This file is indexed.

/usr/include/madness/mra/gfit.h is in libmadness-dev 0.10.1~gite4aa500e-10.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/*
 This file is part of MADNESS.

 Copyright (C) 2007,2010 Oak Ridge National Laboratory

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

 For more information please contact:

 Robert J. Harrison
 Oak Ridge National Laboratory
 One Bethel Valley Road
 P.O. Box 2008, MS-6367

 email: harrisonrj@ornl.gov
 tel:   865-241-3937
 fax:   865-572-0680


 $Id: key.h 2907 2012-06-14 10:15:05Z 3ru6ruWu $
 */

#ifndef MADNESS_MRA_GFIT_H__INCLUDED
#define MADNESS_MRA_GFIT_H__INCLUDED

/// \file gfit.h
/// \brief fit isotropic functions to a set of Gaussians with controlled precision

//#include <iostream>

#include <cmath>
#include "../constants.h"
#include "../tensor/basetensor.h"
#include "../tensor/slice.h"
#include "../tensor/tensor.h"
#include "../tensor/tensor_lapack.h"
#include "../world/madness_exception.h"
#include "../world/print.h"

namespace madness {

template<typename T, std::size_t NDIM>
class GFit {

public:

	/// default ctor does nothing
	GFit() {}

	/// return a fit for the Coulomb function
	static GFit CoulombFit(double lo, double hi, double eps, bool prnt=false) {
		GFit fit=BSHFit(0.0,lo,hi,eps/(4.0*constants::pi),prnt);
		fit.coeffs_.scale(4.0*constants::pi);
		return fit;
	}

	/// return a fit for the bound-state Helmholtz function

	/// the BSH function is defined by
	///  f(r) = exp(-\mu r)/r
	/// @param[in]	mu	the exponent of the BSH
	/// @param[in]	lo	the smallest length scale that needs to be precisely represented
	/// @param[in]	hi	the largest length scale that needs to be precisely represented
	/// @param[in]	eps	the precision threshold
	/// @parma[in]	prnt	print level
	static GFit BSHFit(double mu, double lo, double hi, double eps, bool prnt=false) {
		GFit fit;
		if (NDIM==3) bsh_fit(mu,lo,hi,eps,fit.coeffs_,fit.exponents_,prnt);
		else bsh_fit_ndim(NDIM,mu,lo,hi,eps,fit.coeffs_,fit.exponents_,prnt);
		return fit;
	}

	/// return a fit for the Slater function

	/// the Slater function is defined by
	///  f(r) = exp(-\gamma r)
	/// @param[in]	gamma	the exponent of the Slater function
	/// @param[in]	lo	the smallest length scale that needs to be precisely represented
	/// @param[in]	hi	the largest length scale that needs to be precisely represented
	/// @param[in]	eps	the precision threshold
	/// @parma[in]	prnt	print level
	static GFit SlaterFit(double gamma, double lo, double hi, double eps, bool prnt=false) {
		GFit fit;
		slater_fit(gamma,lo,hi,eps,fit.coeffs_,fit.exponents_,prnt);
		return fit;
	}

	/// return a fit for a general isotropic function

	/// note that the error is controlled over a uniform grid, the boundaries
	/// will be poorly represented in general. Following Beylkin 2005
	static GFit GeneralFit() {
		MADNESS_EXCEPTION("General GFit still to be implemented",1);
		return GFit();
	}

	/// return the coefficients of the fit
	Tensor<T> coeffs() const {return coeffs_;}

	/// return the exponents of the fit
	Tensor<T> exponents() const {return exponents_;}

	void truncate_periodic_expansion(Tensor<double>& c, Tensor<double>& e,
			double L, bool discardG0) const {
		double tcut = 0.25/L/L;

		if (discardG0) {
			// Relies on expnts being in decreasing order
			for (int i=0; i<e.dim(0); ++i) {
				if (e(i) < tcut) {
					c = c(Slice(0,i));
					e = e(Slice(0,i));
					break;
				}
			}
		} else {
//			// Relies on expnts being in decreasing order
//			int icut = -1;
//			for (int i=0; i<e.dim(0); ++i) {
//				if (e(i) < tcut) {
//					icut = i;
//					break;
//				}
//			}
//			if (icut > 0) {
//				for (int i=icut+1; i<e.dim(0); ++i) {
//					c(icut) += c(i);
//				}
//				c = c(Slice(0,icut));
//				e = e(Slice(0,icut));
//			}
		}
	}

private:

