/usr/include/mapnik/tiff_io.hpp is in libmapnik-dev 3.0.19+ds-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 | /*****************************************************************************
*
* This file is part of Mapnik (c++ mapping toolkit)
*
* Copyright (C) 2015 Artem Pavlenko
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*****************************************************************************/
#ifndef MAPNIK_TIFF_IO_HPP
#define MAPNIK_TIFF_IO_HPP
#include <mapnik/global.hpp>
#include <mapnik/image_util.hpp>
#include <mapnik/image_any.hpp>
#include <mapnik/util/variant.hpp>
#pragma GCC diagnostic push
#include <mapnik/warning_ignore.hpp>
extern "C"
{
#include <tiffio.h>
#define RealTIFFOpen TIFFClientOpen
#define RealTIFFClose TIFFClose
}
#pragma GCC diagnostic pop
//std
#include <memory>
#define TIFF_WRITE_SCANLINE 0
#define TIFF_WRITE_STRIPPED 1
#define TIFF_WRITE_TILED 2
namespace mapnik {
static inline tsize_t tiff_write_proc(thandle_t fd, tdata_t buf, tsize_t size)
{
std::ostream* out = reinterpret_cast<std::ostream*>(fd);
std::ios::pos_type pos = out->tellp();
std::streamsize request_size = size;
if (static_cast<tsize_t>(request_size) != size)
return static_cast<tsize_t>(-1);
out->write(reinterpret_cast<const char*>(buf), size);
if( static_cast<std::streamsize>(pos) == -1 )
{
return size;
}
else
{
return static_cast<tsize_t>(out->tellp()-pos);
}
}
static inline toff_t tiff_seek_proc(thandle_t fd, toff_t off, int whence)
{
std::ostream* out = reinterpret_cast<std::ostream*>(fd);
if( out->fail() )
return static_cast<toff_t>(-1);
if( static_cast<std::streamsize>(out->tellp()) == -1)
return static_cast< toff_t >( 0 );
switch(whence)
{
case SEEK_SET:
out->seekp(off, std::ios_base::beg);
break;
case SEEK_CUR:
out->seekp(off, std::ios_base::cur);
break;
case SEEK_END:
out->seekp(off, std::ios_base::end);
break;
}
// grow std::stringstream buffer (re: libtiff/tif_stream.cxx)
std::ios::pos_type pos = out->tellp();
// second check needed for clang (libcxx doesn't set failbit when seeking beyond the current buffer size
if( out->fail() || static_cast<std::streamoff>(off) != pos)
{
std::ios::iostate old_state;
std::ios::pos_type origin;
old_state = out->rdstate();
// reset the fail bit or else tellp() won't work below
out->clear(out->rdstate() & ~std::ios::failbit);
switch( whence )
{
case SEEK_SET:
default:
origin = 0L;
break;
case SEEK_CUR:
origin = out->tellp();
break;
case SEEK_END:
out->seekp(0, std::ios::end);
origin = out->tellp();
break;
}
// restore original stream state
out->clear(old_state);
// only do something if desired seek position is valid
if( (static_cast<uint64_t>(origin) + off) > 0L)
{
uint64_t num_fill;
// clear the fail bit
out->clear(out->rdstate() & ~std::ios::failbit);
// extend the stream to the expected size
out->seekp(0, std::ios::end);
num_fill = (static_cast<uint64_t>(origin)) + off - out->tellp();
for( uint64_t i = 0; i < num_fill; ++i)
out->put('\0');
// retry the seek
out->seekp(static_cast<std::ios::off_type>(static_cast<uint64_t>(origin) + off), std::ios::beg);
}
}
return static_cast<toff_t>(out->tellp());
}
static inline int tiff_close_proc(thandle_t fd)
{
std::ostream* out = (std::ostream*)fd;
out->flush();
return 0;
}
static inline toff_t tiff_size_proc(thandle_t fd)
{
std::ostream* out = reinterpret_cast<std::ostream*>(fd);
std::ios::pos_type pos = out->tellp();
out->seekp(0, std::ios::end);
std::ios::pos_type len = out->tellp();
out->seekp(pos);
return static_cast<toff_t>(len);
}
static inline tsize_t tiff_dummy_read_proc(thandle_t , tdata_t , tsize_t)
{
return 0;
}
static inline void tiff_dummy_unmap_proc(thandle_t , tdata_t , toff_t) {}
static inline int tiff_dummy_map_proc(thandle_t , tdata_t*, toff_t* )
{
return 0;
}
struct tiff_config
{
tiff_config()
: compression(COMPRESSION_ADOBE_DEFLATE),
zlevel(4),
tile_width(0),
tile_height(0),
rows_per_strip(0),
method(TIFF_WRITE_STRIPPED) {}
int compression;
int zlevel;
int tile_width; // Tile width of zero means tile the width of the image
int tile_height; // Tile height of zero means tile the height of the image
int rows_per_strip;
int method; // The method to use to write the TIFF.
