/usr/include/mapnik/hextree.hpp is in libmapnik-dev 3.0.19+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | /*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2015 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_HEXTREE_HPP
#define MAPNIK_HEXTREE_HPP
// mapnik
#include <mapnik/global.hpp>
#include <mapnik/palette.hpp>
#include <mapnik/util/noncopyable.hpp>
// stl
#include <algorithm>
#include <vector>
#include <set>
#include <cmath>
namespace mapnik {
struct RGBAPolicy
{
const static unsigned MAX_LEVELS = 6;
const static unsigned MIN_ALPHA = 5;
const static unsigned MAX_ALPHA = 250;
inline static unsigned index_from_level(unsigned level, rgba const& c)
{
unsigned shift = 7 - level;
return (((c.a >> shift) & 1) << 3)
| (((c.r >> shift) & 1) << 2)
| (((c.g >> shift) & 1) << 1)
| ((c.b >> shift) & 1);
}
};
template <typename T, typename InsertPolicy = RGBAPolicy >
class hextree : private util::noncopyable
{
struct node
{
node ()
: reds(0.0),
greens(0.0),
blues(0.0),
alphas(0.0),
count(0),
pixel_count(0),
reduce_cost(0.0),
children_count(0)
{
std::fill(children_, children_ + 16, nullptr);
}
~node ()
{
for (unsigned i = 0; i < 16; ++i)
{
if (children_[i] != 0)
{
delete children_[i];
children_[i]=0;
}
}
}
bool is_leaf() const
{
return (children_count == 0);
}
node * children_[16];
// sum of values for computing mean value using count or pixel_count
double reds;
double greens;
double blues;
double alphas;
// if count!=0, then node represents color in output palette
int count;
// number of pixels represented by this subtree
unsigned pixel_count;
// penalty of using this node as color
double reduce_cost;
// number of !=0 positions in children_ array
std::uint8_t children_count;
};
// highest reduce_cost first
struct node_rev_cmp
{
bool operator() (const node * lhs, const node* rhs) const
{
if (lhs->reduce_cost != rhs->reduce_cost)
{
return (lhs->reduce_cost > rhs->reduce_cost);
}
return (lhs > rhs);
}
};
unsigned max_colors_;
unsigned colors_;
// flag indicating existance of invisible pixels (a < InsertPolicy::MIN_ALPHA)
bool has_holes_;
const std::unique_ptr<node> root_;
// working palette for quantization, sorted on mean(r,g,b,a) for easier searching NN
std::vector<rgba> sorted_pal_;
// index remaping of sorted_pal_ indexes to indexes of returned image palette
std::vector<unsigned> pal_remap_;
// rgba hashtable for quantization
mutable rgba_hash_table color_hashmap_;
// gamma correction to prioritize dark colors (>1.0)
double gamma_;
// look up table for gamma correction
double gammaLUT_[256];
// transparency handling
enum transparency_mode_t {NO_TRANSPARENCY=0, BINARY_TRANSPARENCY=1, FULL_TRANSPARENCY=2};
unsigned trans_mode_;
inline double gamma(double b, double g) const
{
return 255 * std::pow(b/255, g);
}
public:
explicit hextree(unsigned max_colors=256, double g=2.0)
: max_colors_(max_colors),
colors_(0),
has_holes_(false),
root_(new node()),
#ifdef USE_DENSE_HASH_MAP
// TODO - test for any benefit to initializing at a larger size
color_hashmap_(),
#endif
trans_mode_(FULL_TRANSPARENCY)
{
setGamma(g);
#ifdef USE_DENSE_HASH_MAP
color_hashmap_.set_empty_key(0);
#endif
}
~hextree()
{}
void setMaxColors(unsigned max_colors)
{
max_colors_ = max_colors;
}
void setGamma(double g)
{
gamma_ = g;
for (unsigned i=0; i<256; i++)
{
gammaLUT_[i] = gamma(i, 1/gamma_);
}
}
void setTransMode(unsigned t)
{
trans_mode_ = t;
}
transparency_mode_t getTransMode() const
{
return trans_mode_;
}
// process alpha value based on trans_mode_
std::uint8_t preprocessAlpha(std::uint8_t a) const
{
switch(trans_mode_)
{
case NO_TRANSPARENCY:
return 255;
case BINARY_TRANSPARENCY:
return a<127?0:255;
default:
return a;
}
}
void insert(T const& data)
{
std::uint8_t a = preprocessAlpha(data.a);
unsigned level = 0;
node * cur_node = root_.get();
if (a < InsertPolicy::MIN_ALPHA)
{
has_holes_ = true;
return;
}
while (true)
{
cur_node->pixel_count++;
cur_node->reds += gammaLUT_[data.r];
cur_node->greens += gammaLUT_[data.g];
cur_node->blues += gammaLUT_[data.b];