	/// ctor taking an isotropic function

	/// the function will be represented with a uniform error on a uniform grid
	/// @param[in]	f	a 1d-function that implements T operator()
	template<typename funcT>
	GFit(const funcT& f) {

	}

	/// the coefficients of the expansion f(x) = \sum_m coeffs[m] exp(-exponents[m] * x^2)
	Tensor<T> coeffs_;

	/// the exponents of the expansion f(x) = \sum_m coeffs[m] exp(-exponents[m] * x^2)
	Tensor<T> exponents_;

	/// fit the function exp(-mu r)/r

	/// formulas taken from
	/// G. Beylkin and L. Monzon, On approximation of functions by exponential sums,
	/// Appl Comput Harmon A, vol. 19, no. 1, pp. 17-48, Jul. 2005.
	/// and
	/// R. J. Harrison, G. I. Fann, T. Yanai, and G. Beylkin,
	/// Multiresolution Quantum Chemistry in Multiwavelet Bases,
	/// Lecture Notes in Computer Science, vol. 2660, p. 707, 2003.
	static void bsh_fit(double mu, double lo, double hi, double eps,
			Tensor<double>& pcoeff, Tensor<double>& pexpnt, bool prnt) {

                if (mu < 0.0) throw "cannot handle negative mu in bsh_fit";

		if (mu > 0) {
			// Restrict hi according to the exponential decay
			double r = -log(4*constants::pi*0.01*eps);
			r = -log(r * 4*constants::pi*0.01*eps);
			if (hi > r) hi = r;
		}

		double TT;
		double slo, shi;

		if (eps >= 1e-2) TT = 5;
		else if (eps >= 1e-4) TT = 10;
		else if (eps >= 1e-6) TT = 14;
		else if (eps >= 1e-8) TT = 18;
		else if (eps >= 1e-10) TT = 22;
		else if (eps >= 1e-12) TT = 26;
		else TT = 30;

		if (mu > 0) {
			slo = -0.5*log(4.0*TT/(mu*mu));
		}
		else {
			slo = log(eps/hi) - 1.0;
		}
		shi = 0.5*log(TT/(lo*lo));
                if (shi <= slo) throw "bsh_fit: logic error in slo,shi";

		// Resolution required for quadrature over s
		double h = 1.0/(0.2-.50*log10(eps)); // was 0.5 was 0.47

		// Truncate the number of binary digits in h's mantissa
		// so that rounding does not occur when performing
		// manipulations to determine the quadrature points and
		// to limit the number of distinct values in case of
		// multiple precisions being used at the same time.
		h = floor(64.0*h)/64.0;


		// Round shi/lo up/down to an integral multiple of quadrature points
		shi = ceil(shi/h)*h;
		slo = floor(slo/h)*h;

		long npt = long((shi-slo)/h+0.5);

		//if (prnt)
                //std::cout << "mu " << mu << " slo " << slo << " shi " << shi << " npt " << npt << " h " << h << " " << eps << std::endl;

		Tensor<double> coeff(npt), expnt(npt);

		for (int i=0; i<npt; ++i) {
			double s = slo + h*(npt-i);	// i+1
			coeff[i] = h*2.0/sqrt(constants::pi)*exp(-mu*mu*exp(-2.0*s)/4.0)*exp(s);
			coeff[i] = coeff[i]/(4.0*constants::pi);
			expnt[i] = exp(2.0*s);
		}

#if ONE_TERM
		npt=1;
		double s=1.0;
		coeff[0]=1.0;
		expnt[0] = exp(2.0*s);
		coeff=coeff(Slice(0,0));
		expnt=expnt(Slice(0,0));
		print("only one term in gfit",s,coeff[0],expnt[0]);


