This file is indexed.

/usr/include/mapnik/simplify_converter.hpp is in libmapnik-dev 3.0.19+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
#ifndef MAPNIK_SIMPLIFY_CONVERTER_HPP
#define MAPNIK_SIMPLIFY_CONVERTER_HPP

// mapnik
#include <mapnik/config.hpp>
#include <mapnik/vertex.hpp>
#include <mapnik/simplify.hpp>
#include <mapnik/util/noncopyable.hpp>

// stl
#include <limits>
#include <set>
#include <vector>
#include <deque>
#include <cmath>
#include <stdexcept>
#include <algorithm>

namespace mapnik
{

struct weighted_vertex : private util::noncopyable
{
    vertex2d coord;
    double weight;
    weighted_vertex *prev;
    weighted_vertex *next;

    weighted_vertex(vertex2d coord_) :
        coord(coord_),
        weight(std::numeric_limits<double>::infinity()),
        prev(nullptr),
        next(nullptr) {}

    double nominalWeight()
    {
        if (prev == nullptr || next == nullptr || coord.cmd != SEG_LINETO)
        {
            return std::numeric_limits<double>::infinity();
        }
        vertex2d const& A = prev->coord;
        vertex2d const& B = next->coord;
        vertex2d const& C = coord;
        return std::abs(static_cast<double>((A.x - C.x) * (B.y - A.y) - (A.x - B.x) * (C.y - A.y))) / 2.0;
    }

    struct ascending_sort
    {
        bool operator() (const weighted_vertex *a, const weighted_vertex *b) const
        {
            return b->weight > a->weight;
        }
    };
};

struct sleeve
{
    vertex2d v[5];

    sleeve(vertex2d const& v0, vertex2d const& v1, double offset)
    {
        double a = std::atan2((v1.y - v0.y), (v1.x - v0.x));
        double dx = offset * std::cos(a);
        double dy = offset * std::sin(a);
        v[0].x = v0.x + dy;
        v[0].y = v0.y - dx;
        v[1].x = v0.x - dy;
        v[1].y = v0.y + dx;
        v[2].x = v1.x - dy;
        v[2].y = v1.y + dx;
        v[3].x = v1.x + dy;
        v[3].y = v1.y - dx;
        v[4].x = v0.x + dy;
        v[4].y = v0.y - dx;
    }

    bool inside(vertex2d const& q)
    {
        bool _inside=false;

        for (unsigned i=0;i<4;++i)
        {
            if ((((v[i+1].y <= q.y) && (q.y < v[i].y)) ||
                 ((v[i].y <= q.y) && (q.y < v[i+1].y))) &&
                (q.x < (v[i].x - v[i+1].x) * (q.y - v[i+1].y)/ (v[i].y - v[i+1].y) + v[i+1].x))
                _inside=!_inside;
        }
        return _inside;
    }
};

template <typename Geometry>
struct simplify_converter
{
public:
    simplify_converter(Geometry & geom)
        : geom_(geom),
        tolerance_(0.0),
        status_(initial),
        algorithm_(radial_distance),
        pos_(0)
    {}

    enum status : std::uint8_t
    {
        initial,
        process,
        closing,
        done,
        cache
    };

    unsigned type() const
    {
        return static_cast<unsigned>(geom_.type());
    }

    simplify_algorithm_e get_simplify_algorithm()
    {
        return algorithm_;
    }

    void set_simplify_algorithm(simplify_algorithm_e val)
    {
        if (algorithm_ != val)
        {
            algorithm_ = val;
            reset();
        }
    }

    double get_simplify_tolerance()
    {
        return tolerance_;
    }

    void set_simplify_tolerance(double val)
    {
        if (tolerance_ != val)
        {
            tolerance_ = val;
            reset();
        }
    }

    void reset()
    {
        geom_.rewind(0);
        vertices_.clear();
        status_ = initial;
        pos_ = 0;
    }

    void rewind(unsigned int) const
    {
        pos_ = 0;
    }

    unsigned vertex(double* x, double* y)
    {
        if (tolerance_ == 0.0)
            return geom_.vertex(x, y);

        if (status_ == initial)
            init_vertices();

