                                      unsigned char * _p,
                                      unsigned int _M,
                                      void * _userdata);
typedef struct ofdmframesync_s * ofdmframesync;

// create OFDM framing synchronizer object
//  _M          :   number of subcarriers, >10 typical
//  _cp_len     :   cyclic prefix length
//  _taper_len  :   taper length (OFDM symbol overlap)
//  _p          :   subcarrier allocation (null, pilot, data), [size: _M x 1]
//  _callback   :   user-defined callback function
//  _userdata   :   user-defined data pointer
ofdmframesync ofdmframesync_create(unsigned int           _M,
                                   unsigned int           _cp_len,
                                   unsigned int           _taper_len,
                                   unsigned char *        _p,
                                   ofdmframesync_callback _callback,
                                   void *                 _userdata);
void ofdmframesync_destroy(ofdmframesync _q);
void ofdmframesync_print(ofdmframesync _q);
void ofdmframesync_reset(ofdmframesync _q);
int  ofdmframesync_is_frame_open(ofdmframesync _q);
void ofdmframesync_execute(ofdmframesync _q,
                           liquid_float_complex * _x,
                           unsigned int _n);

// query methods
float ofdmframesync_get_rssi(ofdmframesync _q); // received signal strength indication
float ofdmframesync_get_cfo(ofdmframesync _q);  // carrier offset estimate

// debugging
void ofdmframesync_debug_enable(ofdmframesync _q);
void ofdmframesync_debug_disable(ofdmframesync _q);
void ofdmframesync_debug_print(ofdmframesync _q, const char * _filename);


// 
// MODULE : nco (numerically-controlled oscillator)
//

// oscillator type
//  LIQUID_NCO  :   numerically-controlled oscillator (fast)
//  LIQUID_VCO  :   "voltage"-controlled oscillator (precise)
typedef enum {
    LIQUID_NCO=0,
    LIQUID_VCO
} liquid_ncotype;

#define LIQUID_NCO_MANGLE_FLOAT(name) LIQUID_CONCAT(nco_crcf, name)

// large macro
//   NCO    : name-mangling macro
//   T      : primitive data type
//   TC     : input/output data type
#define LIQUID_NCO_DEFINE_API(NCO,T,TC)                         \
typedef struct NCO(_s) * NCO();                                 \
                                                                \
NCO() NCO(_create)(liquid_ncotype _type);                       \
void NCO(_destroy)(NCO() _q);                                   \
void NCO(_print)(NCO() _q);                                     \
                                                                \
/* set phase/frequency to zero, reset pll filter        */      \
void NCO(_reset)(NCO() _q);                                     \
                                                                \
/* get/set/adjust internal frequency/phase              */      \
T    NCO(_get_frequency)(   NCO() _q);                          \
void NCO(_set_frequency)(   NCO() _q, T _f);                    \
void NCO(_adjust_frequency)(NCO() _q, T _df);                   \
T    NCO(_get_phase)(       NCO() _q);                          \
void NCO(_set_phase)(       NCO() _q, T _phi);                  \
void NCO(_adjust_phase)(    NCO() _q, T _dphi);                 \
                                                                \
/* increment phase by internal phase step (frequency)   */      \
void NCO(_step)(NCO() _q);                                      \
                                                                \
/* compute trigonometric functions                      */      \
T NCO(_sin)(NCO() _q);                                          \
T NCO(_cos)(NCO() _q);                                          \
void NCO(_sincos)(NCO() _q, T* _s, T* _c);                      \
void NCO(_cexpf)(NCO() _q, TC * _y);                            \
                                                                \
/* pll : phase-locked loop                              */      \
void NCO(_pll_set_bandwidth)(NCO() _q, T _bandwidth);           \
void NCO(_pll_step)(NCO() _q, T _dphi);                         \
                                                                \
/* Rotate input sample up by NCO angle (no stepping)    */      \
void NCO(_mix_up)(NCO() _q, TC _x, TC *_y);                     \
                                                                \
/* Rotate input sample down by NCO angle (no stepping)  */      \
void NCO(_mix_down)(NCO() _q, TC _x, TC *_y);                   \
                                                                \
/* Rotate input vector up by NCO angle (stepping)       */      \
/*  _q      :   nco object                              */      \
/*  _x      :   input vector [size: _N x 1]             */      \
/*  _y      :   output vector [size: _N x 1]            */      \
/*  _N      :   vector size                             */      \
void NCO(_mix_block_up)(NCO() _q,                               \
                        TC *_x,                                 \
                        TC *_y,                                 \
                        unsigned int _N);                       \
                                                                \
/* Rotate input vector down by NCO angle (stepping)     */      \
/*  _q      :   nco object                              */      \
/*  _x      :   input vector [size: _N x 1]             */      \
/*  _y      :   output vector [size: _N x 1]            */      \
/*  _N      :   vector size                             */      \
void NCO(_mix_block_down)(NCO() _q,                             \
                          TC *_x,                               \
                          TC *_y,                               \
                          unsigned int _N);                     \