#endif

		// Prune large exponents from the fit ... never necessary due to construction

		// Prune small exponents from Coulomb fit.  Evaluate a gaussian at
		// the range midpoint, and replace it there with the next most
		// diffuse gaussian.  Then examine the resulting error at the two
		// end points ... if this error is less than the desired
		// precision, can discard the diffuse gaussian.

		if (mu == 0.0) {
			double mid = lo + (hi-lo)*0.5;
			long i;
			for (i=npt-1; i>0; --i) {
				double cnew = coeff[i]*exp(-(expnt[i]-expnt[i-1])*mid*mid);
				double errlo = coeff[i]*exp(-expnt[i]*lo*lo) -
						cnew*exp(-expnt[i-1]*lo*lo);
				double errhi = coeff[i]*exp(-expnt[i]*hi*hi) -
						cnew*exp(-expnt[i-1]*hi*hi);
				if (std::max(std::abs(errlo),std::abs(errhi)) > 0.03*eps) break;
				npt--;
				coeff[i-1] = coeff[i-1] + cnew;
			}
			coeff = coeff(Slice(0,npt-1));
			expnt = expnt(Slice(0,npt-1));
		}

		// Modify the coeffs of the largest exponents to satisfy the moment conditions
		//
		// SETTING NMOM>1 TURNS OUT TO BE A BAD IDEA (AS CURRENTLY IMPLEMENTED)
		// [It is accurate and efficient for a one-shot application but it seems to
		//  introduce fine-scale noise that amplifies during iterative solution of
		//  the SCF and DFT equations ... the symptom is negative coeffs in the fit]
		//
		// SET NMOM=0 or 1 (1 recommended) unless you are doing a one-shot application
		//
		// Determine the effective range of the four largest exponents and compute
		// moments of the exact and remainder of the fit.  Then adjust the coeffs
		// to reproduce the exact moments in that volume.
		//
		// If nmom!=4 we assume that we will eliminate n=-1 which is stored first
		// in the moment list
		//
		// <r^i|gj> cj = <r^i|exact-remainder>
		const long nmom = 1;
		if (nmom > 0) {
			Tensor<double> q(4), qg(4);
			double range = sqrt(-log(1e-6)/expnt[nmom-1]);
			if (prnt) print("exponent(nmom-1)",expnt[nmom-1],"has range", range);

			bsh_spherical_moments(mu, range, q);
			Tensor<double> M(nmom,nmom);
			for (int i=nmom; i<npt; ++i) {
				Tensor<double> qt(4);
				gaussian_spherical_moments(expnt[i], range, qt);
				qg += qt*coeff[i];
			}
			if (nmom != 4) {
				q = q(Slice(1,nmom));
				qg = qg(Slice(1,nmom));
			}
			if (prnt) {
				print("moments", q);
				print("moments", qg);
			}
			q = q - qg;
			for (int j=0; j<nmom; ++j) {
				Tensor<double> qt(4);
				gaussian_spherical_moments(expnt[j], range, qt);
				if (nmom != 4) qt = qt(Slice(1,nmom));
				for (int i=0; i<nmom; ++i) {
					M(i,j) = qt[i];
				}
			}
			Tensor<double> ncoeff;
			gesv(M, q, ncoeff);
			if (prnt) {
				print("M\n",M);
				print("old coeffs", coeff(Slice(0,nmom-1)));
				print("new coeffs", ncoeff);
			}

			coeff(Slice(0,nmom-1)) = ncoeff;
		}

		if (prnt) {
			for (int i=0; i<npt; ++i)
				std::cout << i << " " << coeff[i] << " " << expnt[i] << std::endl;

			long npt = 300;
			//double hi = 1.0;
			//if (mu) hi = min(1.0,30.0/mu);
			std::cout << "       x         value   abserr   relerr" << std::endl;
			std::cout << "  ------------  ------- -------- -------- " << std::endl;
			double step = exp(log(hi/lo)/(npt+1));
			for (int i=0; i<=npt; ++i) {
				double r = lo*(pow(step,i+0.5));
				double exact = exp(-mu*r)/r/4.0/constants::pi;
				double test = 0.0;
				for (int j=0; j<coeff.dim(0); ++j)
					test += coeff[j]*exp(-r*r*expnt[j]);
				double err = 0.0;
				if (exact) err = (exact-test)/exact;
				printf("  %.6e %8.1e %8.1e %8.1e\n",r, exact, exact-test, err);
			}
		}
		pcoeff = coeff;
		pexpnt = expnt;
	}