        return output_vertex(x, y);
    }

private:
    unsigned output_vertex(double* x, double* y)
    {
        switch (algorithm_)
        {
        case visvalingam_whyatt:
        case douglas_peucker:
            return output_vertex_cached(x, y);
        case radial_distance:
            return output_vertex_distance(x, y);
        case zhao_saalfeld:
            return output_vertex_sleeve(x, y);
        default:
            throw std::runtime_error("simplification algorithm not yet implemented");
        }

        return SEG_END;
    }

    unsigned output_vertex_cached(double* x, double* y)
    {
        if (pos_ >= vertices_.size())
            return SEG_END;

        previous_vertex_ = vertices_[pos_];
        if (previous_vertex_.cmd == SEG_CLOSE)
        {
            *x = *y = 0.0; // restore SEG_CLOSE command
        }
        else
        {
            *x = previous_vertex_.x;
            *y = previous_vertex_.y;
        }
        pos_++;
        return previous_vertex_.cmd;
    }

    unsigned output_vertex_distance(double* x, double* y)
    {
        if (status_ == closing)
        {
            *x = *y = 0.0;
            status_ = done;
            return SEG_CLOSE;
        }

        vertex2d last;
        vertex2d vtx(vertex2d::no_init);
        while ((vtx.cmd = geom_.vertex(&vtx.x, &vtx.y)) != SEG_END)
        {
            if (vtx.cmd == SEG_LINETO)
            {
                if (distance_to_previous(vtx) > tolerance_)
                {
                    // Only output a vertex if it's far enough away from the previous
                    break;
                }
                else
                {
                    last = vtx;
                    // continue
                }
            }
            else if (vtx.cmd == SEG_CLOSE)
            {
                if (last.cmd == SEG_END)
                {
                    // The previous vertex was already output in the previous call.
                    // We can now safely output SEG_CLOSE.
                    status_ = done;
                }
                else
                {
                    // We eliminated the previous point because it was too close, but
                    // we have to output it now anyway, since this is the end of the
                    // vertex stream. Make sure that we output SEG_CLOSE in the next call.
                    vtx.x = start_vertex_.x;
                    vtx.y = start_vertex_.y;
                    status_ = closing;
                }
                break;
            }
            else if (vtx.cmd == SEG_MOVETO)
            {
                start_vertex_ = vtx;
                break;
            }
            else
            {
                throw std::runtime_error("Unknown vertex command");
            }
        }

        previous_vertex_ = vtx;
        *x = vtx.x;
        *y = vtx.y;
        return vtx.cmd;
    }

    template <typename Iterator>
    bool fit_sleeve(Iterator itr, Iterator end, vertex2d const& v)
    {
        sleeve s(*itr,v,tolerance_);
        ++itr; // skip first vertex
        for (; itr != end; ++itr)
        {
            if (!s.inside(*itr))
            {
                return false;
            }
        }
        return true;
    }

    unsigned output_vertex_sleeve(double* x, double* y)
    {
        vertex2d vtx(vertex2d::no_init);
        std::size_t min_size = 1;
        while ((vtx.cmd = geom_.vertex(&vtx.x, &vtx.y)) != SEG_END)
        {
            //if ((std::fabs(vtx.x - previous_vertex_.x) < 0.5) &&
            //    (std::fabs(vtx.y - previous_vertex_.y) < 0.5))
            //    continue;

            if (status_ == cache &&
                vertices_.size() >= min_size)
                status_ = process;

            if (vtx.cmd == SEG_MOVETO)
            {
                if (sleeve_cont_.size() > 1)
                {
                    vertices_.push_back(sleeve_cont_.back());
                    sleeve_cont_.clear();
                }
                vertices_.push_back(vtx);
                sleeve_cont_.push_back(vtx);
                start_vertex_ = vtx;
                if (status_ == process) break;
            }
            else if (vtx.cmd == SEG_LINETO)
            {
                if (sleeve_cont_.size() > 1 && !fit_sleeve(sleeve_cont_.begin(), sleeve_cont_.end(), vtx))
                {
                    vertex2d last = vtx;
                    vtx = sleeve_cont_.back();
                    sleeve_cont_.clear();
                    sleeve_cont_.push_back(vtx);
                    sleeve_cont_.push_back(last);
                    vertices_.push_back(vtx);
                    if (status_ == process) break;
                }
                else
                {
                    sleeve_cont_.push_back(vtx);
                }
            }
            else if (vtx.cmd == SEG_CLOSE)
            {
                if (sleeve_cont_.size() > 1)
                {
                    vertices_.push_back(sleeve_cont_.back());
                    sleeve_cont_.clear();
                }
                vtx.x = start_vertex_.x;
                vtx.y = start_vertex_.y;
                vertices_.push_back(vtx);
                if (status_ == process) break;
            }
        }