// Define nco APIs
LIQUID_NCO_DEFINE_API(LIQUID_NCO_MANGLE_FLOAT, float, liquid_float_complex)


// nco utilities

// unwrap phase of array (basic)
void liquid_unwrap_phase(float * _theta, unsigned int _n);

// unwrap phase of array (advanced)
void liquid_unwrap_phase2(float * _theta, unsigned int _n);



//
// MODULE : optimization
//

// utility function pointer definition
typedef float (*utility_function)(void *       _userdata,
                                  float *      _v,
                                  unsigned int _n);

// n-dimensional Rosenbrock utility function (minimum at _v = {1,1,1...}
//  _userdata   :   user-defined data structure (convenience)
//  _v          :   input vector [size: _n x 1]
//  _n          :   input vector size
float liquid_rosenbrock(void *       _userdata,
                        float *      _v,
                        unsigned int _n);

// n-dimensional inverse Gauss utility function (minimum at _v = {0,0,0...}
//  _userdata   :   user-defined data structure (convenience)
//  _v          :   input vector [size: _n x 1]
//  _n          :   input vector size
float liquid_invgauss(void *       _userdata,
                      float *      _v,
                      unsigned int _n);

// n-dimensional multimodal utility function (minimum at _v = {0,0,0...}
//  _userdata   :   user-defined data structure (convenience)
//  _v          :   input vector [size: _n x 1]
//  _n          :   input vector size
float liquid_multimodal(void *       _userdata,
                        float *      _v,
                        unsigned int _n);

// n-dimensional spiral utility function (minimum at _v = {0,0,0...}
//  _userdata   :   user-defined data structure (convenience)
//  _v          :   input vector [size: _n x 1]
//  _n          :   input vector size
float liquid_spiral(void *       _userdata,
                    float *      _v,
                    unsigned int _n);


//
// Gradient search
//

#define LIQUID_OPTIM_MINIMIZE (0)
#define LIQUID_OPTIM_MAXIMIZE (1)

typedef struct gradsearch_s * gradsearch;

// Create a gradient search object
//   _userdata          :   user data object pointer
//   _v                 :   array of parameters to optimize
//   _num_parameters    :   array length (number of parameters to optimize)
//   _u                 :   utility function pointer
//   _direction         :   search direction (e.g. LIQUID_OPTIM_MAXIMIZE)
gradsearch gradsearch_create(void *           _userdata,
                             float *          _v,
                             unsigned int     _num_parameters,
                             utility_function _utility,
                             int              _direction);

// Destroy a gradsearch object
void gradsearch_destroy(gradsearch _q);

// Prints current status of search
void gradsearch_print(gradsearch _q);

// Iterate once
float gradsearch_step(gradsearch _q);

// Execute the search
float gradsearch_execute(gradsearch   _q,
                         unsigned int _max_iterations,
                         float        _target_utility);


// quasi-Newton search
typedef struct qnsearch_s * qnsearch;

// Create a simple qnsearch object; parameters are specified internally
//   _userdata          :   userdata
//   _v                 :   array of parameters to optimize
//   _num_parameters    :   array length
//   _get_utility       :   utility function pointer
//   _direction         :   search direction (e.g. LIQUID_OPTIM_MAXIMIZE)
qnsearch qnsearch_create(void *           _userdata,
                         float *          _v,
                         unsigned int     _num_parameters,
                         utility_function _u,
                         int              _direction);