cur_node->alphas += a;
if (level == InsertPolicy::MAX_LEVELS)
{
if (cur_node->pixel_count == 1)
{
++colors_;
}
break;
}
unsigned idx = InsertPolicy::index_from_level(level,data);
if (cur_node->children_[idx] == 0)
{
cur_node->children_count++;
cur_node->children_[idx] = new node();
}
cur_node = cur_node->children_[idx];
++level;
}
}
// return color index in returned earlier palette
int quantize(unsigned val) const
{
std::uint8_t a = preprocessAlpha(U2ALPHA(val));
unsigned ind=0;
if (a < InsertPolicy::MIN_ALPHA || colors_ == 0)
{
return 0;
}
if (colors_ == 1)
{
return pal_remap_[has_holes_?1:0];
}
rgba_hash_table::iterator it = color_hashmap_.find(val);
if (it == color_hashmap_.end())
{
rgba c(val);
int dr, dg, db, da;
int dist, newdist;
// find closest match based on mean of r,g,b,a
std::vector<rgba>::const_iterator pit =
std::lower_bound(sorted_pal_.begin(),sorted_pal_.end(), c, rgba::mean_sort_cmp());
ind = pit-sorted_pal_.begin();
if (ind == sorted_pal_.size())
ind--;
dr = sorted_pal_[ind].r - c.r;
dg = sorted_pal_[ind].g - c.g;
db = sorted_pal_[ind].b - c.b;
da = sorted_pal_[ind].a - a;
dist = dr*dr + dg*dg + db*db + da*da;
int poz = ind;
// search neighbour positions in both directions for better match
for (int i = poz - 1; i >= 0; i--)
{
dr = sorted_pal_[i].r - c.r;
dg = sorted_pal_[i].g - c.g;
db = sorted_pal_[i].b - c.b;
da = sorted_pal_[i].a - a;
// stop criteria based on properties of used sorting
if (((dr+db+dg+da) * (dr+db+dg+da) / 4 > dist))
{
break;
}
newdist = dr*dr + dg*dg + db*db + da*da;
if (newdist < dist)
{
ind = i;
dist = newdist;
}
}
for (unsigned i = poz + 1; i < sorted_pal_.size(); i++)
{
dr = sorted_pal_[i].r - c.r;
dg = sorted_pal_[i].g - c.g;
db = sorted_pal_[i].b - c.b;
da = sorted_pal_[i].a - a;
// stop criteria based on properties of used sorting
if ((dr+db+dg+da) * (dr+db+dg+da) / 4 > dist)
{
break;
}
newdist = dr*dr + dg*dg + db*db + da*da;
if (newdist < dist)
{
ind = i;
dist = newdist;
}
}
//put found index in hash map
color_hashmap_[val] = ind;
}
else
{
ind = it->second;
}
return pal_remap_[ind];
}
void create_palette(std::vector<rgba> & palette)
{
sorted_pal_.clear();
if (has_holes_)
{
max_colors_--;
sorted_pal_.push_back(rgba(0,0,0,0));
}
assign_node_colors();
sorted_pal_.reserve(colors_);
create_palette_rek(sorted_pal_, root_.get());
// sort palette for binary searching in quantization
std::sort(sorted_pal_.begin(), sorted_pal_.end(), rgba::mean_sort_cmp());
// returned palette is rearanged, so that colors with a<255 are at the begining
pal_remap_.resize(sorted_pal_.size());
palette.clear();
palette.reserve(sorted_pal_.size());
for (unsigned i=0; i<sorted_pal_.size(); ++i)
{
if (sorted_pal_[i].a<255)
{
pal_remap_[i] = static_cast<unsigned>(palette.size());
palette.push_back(sorted_pal_[i]);
}
}
for (unsigned i=0; i<sorted_pal_.size(); ++i)
{
if (sorted_pal_[i].a==255)
{
pal_remap_[i] = static_cast<unsigned>(palette.size());
palette.push_back(sorted_pal_[i]);
}
}
}
private:
void print_tree(node *r, int d=0, int id=0) const
{
for (int i=0; i<d; i++)
{
printf("\t");
}
if (r->count>0)
{
printf("%d: (+%d/%d/%.5f) (%d %d %d %d)\n",
id, static_cast<int>(r->count), static_cast<int>(r->pixel_count), r->reduce_cost,
static_cast<int>(round(gamma(r->reds / r->count, gamma_))),
static_cast<int>(round(gamma(r->greens / r->count, gamma_))),
static_cast<int>(round(gamma(r->blues / r->count, gamma_))),
static_cast<int>((r->alphas / r->count)));
}
else
{
printf("%d: (%d/%d/%.5f) (%d %d %d %d)\n", id,
static_cast<int>(r->count), static_cast<int>(r->pixel_count), r->reduce_cost,
static_cast<int>(round(gamma(r->reds / r->pixel_count, gamma_))),
static_cast<int>(round(gamma(r->greens / r->pixel_count, gamma_))),
static_cast<int>(round(gamma(r->blues / r->pixel_count, gamma_))),
static_cast<int>((r->alphas / r->pixel_count)));
}
for (unsigned idx=0; idx < 16; ++idx)
{
if (r->children_[idx] != 0)
{
print_tree(r->children_[idx], d+1, idx);
}
}
}
// traverse tree and search for nodes with count!=0, that represent single color.