        if (status_ == cache)
        {
            if (vertices_.size() < min_size)
                return SEG_END;
            status_ = process;
        }

        if (vtx.cmd == SEG_END)
        {
            if (sleeve_cont_.size() > 1)
            {
                vertices_.push_back(sleeve_cont_.back());
            }
            sleeve_cont_.clear();
            vertices_.push_back(vtx);
        }

        if (vertices_.size() > 0)
        {
            vertex2d v = vertices_.front();
            vertices_.pop_front();
            if (v.cmd == SEG_CLOSE)
            {
                *x = *y = 0.0; // restore SEG_CLOSE command
            }
            else
            {
                *x = v.x;
                *y = v.y;
            }
            return v.cmd;
        }
        return SEG_END;
    }

    double distance_to_previous(vertex2d const& vtx)
    {
        double dx = previous_vertex_.x - vtx.x;
        double dy = previous_vertex_.y - vtx.y;
        return dx * dx + dy * dy;
    }

    status init_vertices()
    {
        if (status_ != initial) // already initialized
            return status_;

        reset();

        switch (algorithm_) {
            case visvalingam_whyatt:
                return init_vertices_visvalingam_whyatt();
            case radial_distance:
                // Use
                vertices_.push_back(vertex2d(vertex2d::no_init));
                return status_ = process;
            case zhao_saalfeld:
                return status_ = cache;
            case douglas_peucker:
                return init_vertices_RDP();
            default:
                throw std::runtime_error("simplification algorithm not yet implemented");
        }
    }

    status init_vertices_visvalingam_whyatt()
    {
        using VertexSet = std::set<weighted_vertex *, weighted_vertex::ascending_sort>;
        using VertexList = std::vector<weighted_vertex *>;

        std::vector<weighted_vertex *> v_list;
        vertex2d vtx(vertex2d::no_init);
        while ((vtx.cmd = geom_.vertex(&vtx.x, &vtx.y)) != SEG_END)
        {
            if (vtx.cmd == SEG_MOVETO)
            {
                start_vertex_ = vtx;
            }
            else if (vtx.cmd == SEG_CLOSE)
            {
                vtx.x = start_vertex_.x;
                vtx.y = start_vertex_.y;
            }
            v_list.push_back(new weighted_vertex(vtx));
        }

        if (v_list.empty())
        {
            return status_ = process;
        }

        // Connect the vertices in a linked list and insert them into the set.
        VertexSet v;
        for (VertexList::iterator i = v_list.begin(); i != v_list.end(); ++i)
        {
            (*i)->prev = i == v_list.begin() ? nullptr : *(i - 1);
            (*i)->next = i + 1 == v_list.end() ? nullptr : *(i + 1);
            (*i)->weight = (*i)->nominalWeight();
            v.insert(*i);
        }

        // Use Visvalingam-Whyatt algorithm to calculate each point's weight.
        while (v.size() > 0)
        {
            VertexSet::iterator lowest = v.begin();
            weighted_vertex *removed = *lowest;
            if (removed->weight >= tolerance_)
            {
                break;
            }

            v.erase(lowest);

            // Connect adjacent vertices with each other
            if (removed->prev) removed->prev->next = removed->next;
            if (removed->next) removed->next->prev = removed->prev;
            // Adjust weight and reinsert prev/next to move them to their correct position.
            if (removed->prev)
            {
                v.erase(removed->prev);
                removed->prev->weight = std::max(removed->weight, removed->prev->nominalWeight());
                v.insert(removed->prev);
            }
            if (removed->next)
            {
                v.erase(removed->next);
                removed->next->weight = std::max(removed->weight, removed->next->nominalWeight());
                v.insert(removed->next);
            }
        }

        v.clear();

        // Traverse the remaining list and insert them into the vertex cache.
        for (VertexList::iterator i = v_list.begin(); i != v_list.end(); ++i)
        {
            if ((*i)->weight >= tolerance_)
            {
                vertices_.push_back((*i)->coord);
            }
            delete *i;
        }