// Destroy a qnsearch object
void qnsearch_destroy(qnsearch _g);

// Prints current status of search
void qnsearch_print(qnsearch _g);

// Resets internal state
void qnsearch_reset(qnsearch _g);

// Iterate once
void qnsearch_step(qnsearch _g);

// Execute the search
float qnsearch_execute(qnsearch _g,
                       unsigned int _max_iterations,
                       float _target_utility);

// 
// chromosome (for genetic algorithm search)
//
typedef struct chromosome_s * chromosome;

// create a chromosome object, variable bits/trait
chromosome chromosome_create(unsigned int * _bits_per_trait,
                             unsigned int _num_traits);

// create a chromosome object, all traits same resolution
chromosome chromosome_create_basic(unsigned int _num_traits,
                                   unsigned int _bits_per_trait);

// create a chromosome object, cloning a parent
chromosome chromosome_create_clone(chromosome _parent);

// copy existing chromosomes' internal traits (all other internal
// parameters must be equal)
void chromosome_copy(chromosome _parent, chromosome _child);

// Destroy a chromosome object
void chromosome_destroy(chromosome _c);

// get number of traits in chromosome
unsigned int chromosome_get_num_traits(chromosome _c);

// Print chromosome values to screen (binary representation)
void chromosome_print(chromosome _c);

// Print chromosome values to screen (floating-point representation)
void chromosome_printf(chromosome _c);

// clear chromosome (set traits to zero)
void chromosome_reset(chromosome _c);

// initialize chromosome on integer values
void chromosome_init(chromosome _c,
                     unsigned int * _v);

// initialize chromosome on floating-point values
void chromosome_initf(chromosome _c,
                      float * _v);

// Mutates chromosome _c at _index
void chromosome_mutate(chromosome _c, unsigned int _index);

// Resulting chromosome _c is a crossover of parents _p1 and _p2 at _threshold
void chromosome_crossover(chromosome _p1,
                          chromosome _p2,
                          chromosome _c,
                          unsigned int _threshold);

// Initializes chromosome to random value
void chromosome_init_random(chromosome _c);

// Returns integer representation of chromosome
unsigned int chromosome_value(chromosome _c,
                              unsigned int _index);

// Returns floating-point representation of chromosome
float chromosome_valuef(chromosome _c,
                        unsigned int _index);

// 
// genetic algorithm search
//
typedef struct gasearch_s * gasearch;

typedef float (*gasearch_utility)(void * _userdata, chromosome _c);

// Create a simple gasearch object; parameters are specified internally
//  _utility            :   chromosome fitness utility function
//  _userdata           :   user data, void pointer passed to _get_utility() callback
//  _parent             :   initial population parent chromosome, governs precision, etc.
//  _minmax             :   search direction
gasearch gasearch_create(gasearch_utility _u,
                         void * _userdata,
                         chromosome _parent,
                         int _minmax);

// Create a gasearch object, specifying search parameters
//  _utility            :   chromosome fitness utility function
//  _userdata           :   user data, void pointer passed to _get_utility() callback
//  _parent             :   initial population parent chromosome, governs precision, etc.
//  _minmax             :   search direction
//  _population_size    :   number of chromosomes in population
//  _mutation_rate      :   probability of mutating chromosomes
gasearch gasearch_create_advanced(gasearch_utility _utility,
                                  void * _userdata,
                                  chromosome _parent,
                                  int _minmax,
                                  unsigned int _population_size,
                                  float _mutation_rate);


// Destroy a gasearch object
void gasearch_destroy(gasearch _q);

// print search parameter internals
void gasearch_print(gasearch _q);

// set mutation rate
void gasearch_set_mutation_rate(gasearch _q,
                                float _mutation_rate);

// set population/selection size
//  _q                  :   ga search object
//  _population_size    :   new population size (number of chromosomes)
//  _selection_size     :   selection size (number of parents for new generation)
void gasearch_set_population_size(gasearch _q,
                                  unsigned int _population_size,
                                  unsigned int _selection_size);

