This file is indexed.

/usr/include/mapnik/hextree.hpp is in libmapnik-dev 3.0.19+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/*****************************************************************************
 *
 * This file is part of Mapnik (c++ mapping toolkit)
 *
 * Copyright (C) 2015 Artem Pavlenko
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *****************************************************************************/

#ifndef MAPNIK_HEXTREE_HPP
#define MAPNIK_HEXTREE_HPP

// mapnik
#include <mapnik/global.hpp>
#include <mapnik/palette.hpp>
#include <mapnik/util/noncopyable.hpp>

// stl
#include <algorithm>
#include <vector>
#include <set>
#include <cmath>

namespace mapnik {

struct RGBAPolicy
{
    const static unsigned MAX_LEVELS = 6;
    const static unsigned MIN_ALPHA  = 5;
    const static unsigned MAX_ALPHA  = 250;
    inline static unsigned index_from_level(unsigned level, rgba const& c)
    {
        unsigned shift = 7 - level;
        return (((c.a >> shift) & 1) << 3)
            | (((c.r >> shift) & 1) << 2)
            | (((c.g >> shift) & 1) << 1)
            | ((c.b >> shift) & 1);
    }
};

template <typename T, typename InsertPolicy = RGBAPolicy >
class hextree : private util::noncopyable
{
    struct node
    {
        node ()
            : reds(0.0),
              greens(0.0),
              blues(0.0),
              alphas(0.0),
              count(0),
              pixel_count(0),
              reduce_cost(0.0),
              children_count(0)
        {
            std::fill(children_, children_ + 16, nullptr);
        }

        ~node ()
        {
            for (unsigned i = 0; i < 16; ++i)
            {
                if (children_[i] != 0)
                {
                    delete children_[i];
                    children_[i]=0;
                }
            }
        }

        bool is_leaf() const
        {
            return (children_count == 0);
        }
        node * children_[16];
        // sum of values for computing mean value using count or pixel_count
        double reds;
        double greens;
        double blues;
        double alphas;
        // if count!=0, then node represents color in output palette
        int count;
        // number of pixels represented by this subtree
        unsigned pixel_count;
        // penalty of using this node as color
        double reduce_cost;
        // number of !=0 positions in children_ array
        std::uint8_t children_count;
    };

    // highest reduce_cost first
    struct node_rev_cmp
    {
        bool operator() (const node * lhs, const node* rhs) const
        {
            if (lhs->reduce_cost != rhs->reduce_cost)
            {
                return (lhs->reduce_cost > rhs->reduce_cost);
            }
            return (lhs > rhs);
        }
    };

    unsigned max_colors_;
    unsigned colors_;
    // flag indicating existance of invisible pixels (a < InsertPolicy::MIN_ALPHA)
    bool has_holes_;
    const std::unique_ptr<node> root_;
    // working palette for quantization, sorted on mean(r,g,b,a) for easier searching NN
    std::vector<rgba> sorted_pal_;
    // index remaping of sorted_pal_ indexes to indexes of returned image palette
    std::vector<unsigned> pal_remap_;
    // rgba hashtable for quantization
    mutable rgba_hash_table color_hashmap_;
    // gamma correction to prioritize dark colors (>1.0)
    double gamma_;
    // look up table for gamma correction
    double gammaLUT_[256];
    // transparency handling
    enum transparency_mode_t {NO_TRANSPARENCY=0, BINARY_TRANSPARENCY=1, FULL_TRANSPARENCY=2};
    unsigned trans_mode_;

    inline double gamma(double b, double g) const
    {
        return 255 * std::pow(b/255, g);
    }

public:
    explicit hextree(unsigned max_colors=256, double g=2.0)
        : max_colors_(max_colors),
          colors_(0),
          has_holes_(false),
          root_(new node()),
#ifdef USE_DENSE_HASH_MAP
          // TODO - test for any benefit to initializing at a larger size
          color_hashmap_(),
#endif
          trans_mode_(FULL_TRANSPARENCY)
    {
        setGamma(g);
#ifdef USE_DENSE_HASH_MAP
        color_hashmap_.set_empty_key(0);
#endif
    }

    ~hextree()
    {}

    void setMaxColors(unsigned max_colors)
    {
        max_colors_ = max_colors;
    }

    void setGamma(double g)
    {
        gamma_ = g;
        for (unsigned i=0; i<256; i++)
        {
            gammaLUT_[i] = gamma(i, 1/gamma_);
        }
    }

    void setTransMode(unsigned t)
    {
        trans_mode_ = t;
    }

    transparency_mode_t getTransMode() const
    {
        return trans_mode_;
    }

    // process alpha value based on trans_mode_
    std::uint8_t preprocessAlpha(std::uint8_t a) const
    {
        switch(trans_mode_)
        {
        case NO_TRANSPARENCY:
            return 255;
        case BINARY_TRANSPARENCY:
            return a<127?0:255;
        default:
            return a;
        }
    }