// clip extreme alfa values
void create_palette_rek(std::vector<rgba> & palette, node * itr) const
{
if (itr->count != 0)
{
unsigned count = itr->count;
std::uint8_t a = std::uint8_t(itr->alphas/float(count));
if (a > InsertPolicy::MAX_ALPHA) a = 255;
if (a < InsertPolicy::MIN_ALPHA) a = 0;
palette.push_back(rgba(static_cast<std::uint8_t>(round(gamma(itr->reds / count, gamma_))),
static_cast<std::uint8_t>(round(gamma(itr->greens / count, gamma_))),
static_cast<std::uint8_t>(round(gamma(itr->blues / count, gamma_))), a));
}
for (unsigned idx=0; idx < 16; ++idx)
{
if (itr->children_[idx] != 0)
{
create_palette_rek(palette, itr->children_[idx]);
}
}
}
// assign value to r, representing some penalty for assigning one
// color to all pixels in this subtree
void compute_cost(node *r)
{
//initial small value, so that all nodes have >0 cost
r->reduce_cost = r->pixel_count/1000.0;
if (r->children_count==0)
{
return;
}
// mean color of all pixels in subtree
double mean_r = r->reds / r->pixel_count;
double mean_g = r->greens / r->pixel_count;
double mean_b = r->blues / r->pixel_count;
double mean_a = r->alphas / r->pixel_count;
for (unsigned idx=0; idx < 16; ++idx)
{
if (r->children_[idx] != 0)
{
double dr,dg,db,da;
compute_cost(r->children_[idx]);
// include childrens penalty
r->reduce_cost += r->children_[idx]->reduce_cost;
// difference between mean value and subtree mean value
dr = r->children_[idx]->reds / r->children_[idx]->pixel_count - mean_r;
dg = r->children_[idx]->greens / r->children_[idx]->pixel_count - mean_g;
db = r->children_[idx]->blues / r->children_[idx]->pixel_count - mean_b;
da = r->children_[idx]->alphas / r->children_[idx]->pixel_count - mean_a;
// penalty_x = d_x^2 * pixel_count * mean_alfa/255, where x=r,g,b,a
// mean_alpha/255 because more opaque color = more noticable differences
r->reduce_cost += (dr*dr + dg*dg + db*db + da*da) * r->children_[idx]->alphas / 255;
}
}
}
// starting from root_, unfold nodes with biggest penalty
// until all available colors are assigned to processed nodes
void assign_node_colors()
{
compute_cost(root_.get());
int tries = 0;
// at the begining, single color assigned to root_
colors_ = 1;
root_->count = root_->pixel_count;
std::set<node*,node_rev_cmp> colored_leaves_heap;
colored_leaves_heap.insert(root_.get());
while((!colored_leaves_heap.empty() && (colors_ < max_colors_) && (tries < 16)))
{
// select worst node to remove it from palette and replace with children
node * cur_node = *colored_leaves_heap.begin();
colored_leaves_heap.erase(colored_leaves_heap.begin());
if (((cur_node->children_count + colors_ - 1) > max_colors_))
{
tries++;
continue; // try few times, maybe next will have less children
}
tries = 0;
// ignore leaves and also nodes with small mean error and not excessive number of pixels
if (cur_node->pixel_count > 0 &&
(cur_node->children_count > 0) &&
(((cur_node->reduce_cost / cur_node->pixel_count + 1) * std::log(double(cur_node->pixel_count))) > 15)
)
{
colors_--;
cur_node->count = 0;
for (unsigned idx=0; idx < 16; ++idx)
{
if (cur_node->children_[idx] != 0)
{
node *n = cur_node->children_[idx];
n->count = n->pixel_count;
colored_leaves_heap.insert(n);
colors_++;
}
}
}
}
}
};
} // namespace mapnik
#endif // MAPNIK_HEXTREE_HPP
|