// Execute the search
//  _q              :   ga search object
//  _max_iterations :   maximum number of iterations to run before bailing
//  _target_utility :   target utility
float gasearch_run(gasearch _q,
                    unsigned int _max_iterations,
                    float _target_utility);

// iterate over one evolution of the search algorithm
void gasearch_evolve(gasearch _q);

// get optimal chromosome
//  _q              :   ga search object
//  _c              :   output optimal chromosome
//  _utility_opt    :   fitness of _c
void gasearch_getopt(gasearch _q,
                     chromosome _c,
                     float * _utility_opt);

//
// MODULE : quantization
//

float compress_mulaw(float _x, float _mu);
float expand_mulaw(float _x, float _mu);

void compress_cf_mulaw(liquid_float_complex _x, float _mu, liquid_float_complex * _y);
void expand_cf_mulaw(liquid_float_complex _y, float _mu, liquid_float_complex * _x);

//float compress_alaw(float _x, float _a);
//float expand_alaw(float _x, float _a);

// inline quantizer: 'analog' signal in [-1, 1]
unsigned int quantize_adc(float _x, unsigned int _num_bits);
float quantize_dac(unsigned int _s, unsigned int _num_bits);

// structured quantizer

typedef enum {
    LIQUID_COMPANDER_NONE=0,
    LIQUID_COMPANDER_LINEAR,
    LIQUID_COMPANDER_MULAW,
    LIQUID_COMPANDER_ALAW
} liquid_compander_type;

#define LIQUID_QUANTIZER_MANGLE_FLOAT(name)  LIQUID_CONCAT(quantizerf,  name)
#define LIQUID_QUANTIZER_MANGLE_CFLOAT(name) LIQUID_CONCAT(quantizercf, name)

// large macro
//   QUANTIZER  : name-mangling macro
//   T          : data type
#define LIQUID_QUANTIZER_DEFINE_API(QUANTIZER,T)                \
typedef struct QUANTIZER(_s) * QUANTIZER();                     \
QUANTIZER() QUANTIZER(_create)(liquid_compander_type _ctype,    \
                               float _range,                    \
                               unsigned int _num_bits);         \
void QUANTIZER(_destroy)(QUANTIZER() _q);                       \
void QUANTIZER(_print)(QUANTIZER() _q);                         \
void QUANTIZER(_execute_adc)(QUANTIZER() _q,                    \
                             T _x,                              \
                             unsigned int * _sample);           \
void QUANTIZER(_execute_dac)(QUANTIZER() _q,                    \
                             unsigned int _sample,              \
                             T * _x);                           \

LIQUID_QUANTIZER_DEFINE_API(LIQUID_QUANTIZER_MANGLE_FLOAT,  float)
LIQUID_QUANTIZER_DEFINE_API(LIQUID_QUANTIZER_MANGLE_CFLOAT, liquid_float_complex)


//
// MODULE : random (number generators)
//


// Uniform random number generator, (0,1]
float randf();
float randf_pdf(float _x);
float randf_cdf(float _x);

// Gauss random number generator, N(0,1)
//   f(x) = 1/sqrt(2*pi*sigma^2) * exp{-(x-eta)^2/(2*sigma^2)}
//
//   where
//     eta   = mean
//     sigma = standard deviation
//
float randnf();
void awgn(float *_x, float _nstd);
void crandnf(liquid_float_complex *_y);
void cawgn(liquid_float_complex *_x, float _nstd);
float randnf_pdf(float _x, float _eta, float _sig);
float randnf_cdf(float _x, float _eta, float _sig);

// Exponential
//  f(x) = lambda exp{ -lambda x }
// where
//  lambda = spread parameter, lambda > 0
//  x >= 0
float randexpf(float _lambda);
float randexpf_pdf(float _x, float _lambda);
float randexpf_cdf(float _x, float _lambda);

// Weibull
//   f(x) = (a/b) (x/b)^(a-1) exp{ -(x/b)^a }
//   where
//     a = alpha : shape parameter
//     b = beta  : scaling parameter
//     g = gamma : location (threshold) parameter
//
float randweibf(float _alpha, float _beta, float _gamma);
float randweibf_pdf(float _x, float _a, float _b, float _g);
float randweibf_cdf(float _x, float _a, float _b, float _g);