        // Initialization finished.
        return status_ = process;
    }

    void RDP(std::vector<vertex2d>& vertices, const size_t first, const size_t last)
    {
        // Squared length of a vector
        auto sqlen = [] (vertex2d const& vec) { return vec.x*vec.x + vec.y*vec.y; };
        // Compute square distance of p to a line segment
        auto segment_distance = [&sqlen] (vertex2d const& p, vertex2d const& a, vertex2d const& b, vertex2d const& dir, double dir_sq_len)
        {
            // Special case where segment has same first and last point at which point we are just doing a radius check
            if (dir_sq_len == 0)
            {
                return sqlen(vertex2d(p.x - b.x, p.y - b.y, SEG_END));
            }

            // Project p onto dir by ((p dot dir / dir dot dir) * dir)
            double scale = ((p.x - a.x) * dir.x + (p.y - a.y) * dir.y) / dir_sq_len;
            double projected_x = dir.x * scale;
            double projected_y = dir.y * scale;
            double projected_origin_distance = projected_x * projected_x + projected_y * projected_y;

            // Projected point doesn't lie on the segment
            if (projected_origin_distance > dir_sq_len)
            {
                // Projected point lies past the end of the segment
                if (scale > 0)
                {
                    return sqlen(vertex2d(p.x - b.x, p.y - b.y, SEG_END));
                }// Projected point lies before the beginning of the segment
                else
                {
                    return sqlen(vertex2d(p.x - a.x, p.y - a.y, SEG_END));
                }
            }// Projected point lies on the segment
            else
            {
                return sqlen(vertex2d(p.x - (projected_x + a.x), p.y - (projected_y + a.y), SEG_END));
            }
        };

        // Compute the directional vector along the segment
        vertex2d dir = vertex2d(vertices[last].x - vertices[first].x, vertices[last].y - vertices[first].y, SEG_END);
        double dir_sq_len = sqlen(dir);

        // Find the point with the maximum distance from this line segment
        double max = std::numeric_limits<double>::min();
        size_t keeper = 0;
        for (size_t i = first + 1; i < last; ++i)
        {
            double d = segment_distance(vertices[i], vertices[first], vertices[last], dir, dir_sq_len);
            if (d > max)
            {
                keeper = i;
                max = d;
            }
        }

        // Split at the vertex that is furthest outside of the tolerance
        // NOTE: we work in square distances to avoid sqrt so we sqaure tolerance accordingly
        if (max > tolerance_ * tolerance_)
        {
            // Make sure not to smooth out the biggest outlier (keeper)
            if (keeper - first != 1)
            {
                RDP(vertices, first, keeper);
            }
            if (last - keeper != 1)
            {
                RDP(vertices, keeper, last);
            }
        }// Everyone between the first and the last was close enough to the line
        else
        {
            // Mark each of them as discarded
            for (size_t i = first + 1; i < last; ++i)
            {
                vertices[i].cmd = SEG_END;
            }
        }
    }

    status init_vertices_RDP()
    {
        // Slurp out the original vertices
        std::vector<vertex2d> vertices;
        //vertices.reserve(geom_.size());
        vertex2d vtx(vertex2d::no_init);
        while ((vtx.cmd = geom_.vertex(&vtx.x, &vtx.y)) != SEG_END)
        {
            if (vtx.cmd == SEG_MOVETO)
            {
                start_vertex_ = vtx;
            }
            else if (vtx.cmd == SEG_CLOSE)
            {
                vtx.x = start_vertex_.x;
                vtx.y = start_vertex_.y;
            }
            vertices.push_back(vtx);
        }

        // Run ramer douglas peucker on it
        if (vertices.size() > 2)
        {
            RDP(vertices, 0, vertices.size() - 1);
        }

        // Slurp the points back out that haven't been marked as discarded
        for (vertex2d const& v : vertices)
        {
            if (v.cmd != SEG_END)
            {
                vertices_.emplace_back(v);
            }
        }

        return status_ = process;
    }

    Geometry &                      geom_;
    double                          tolerance_;
    status                          status_;
    simplify_algorithm_e            algorithm_;
    std::deque<vertex2d>            vertices_;
    std::deque<vertex2d>            sleeve_cont_;
    vertex2d                        previous_vertex_;
    vertex2d                        start_vertex_;
    mutable size_t                  pos_;
};


}

#endif // MAPNIK_SIMPLIFY_CONVERTER_HPP