	/// fit a Slater function using a sum of Gaussians

	/// formula inspired by the BSH fit, with the roles of r and mu exchanged
	/// see also Eq. (A3) in
	/// S. Ten-no, Initiation of explicitly correlated Slater-type geminal theory,
	/// Chem. Phys. Lett., vol. 398, no. 1, pp. 56-61, 2004.
	static void slater_fit(double gamma, double lo, double hi, double eps,
			Tensor<double>& pcoeff, Tensor<double>& pexpnt, bool prnt) {

		// empirical number TT for the upper integration limit
		double TT;
		if (eps >= 1e-2) TT = 5;
		else if (eps >= 1e-4) TT = 10;
		else if (eps >= 1e-6) TT = 14;
		else if (eps >= 1e-8) TT = 18;
		else if (eps >= 1e-10) TT = 22;
		else if (eps >= 1e-12) TT = 26;
		else TT = 30;

		// integration limits for quadrature over s: slo and shi
		double slo=0.5 * log(eps) - 1.0;
		double shi=log(TT/(lo*lo))*0.5;

		// Resolution required for quadrature over s
		double h = 1.0/(0.2-.5*log10(eps)); // was 0.5 was 0.47

		// Truncate the number of binary digits in h's mantissa
		// so that rounding does not occur when performing
		// manipulations to determine the quadrature points and
		// to limit the number of distinct values in case of
		// multiple precisions being used at the same time.
		h = floor(64.0*h)/64.0;

		// Round shi/lo up/down to an integral multiple of quadrature points
		shi = ceil(shi/h)*h;
		slo = floor(slo/h)*h;

		long npt = long((shi-slo)/h+0.5);

		Tensor<double> coeff(npt), expnt(npt);

		for (int i=0; i<npt; ++i) {
			const double s = slo + h*(npt-i);	// i+1
			coeff[i] = h*exp(-gamma*gamma*exp(2.0*s) + s);
			coeff[i]*=2.0*gamma/sqrt(constants::pi);
			expnt[i] = 0.25*exp(-2.0*s);
		}

		// Prune large exponents from the fit ... never necessary due to construction

		// Prune small exponents from Coulomb fit.  Evaluate a gaussian at
		// the range midpoint, and replace it there with the next most
		// diffuse gaussian.  Then examine the resulting error at the two
		// end points ... if this error is less than the desired
		// precision, can discard the diffuse gaussian.

		if (gamma == 0.0) {
			double mid = lo + (hi-lo)*0.5;
			long i;
			for (i=npt-1; i>0; --i) {
				double cnew = coeff[i]*exp(-(expnt[i]-expnt[i-1])*mid*mid);
				double errlo = coeff[i]*exp(-expnt[i]*lo*lo) -
						cnew*exp(-expnt[i-1]*lo*lo);
				double errhi = coeff[i]*exp(-expnt[i]*hi*hi) -
						cnew*exp(-expnt[i-1]*hi*hi);
				if (std::max(std::abs(errlo),std::abs(errhi)) > 0.03*eps) break;
				npt--;
				coeff[i-1] = coeff[i-1] + cnew;
			}
			coeff = coeff(Slice(0,npt-1));
			expnt = expnt(Slice(0,npt-1));
		}


		if (prnt) {
			std::cout << "weights and roots for a Slater function with gamma=" << gamma << std::endl;
			for (int i=0; i<npt; ++i)
				std::cout << i << " " << coeff[i] << " " << expnt[i] << std::endl;