// Gamma
//          x^(a-1) exp(-x/b)
//  f(x) = -------------------
//            Gamma(a) b^a
//  where
//      a = alpha : shape parameter, a > 0
//      b = beta  : scale parameter, b > 0
//      Gamma(z) = regular gamma function
//      x >= 0
float randgammaf(float _alpha, float _beta);
float randgammaf_pdf(float _x, float _alpha, float _beta);
float randgammaf_cdf(float _x, float _alpha, float _beta);

// Nakagami-m
//  f(x) = (2/Gamma(m)) (m/omega)^m x^(2m-1) exp{-(m/omega)x^2}
// where
//      m       : shape parameter, m >= 0.5
//      omega   : spread parameter, omega > 0
//      Gamma(z): regular complete gamma function
//      x >= 0
float randnakmf(float _m, float _omega);
float randnakmf_pdf(float _x, float _m, float _omega);
float randnakmf_cdf(float _x, float _m, float _omega);

// Rice-K
//  f(x) = (x/sigma^2) exp{ -(x^2+s^2)/(2sigma^2) } I0( x s / sigma^2 )
// where
//  s     = sqrt( omega*K/(K+1) )
//  sigma = sqrt(0.5 omega/(K+1))
// and
//  K     = shape parameter
//  omega = spread parameter
//  I0    = modified Bessel function of the first kind
//  x >= 0
float randricekf(float _K, float _omega);
float randricekf_cdf(float _x, float _K, float _omega);
float randricekf_pdf(float _x, float _K, float _omega);


// Data scrambler : whiten data sequence
void scramble_data(unsigned char * _x, unsigned int _len);
void unscramble_data(unsigned char * _x, unsigned int _len);
void unscramble_data_soft(unsigned char * _x, unsigned int _len);

//
// MODULE : sequence
//

// Binary sequence (generic)

typedef struct bsequence_s * bsequence;

// Create a binary sequence of a specific length (number of bits)
bsequence bsequence_create(unsigned int num_bits);

// Free memory in a binary sequence
void bsequence_destroy(bsequence _bs);

// Clear binary sequence (set to 0's)
void bsequence_reset(bsequence _bs);

// initialize sequence on external array
void bsequence_init(bsequence _bs,
                    unsigned char * _v);

// Print sequence to the screen
void bsequence_print(bsequence _bs);

// Push bit into to back of a binary sequence
void bsequence_push(bsequence _bs,
                    unsigned int _bit);

// circular shift (left)
void bsequence_circshift(bsequence _bs);

// Correlate two binary sequences together
int bsequence_correlate(bsequence _bs1, bsequence _bs2);

// compute the binary addition of two bit sequences
void bsequence_add(bsequence _bs1, bsequence _bs2, bsequence _bs3);

// compute the binary multiplication of two bit sequences
void bsequence_mul(bsequence _bs1, bsequence _bs2, bsequence _bs3);

// accumulate the 1's in a binary sequence
unsigned int bsequence_accumulate(bsequence _bs);

// accessor functions
unsigned int bsequence_get_length(bsequence _bs);
unsigned int bsequence_index(bsequence _bs, unsigned int _i);

// Complementary codes

// intialize two sequences to complementary codes.  sequences must
// be of length at least 8 and a power of 2 (e.g. 8, 16, 32, 64,...)
//  _a      :   sequence 'a' (bsequence object)
//  _b      :   sequence 'b' (bsequence object)
void bsequence_create_ccodes(bsequence _a,
                             bsequence _b);