    void insert(T const& data)
    {
        std::uint8_t a = preprocessAlpha(data.a);
        unsigned level = 0;
        node * cur_node = root_.get();
        if (a < InsertPolicy::MIN_ALPHA)
        {
            has_holes_ = true;
            return;
        }
        while (true)
        {
            cur_node->pixel_count++;
            cur_node->reds   += gammaLUT_[data.r];
            cur_node->greens += gammaLUT_[data.g];
            cur_node->blues  += gammaLUT_[data.b];
            cur_node->alphas += a;

            if (level == InsertPolicy::MAX_LEVELS)
            {
                if (cur_node->pixel_count == 1)
                {
                    ++colors_;
                }
                break;
            }

            unsigned idx = InsertPolicy::index_from_level(level,data);
            if (cur_node->children_[idx] == 0)
            {
                cur_node->children_count++;
                cur_node->children_[idx] = new node();
            }
            cur_node = cur_node->children_[idx];
            ++level;
        }
    }

    // return color index in returned earlier palette
    int quantize(unsigned val) const
    {
        std::uint8_t a = preprocessAlpha(U2ALPHA(val));
        unsigned ind=0;
        if (a < InsertPolicy::MIN_ALPHA || colors_ == 0)
        {
            return 0;
        }
        if (colors_ == 1)
        {
            return pal_remap_[has_holes_?1:0];
        }

        rgba_hash_table::iterator it = color_hashmap_.find(val);
        if (it == color_hashmap_.end())
        {
            rgba c(val);
            int dr, dg, db, da;
            int dist, newdist;

            // find closest match based on mean of r,g,b,a
            std::vector<rgba>::const_iterator pit =
                std::lower_bound(sorted_pal_.begin(),sorted_pal_.end(), c, rgba::mean_sort_cmp());
            ind = pit-sorted_pal_.begin();
            if (ind == sorted_pal_.size())
                ind--;
            dr = sorted_pal_[ind].r - c.r;
            dg = sorted_pal_[ind].g - c.g;
            db = sorted_pal_[ind].b - c.b;
            da = sorted_pal_[ind].a - a;
            dist = dr*dr + dg*dg + db*db + da*da;
            int poz = ind;

            // search neighbour positions in both directions for better match
            for (int i = poz - 1; i >= 0; i--)
            {
                dr = sorted_pal_[i].r - c.r;
                dg = sorted_pal_[i].g - c.g;
                db = sorted_pal_[i].b - c.b;
                da = sorted_pal_[i].a - a;
                // stop criteria based on properties of used sorting
                if (((dr+db+dg+da) * (dr+db+dg+da) / 4 > dist))
                {
                    break;
                }
                newdist = dr*dr + dg*dg + db*db + da*da;
                if (newdist < dist)
                {
                    ind = i;
                    dist = newdist;
                }
            }
            for (unsigned i = poz + 1; i < sorted_pal_.size(); i++)
            {
                dr = sorted_pal_[i].r - c.r;
                dg = sorted_pal_[i].g - c.g;
                db = sorted_pal_[i].b - c.b;
                da = sorted_pal_[i].a - a;
                // stop criteria based on properties of used sorting
                if ((dr+db+dg+da) * (dr+db+dg+da) / 4 > dist)
                {
                    break;
                }
                newdist = dr*dr + dg*dg + db*db + da*da;
                if (newdist < dist)
                {
                    ind = i;
                    dist = newdist;
                }
            }
            //put found index in hash map
            color_hashmap_[val] = ind;
        }
        else
        {
            ind = it->second;
        }

        return pal_remap_[ind];
    }

    void create_palette(std::vector<rgba> & palette)
    {
        sorted_pal_.clear();
        if (has_holes_)
        {
            max_colors_--;
            sorted_pal_.push_back(rgba(0,0,0,0));
        }
        assign_node_colors();

        sorted_pal_.reserve(colors_);
        create_palette_rek(sorted_pal_, root_.get());

        // sort palette for binary searching in quantization
        std::sort(sorted_pal_.begin(), sorted_pal_.end(), rgba::mean_sort_cmp());
        // returned palette is rearanged, so that colors with a<255 are at the begining
        pal_remap_.resize(sorted_pal_.size());
        palette.clear();
        palette.reserve(sorted_pal_.size());
        for (unsigned i=0; i<sorted_pal_.size(); ++i)
        {
            if (sorted_pal_[i].a<255)
            {
                pal_remap_[i] = static_cast<unsigned>(palette.size());
                palette.push_back(sorted_pal_[i]);
            }
        }
        for (unsigned i=0; i<sorted_pal_.size(); ++i)
        {
            if (sorted_pal_[i].a==255)
            {
                pal_remap_[i] = static_cast<unsigned>(palette.size());
                palette.push_back(sorted_pal_[i]);
            }
        }
    }

private:

    void print_tree(node *r, int d=0, int id=0) const
    {
        for (int i=0; i<d; i++)
        {
            printf("\t");
        }
        if (r->count>0)
        {
            printf("%d: (+%d/%d/%.5f) (%d %d %d %d)\n",
                   id, static_cast<int>(r->count), static_cast<int>(r->pixel_count), r->reduce_cost,
                   static_cast<int>(round(gamma(r->reds / r->count, gamma_))),
                   static_cast<int>(round(gamma(r->greens / r->count, gamma_))),
                   static_cast<int>(round(gamma(r->blues / r->count, gamma_))),
                   static_cast<int>((r->alphas / r->count)));
        }
        else
        {
            printf("%d: (%d/%d/%.5f) (%d %d %d %d)\n", id,
                   static_cast<int>(r->count), static_cast<int>(r->pixel_count), r->reduce_cost,
                   static_cast<int>(round(gamma(r->reds / r->pixel_count, gamma_))),
                   static_cast<int>(round(gamma(r->greens / r->pixel_count, gamma_))),
                   static_cast<int>(round(gamma(r->blues / r->pixel_count, gamma_))),
                   static_cast<int>((r->alphas / r->pixel_count)));
        }
        for (unsigned idx=0; idx < 16; ++idx)
        {
            if (r->children_[idx] != 0)
            {
                print_tree(r->children_[idx], d+1, idx);
            }
        }
    }

    // traverse tree and search for nodes with count!=0, that represent single color.
    // clip extreme alfa values
    void create_palette_rek(std::vector<rgba> & palette, node * itr) const
    {
        if (itr->count != 0)
        {
            unsigned count = itr->count;
            std::uint8_t a = std::uint8_t(itr->alphas/float(count));
            if (a > InsertPolicy::MAX_ALPHA) a = 255;
            if (a < InsertPolicy::MIN_ALPHA) a = 0;
            palette.push_back(rgba(static_cast<std::uint8_t>(round(gamma(itr->reds   / count, gamma_))),
                                   static_cast<std::uint8_t>(round(gamma(itr->greens / count, gamma_))),
                                   static_cast<std::uint8_t>(round(gamma(itr->blues  / count, gamma_))), a));
        }
        for (unsigned idx=0; idx < 16; ++idx)
        {
            if (itr->children_[idx] != 0)
            {
                create_palette_rek(palette, itr->children_[idx]);
            }
        }
    }

    // assign value to r, representing some penalty for assigning one
    // color to all pixels in this subtree
    void compute_cost(node *r)
    {
        //initial small value, so that all nodes have >0 cost
        r->reduce_cost = r->pixel_count/1000.0;
        if (r->children_count==0)
        {
            return;
        }
        // mean color of all pixels in subtree
        double mean_r = r->reds   / r->pixel_count;
        double mean_g = r->greens / r->pixel_count;
        double mean_b = r->blues  / r->pixel_count;
        double mean_a = r->alphas / r->pixel_count;
        for (unsigned idx=0; idx < 16; ++idx)
        {
            if (r->children_[idx] != 0)
            {
                double dr,dg,db,da;
                compute_cost(r->children_[idx]);
                // include childrens penalty
                r->reduce_cost += r->children_[idx]->reduce_cost;
                // difference between mean value and subtree mean value
                dr = r->children_[idx]->reds   / r->children_[idx]->pixel_count - mean_r;
                dg = r->children_[idx]->greens / r->children_[idx]->pixel_count - mean_g;
                db = r->children_[idx]->blues  / r->children_[idx]->pixel_count - mean_b;
                da = r->children_[idx]->alphas / r->children_[idx]->pixel_count - mean_a;
                // penalty_x = d_x^2 * pixel_count * mean_alfa/255, where x=r,g,b,a
                // mean_alpha/255 because more opaque color = more noticable differences
                r->reduce_cost += (dr*dr + dg*dg + db*db + da*da) * r->children_[idx]->alphas / 255;
            }
        }
    }

    // starting from root_, unfold nodes with biggest penalty
    // until all available colors are assigned to processed nodes
    void assign_node_colors()
    {
        compute_cost(root_.get());

        int tries = 0;

        // at the begining, single color assigned to root_
        colors_ = 1;
        root_->count = root_->pixel_count;

        std::set<node*,node_rev_cmp> colored_leaves_heap;
        colored_leaves_heap.insert(root_.get());
        while((!colored_leaves_heap.empty() && (colors_ < max_colors_) && (tries < 16)))
        {
            // select worst node to remove it from palette and replace with children
            node * cur_node = *colored_leaves_heap.begin();
            colored_leaves_heap.erase(colored_leaves_heap.begin());
            if (((cur_node->children_count + colors_ - 1) > max_colors_))
            {
                tries++;
                continue; // try few times, maybe next will have less children
            }
            tries = 0;
            // ignore leaves and also nodes with small mean error and not excessive number of pixels
            if (cur_node->pixel_count > 0 &&
                (cur_node->children_count > 0) &&
                (((cur_node->reduce_cost / cur_node->pixel_count + 1) * std::log(double(cur_node->pixel_count))) > 15)
                )
            {
                colors_--;
                cur_node->count = 0;
                for (unsigned idx=0; idx < 16; ++idx)
                {
                    if (cur_node->children_[idx] != 0)
                    {
                        node *n = cur_node->children_[idx];
                        n->count = n->pixel_count;
                        colored_leaves_heap.insert(n);
                        colors_++;
                    }
                }
            }
        }
    }
};
} // namespace mapnik

#endif // MAPNIK_HEXTREE_HPP