			long npt = 300;
			//double hi = 1.0;
			//if (mu) hi = min(1.0,30.0/mu);
			std::cout << "       x         value   abserr   relerr" << std::endl;
			std::cout << "  ------------  ------- -------- -------- " << std::endl;
			double step = exp(log(hi/lo)/(npt+1));
			for (int i=0; i<=npt; ++i) {
				double r = lo*(pow(step,i+0.5));
				double exact = exp(-gamma*r);
				double test = 0.0;
				for (int j=0; j<coeff.dim(0); ++j)
					test += coeff[j]*exp(-r*r*expnt[j]);
				double err = 0.0;
				if (exact) err = (exact-test)/exact;
				printf("  %.6e %8.1e %8.1e %8.1e\n",r, exact, exact-test, err);
			}
		}
		pcoeff = coeff;
		pexpnt = expnt;
	}

	void static bsh_fit_ndim(int ndim, double mu, double lo, double hi, double eps,
			Tensor<double>& pcoeff, Tensor<double>& pexpnt, bool prnt) {

		if (mu > 0) {
			// Restrict hi according to the exponential decay
			double r = -log(4*constants::pi*0.01*eps);
			r = -log(r * 4*constants::pi*0.01*eps);
			if (hi > r) hi = r;
		}


		// Determine range of quadrature by estimating when
		// kernel drops to exp(-100)

		double slo, shi;
		if (mu > 0) {
			slo = -0.5*log(4.0*100.0/(mu*mu));
			slo = -0.5*log(4.0*(slo*ndim - 2.0*slo + 100.0)/(mu*mu));
		}
		else {
			slo = log(eps/hi) - 1.0;
		}
		shi = 0.5*log(100.0/(lo*lo));

		// Resolution required for quadrature over s
		double h = 1.0/(0.2-.50*log10(eps)); // was 0.5 was 0.47

		// Truncate the number of binary digits in h's mantissa
		// so that rounding does not occur when performing
		// manipulations to determine the quadrature points and
		// to limit the number of distinct values in case of
		// multiple precisions being used at the same time.
		h = floor(64.0*h)/64.0;


		// Round shi/lo up/down to an integral multiple of quadrature points
		shi = ceil(shi/h)*h;
		slo = floor(slo/h)*h;

		long npt = long((shi-slo)/h+0.5);

		if (prnt)
			std::cout << "bsh: mu " << mu << " lo " << lo << " hi " << hi
			<< " eps " << eps << " slo " << slo << " shi " << shi
			<< " npt " << npt << " h " << h << std::endl;


		// Compute expansion pruning small coeffs and large exponents
		Tensor<double> coeff(npt), expnt(npt);
		int nnpt=0;
		for (int i=0; i<npt; ++i) {
			double s = slo + h*(npt-i);	// i+1
			double c = exp(-0.25*mu*mu*exp(-2.0*s)+(ndim-2)*s)*0.5/pow(constants::pi,0.5*ndim);
			double p = exp(2.0*s);
			c = c*h;
			if (c*exp(-p*lo*lo) > eps) {
				coeff(nnpt) = c;
				expnt(nnpt) = p;
				++nnpt;
			}
		}
		npt = nnpt;
#if ONE_TERM
		npt=1;
		double s=1.0;
		coeff[0]=1.0;
		expnt[0] = exp(2.0*s);
		coeff=coeff(Slice(0,0));
		expnt=expnt(Slice(0,0));
		print("only one term in gfit",s,coeff[0],expnt[0]);

#endif


		// Prune small exponents from Coulomb fit.  Evaluate a gaussian at
		// the range midpoint, and replace it there with the next most
		// diffuse gaussian.  Then examine the resulting error at the two
		// end points ... if this error is less than the desired
		// precision, can discard the diffuse gaussian.

		if (mu == 0.0) {
			double mid = lo + (hi-lo)*0.5;
			long i;
			for (i=npt-1; i>0; --i) {
				double cnew = coeff[i]*exp(-(expnt[i]-expnt[i-1])*mid*mid);
				double errlo = coeff[i]*exp(-expnt[i]*lo*lo) -
						cnew*exp(-expnt[i-1]*lo*lo);
				double errhi = coeff[i]*exp(-expnt[i]*hi*hi) -
						cnew*exp(-expnt[i-1]*hi*hi);
				if (std::max(std::abs(errlo),std::abs(errhi)) > 0.03*eps) break;
				npt--;
				coeff[i-1] = coeff[i-1] + cnew;
			}
		}