// M-Sequence

#define LIQUID_MAX_MSEQUENCE_LENGTH   32767

// default m-sequence generators:       g (hex)     m       n   g (oct)       g (binary)
#define LIQUID_MSEQUENCE_GENPOLY_M2     0x0007  //  2       3        7               111
#define LIQUID_MSEQUENCE_GENPOLY_M3     0x000B  //  3       7       13              1011
#define LIQUID_MSEQUENCE_GENPOLY_M4     0x0013  //  4      15       23             10011
#define LIQUID_MSEQUENCE_GENPOLY_M5     0x0025  //  5      31       45            100101
#define LIQUID_MSEQUENCE_GENPOLY_M6     0x0043  //  6      63      103           1000011
#define LIQUID_MSEQUENCE_GENPOLY_M7     0x0089  //  7     127      211          10001001
#define LIQUID_MSEQUENCE_GENPOLY_M8     0x011D  //  8     255      435         100101101
#define LIQUID_MSEQUENCE_GENPOLY_M9     0x0211  //  9     511     1021        1000010001
#define LIQUID_MSEQUENCE_GENPOLY_M10    0x0409  // 10    1023     2011       10000001001
#define LIQUID_MSEQUENCE_GENPOLY_M11    0x0805  // 11    2047     4005      100000000101
#define LIQUID_MSEQUENCE_GENPOLY_M12    0x1053  // 12    4095    10123     1000001010011
#define LIQUID_MSEQUENCE_GENPOLY_M13    0x201b  // 13    8191    20033    10000000011011
#define LIQUID_MSEQUENCE_GENPOLY_M14    0x402b  // 14   16383    40053   100000000101011
#define LIQUID_MSEQUENCE_GENPOLY_M15    0x8003  // 15   32767   100003  1000000000000011
   
typedef struct msequence_s * msequence;

// create a maximal-length sequence (m-sequence) object with
// an internal shift register length of _m bits.
//  _m      :   generator polynomial length, sequence length is (2^m)-1
//  _g      :   generator polynomial, starting with most-significant bit
//  _a      :   initial shift register state, default: 000...001
msequence msequence_create(unsigned int _m,
                           unsigned int _g,
                           unsigned int _a);

// create a maximal-length sequence (m-sequence) object from a generator polynomial
msequence msequence_create_genpoly(unsigned int _g);

// creates a default maximal-length sequence
msequence msequence_create_default(unsigned int _m);

// destroy an msequence object, freeing all internal memory
void msequence_destroy(msequence _m);

// prints the sequence's internal state to the screen
void msequence_print(msequence _m);

// advance msequence on shift register, returning output bit
unsigned int msequence_advance(msequence _ms);

// generate pseudo-random symbol from shift register by
// advancing _bps bits and returning compacted symbol
//  _ms     :   m-sequence object
//  _bps    :   bits per symbol of output
unsigned int msequence_generate_symbol(msequence _ms,
                                       unsigned int _bps);

// reset msequence shift register to original state, typically '1'
void msequence_reset(msequence _ms);

// initialize a bsequence object on an msequence object
//  _bs     :   bsequence object
//  _ms     :   msequence object
void bsequence_init_msequence(bsequence _bs,
                              msequence _ms);

// get the length of the sequence
unsigned int msequence_get_length(msequence _ms);

// get the internal state of the sequence
unsigned int msequence_get_state(msequence _ms);

// set the internal state of the sequence
void msequence_set_state(msequence    _ms,
                         unsigned int _a);


// 
// MODULE : utility
//

// pack binary array with symbol(s)
//  _src        :   source array [size: _n x 1]
//  _n          :   input source array length
//  _k          :   bit index to write in _src
//  _b          :   number of bits in input symbol
//  _sym_in     :   input symbol
void liquid_pack_array(unsigned char * _src,
                       unsigned int _n,
                       unsigned int _k,
                       unsigned int _b,
                       unsigned char _sym_in);

// unpack symbols from binary array
//  _src        :   source array [size: _n x 1]
//  _n          :   input source array length
//  _k          :   bit index to write in _src
//  _b          :   number of bits in output symbol
//  _sym_out    :   output symbol
void liquid_unpack_array(unsigned char * _src,
                         unsigned int _n,
                         unsigned int _k,
                         unsigned int _b,
                         unsigned char * _sym_out);

// pack one-bit symbols into bytes (8-bit symbols)
//  _sym_in             :   input symbols array [size: _sym_in_len x 1]
//  _sym_in_len         :   number of input symbols
//  _sym_out            :   output symbols
//  _sym_out_len        :   number of bytes allocated to output symbols array
//  _num_written        :   number of output symbols actually written
void liquid_pack_bytes(unsigned char * _sym_in,
                       unsigned int _sym_in_len,
                       unsigned char * _sym_out,
                       unsigned int _sym_out_len,
                       unsigned int * _num_written);

// unpack 8-bit symbols (full bytes) into one-bit symbols
//  _sym_in             :   input symbols array [size: _sym_in_len x 1]
//  _sym_in_len         :   number of input symbols
//  _sym_out            :   output symbols array
//  _sym_out_len        :   number of bytes allocated to output symbols array
//  _num_written        :   number of output symbols actually written
void liquid_unpack_bytes(unsigned char * _sym_in,
                         unsigned int _sym_in_len,
                         unsigned char * _sym_out,
                         unsigned int _sym_out_len,
                         unsigned int * _num_written);

// repack bytes with arbitrary symbol sizes
//  _sym_in             :   input symbols array [size: _sym_in_len x 1]
//  _sym_in_bps         :   number of bits per input symbol
//  _sym_in_len         :   number of input symbols
//  _sym_out            :   output symbols array
//  _sym_out_bps        :   number of bits per output symbol
//  _sym_out_len        :   number of bytes allocated to output symbols array
//  _num_written        :   number of output symbols actually written
void liquid_repack_bytes(unsigned char * _sym_in,
                         unsigned int _sym_in_bps,
                         unsigned int _sym_in_len,
                         unsigned char * _sym_out,
                         unsigned int _sym_out_bps,
                         unsigned int _sym_out_len,
                         unsigned int * _num_written);
 
// shift array to the left _b bits, filling in zeros
//  _src        :   source address [size: _n x 1]
//  _n          :   input data array size
//  _b          :   number of bits to shift
void liquid_lbshift(unsigned char * _src,
                    unsigned int _n,
                    unsigned int _b);
 
// shift array to the right _b bits, filling in zeros
//  _src        :   source address [size: _n x 1]
//  _n          :   input data array size
//  _b          :   number of bits to shift
void liquid_rbshift(unsigned char * _src,
                    unsigned int _n,
                    unsigned int _b);
 
// circularly shift array to the left _b bits
//  _src        :   source address [size: _n x 1]
//  _n          :   input data array size
//  _b          :   number of bits to shift
void liquid_lbcircshift(unsigned char * _src,
                        unsigned int _n,
                        unsigned int _b);
 
// circularly shift array to the right _b bits
//  _src        :   source address [size: _n x 1]
//  _n          :   input data array size
//  _b          :   number of bits to shift
void liquid_rbcircshift(unsigned char * _src,
                        unsigned int _n,
                        unsigned int _b);
 



// shift array to the left _b bytes, filling in zeros
//  _src        :   source address [size: _n x 1]
//  _n          :   input data array size
//  _b          :   number of bytes to shift
void liquid_lshift(unsigned char * _src,
                   unsigned int _n,
                   unsigned int _b);
 
// shift array to the right _b bytes, filling in zeros
//  _src        :   source address [size: _n x 1]
//  _n          :   input data array size
//  _b          :   number of bytes to shift
void liquid_rshift(unsigned char * _src,
                   unsigned int _n,
                   unsigned int _b);
 
// circular shift array to the left _b bytes
//  _src        :   source address [size: _n x 1]
//  _n          :   input data array size
//  _b          :   number of bytes to shift
void liquid_lcircshift(unsigned char * _src,
                       unsigned int _n,
                       unsigned int _b);
 
// circular shift array to the right _b bytes
//  _src        :   source address [size: _n x 1]
//  _n          :   input data array size
//  _b          :   number of bytes to shift
void liquid_rcircshift(unsigned char * _src,
                       unsigned int _n,
                       unsigned int _b);
 
// Count the number of ones in an integer
unsigned int liquid_count_ones(unsigned int _x); 

// count number of ones in an integer, modulo 2
unsigned int liquid_count_ones_mod2(unsigned int _x);

// compute bindary dot-product between two integers
unsigned int liquid_bdotprod(unsigned int _x,
                             unsigned int _y);

// Count leading zeros in an integer
unsigned int liquid_count_leading_zeros(unsigned int _x); 