		// Shrink array to correct size
		coeff = coeff(Slice(0,npt-1));
		expnt = expnt(Slice(0,npt-1));


		if (prnt) {
			for (int i=0; i<npt; ++i)
				std::cout << i << " " << coeff[i] << " " << expnt[i] << std::endl;

			long npt = 300;
			std::cout << "       x         value" << std::endl;
			std::cout << "  ------------  ---------------------" << std::endl;
			double step = exp(log(hi/lo)/(npt+1));
			for (int i=0; i<=npt; ++i) {
				double r = lo*(pow(step,i+0.5));
				double test = 0.0;
				for (int j=0; j<coeff.dim(0); ++j)
					test += coeff[j]*exp(-r*r*expnt[j]);
				printf("  %.6e %20.10e\n",r, test);
			}
		}

		pcoeff = coeff;
		pexpnt = expnt;
	}

	// Returns in q[0..4] int(r^2(n+1)*exp(-alpha*r^2),r=0..R) n=-1,0,1,2
	static void gaussian_spherical_moments(double alpha, double R, Tensor<double>& q) {
		q[0] = -(-0.1e1 + exp(-alpha * R*R)) / alpha / 0.2e1;
		q[1] = (-0.2e1 * R * pow(alpha, 0.3e1 / 0.2e1) + sqrt(constants::pi)
				* erf(R * sqrt(alpha)) * alpha * exp(alpha * R*R))
				* pow(alpha, -0.5e1 / 0.2e1) * exp(-alpha * R*R) / 0.4e1;
		q[2] = -(-0.1e1 + exp(-alpha * R*R) + exp(-alpha * R*R) * alpha * R*R)
				* pow(alpha, -0.2e1) / 0.2e1;
		q[3] = -(-0.3e1 * sqrt(constants::pi) * erf(R * sqrt(alpha)) * pow(alpha, 0.2e1)
				* exp(alpha * R*R) + 0.6e1 * R * pow(alpha, 0.5e1 / 0.2e1)
				+ 0.4e1 * pow(R, 0.3e1) * pow(alpha, 0.7e1 / 0.2e1))
				* pow(alpha, -0.9e1 / 0.2e1) * exp(-alpha * R*R) / 0.8e1;
	}

	// Returns in q[0..4] int(r^2(n+1)*exp(-mu*r)/(4*constants::pi*r),r=0..R) n=-1,0,1,2
	static void bsh_spherical_moments(double mu, double R, Tensor<double>& q) {
		if (mu == 0.0) {
			q[0] = R / constants::pi  / 0.4e1;
			q[1] = pow(R, 0.2e1) / constants::pi / 0.8e1;
			q[2] = pow(R, 0.3e1) / constants::pi / 0.12e2;
			q[3] = pow(R, 0.4e1) / constants::pi / 0.16e2;
		}
		else  {
			q[0] = (exp(mu * R) - 0.1e1) / mu * exp(-mu * R) / constants::pi / 0.4e1;
			q[1] = -(-exp(mu * R) + 0.1e1 + mu * R) * pow(mu, -0.2e1) / constants::pi
					* exp(-mu * R) / 0.4e1;
			q[2] = -(-0.2e1 * exp(mu * R) + 0.2e1 + 0.2e1 * mu * R + R*R *
					pow(mu, 0.2e1))*pow(mu, -0.3e1) / constants::pi * exp(-mu * R) / 0.4e1;
			q[3] = -(-0.6e1 * exp(mu * R) + 0.6e1 + 0.6e1 * mu * R + 0.3e1 * R*R
					* pow(mu, 0.2e1) + pow(R, 0.3e1) * pow(mu, 0.3e1))
					* pow(mu, -0.4e1) / constants::pi * exp(-mu * R) / 0.4e1;
		}
	}

};


}

#endif // MADNESS_MRA_GFIT_H__INCLUDED