// Most-significant bit index
unsigned int liquid_msb_index(unsigned int _x);

// Print string of bits to stdout
void liquid_print_bitstring(unsigned int _x,
                            unsigned int _n);

// reverse byte, word, etc.
unsigned char liquid_reverse_byte(  unsigned char _x);
unsigned int  liquid_reverse_uint16(unsigned int  _x);
unsigned int  liquid_reverse_uint24(unsigned int  _x);
unsigned int  liquid_reverse_uint32(unsigned int  _x);

// 
// MODULE : vector
//

#define LIQUID_VECTOR_MANGLE_RF(name) LIQUID_CONCAT(liquid_vectorf, name)
#define LIQUID_VECTOR_MANGLE_CF(name) LIQUID_CONCAT(liquid_vectorcf,name)

// large macro
//   VECTOR     : name-mangling macro
//   T          : data type
//   TP         : data type (primitive)
#define LIQUID_VECTOR_DEFINE_API(VECTOR,T,TP)                   \
                                                                \
/* initialize vector with scalar: x[i] = c (scalar)         */  \
void VECTOR(_init)(T            _c,                             \
                   T *          _x,                             \
                   unsigned int _n);                            \
                                                                \
/* add each element: z[i] = x[i] + y[i]                     */  \
void VECTOR(_add)(T *          _x,                              \
                  T *          _y,                              \
                  unsigned int _n,                              \
                  T *          _z);                             \
/* add scalar to each element: y[i] = x[i] + c              */  \
void VECTOR(_addscalar)(T *          _x,                        \
                        unsigned int _n,                        \
                        T            _c,                        \
                        T *          _y);                       \
                                                                \
/* multiply each element: z[i] = x[i] * y[i]                */  \
void VECTOR(_mul)(T *          _x,                              \
                  T *          _y,                              \
                  unsigned int _n,                              \
                  T *          _z);                             \
/* multiply each element with scalar: y[i] = x[i] * c       */  \
void VECTOR(_mulscalar)(T *          _x,                        \
                        unsigned int _n,                        \
                        T            _c,                        \
                        T *          _y);                       \
                                                                \
/* compute complex phase rotation: x[i] = exp{j theta[i]}   */  \
void VECTOR(_cexpj)(TP *         _theta,                        \
                    unsigned int _n,                            \
                    T *          _x);                           \
/* compute angle of each element: theta[i] = arg{ x[i] }    */  \
void VECTOR(_carg)(T *          _x,                             \
                   unsigned int _n,                             \
                   TP *         _theta);                        \
/* compute absolute value of each element: y[i] = |x[i]|    */  \
void VECTOR(_abs)(T *          _x,                              \
                  unsigned int _n,                              \
                  TP *         _y);                             \
                                                                \
/* compute sum of squares: sum{ |x|^2 }                     */  \
TP VECTOR(_sumsq)(T *          _x,                              \
                  unsigned int _n);                             \
                                                                \
/* compute l-2 norm: sqrt{ sum{ |x|^2 } }                   */  \
TP VECTOR(_norm)(T *          _x,                               \
                 unsigned int _n);                              \
                                                                \
/* compute l-p norm: { sum{ |x|^p } }^(1/p)                 */  \
TP VECTOR(_pnorm)(T *          _x,                              \
                  unsigned int _n,                              \
                  TP           _p);                             \
                                                                \
/* scale vector elements by l-2 norm: y[i] = x[i]/norm(x)   */  \
void VECTOR(_normalize)(T *          _x,                        \
                        unsigned int _n,                        \
                        T *          _y);                       \

LIQUID_VECTOR_DEFINE_API(LIQUID_VECTOR_MANGLE_RF, float,                float)
LIQUID_VECTOR_DEFINE_API(LIQUID_VECTOR_MANGLE_CF, liquid_float_complex, float)

// 
// mixed types
//
#if 0
void liquid_vectorf_add(float *      _a,
                        float *      _b,
                        unsigned int _n,
                        float *      _c);
#endif

#ifdef __cplusplus
} //extern "C"
#endif // __cplusplus

#endif // __LIQUID_H__