};
struct tag_setter
{
tag_setter(TIFF * output, tiff_config const& config)
: output_(output),
config_(config) {}
template <typename T>
void operator() (T const&) const
{
// Assume this would be null type
throw image_writer_exception("Could not write TIFF - unknown image type provided");
}
inline void operator() (image_rgba8 const& data) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 4);
if (data.get_premultiplied())
{
uint16 extras[] = { EXTRASAMPLE_ASSOCALPHA };
TIFFSetField(output_, TIFFTAG_EXTRASAMPLES, 1, extras);
}
else
{
uint16 extras[] = { EXTRASAMPLE_UNASSALPHA };
TIFFSetField(output_, TIFFTAG_EXTRASAMPLES, 1, extras);
}
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray64 const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 64);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray64s const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 64);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray64f const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 64);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_FLOATINGPOINT);
}
}
inline void operator() (image_gray32 const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray32s const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray32f const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_FLOATINGPOINT);
}
}
inline void operator() (image_gray16 const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 16);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray16s const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 16);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray8 const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_gray8s const&) const
{
TIFFSetField(output_, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);
TIFFSetField(output_, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
TIFFSetField(output_, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(output_, TIFFTAG_SAMPLESPERPIXEL, 1);
if (config_.compression == COMPRESSION_DEFLATE
|| config_.compression == COMPRESSION_ADOBE_DEFLATE
|| config_.compression == COMPRESSION_LZW)
{
TIFFSetField(output_, TIFFTAG_PREDICTOR, PREDICTOR_HORIZONTAL);
}
}
inline void operator() (image_null const&) const
{
// Assume this would be null type
throw image_writer_exception("Could not write TIFF - Null image provided");
}
private:
TIFF * output_;
tiff_config const& config_;
};
inline void set_tiff_config(TIFF* output, tiff_config const& config)
{
// Set some constant tiff information that doesn't vary based on type of data
// or image size
TIFFSetField(output, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
// Set the compression for the TIFF
TIFFSetField(output, TIFFTAG_COMPRESSION, config.compression);
if (COMPRESSION_ADOBE_DEFLATE == config.compression
|| COMPRESSION_DEFLATE == config.compression
|| COMPRESSION_LZW == config.compression)
{
// Set the zip level for the compression
// http://en.wikipedia.org/wiki/DEFLATE#Encoder.2Fcompressor
// Changes the time spent trying to compress
TIFFSetField(output, TIFFTAG_ZIPQUALITY, config.zlevel);
}
}
template <typename T1, typename T2>
void save_as_tiff(T1 & file, T2 const& image, tiff_config const& config)
{
using pixel_type = typename T2::pixel_type;
const int width = image.width();
const int height = image.height();
TIFF* output = RealTIFFOpen("mapnik_tiff_stream",
"wm",
(thandle_t)&file,
tiff_dummy_read_proc,
tiff_write_proc,
tiff_seek_proc,
tiff_close_proc,
tiff_size_proc,
tiff_dummy_map_proc,
tiff_dummy_unmap_proc);
if (! output)
{
throw image_writer_exception("Could not write TIFF");
}
TIFFSetField(output, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(output, TIFFTAG_IMAGELENGTH, height);
TIFFSetField(output, TIFFTAG_IMAGEDEPTH, 1);
set_tiff_config(output, config);
// Set tags that vary based on the type of data being provided.
tag_setter set(output, config);
set(image);
// Use specific types of writing methods.
if (TIFF_WRITE_SCANLINE == config.method)
{
// Process Scanline
TIFFSetField(output, TIFFTAG_ROWSPERSTRIP, 1);
int next_scanline = 0;
std::unique_ptr<pixel_type[]> row (new pixel_type[width]);
while (next_scanline < height)
{
std::copy(image.get_row(next_scanline), image.get_row(next_scanline) + width, row.get());
TIFFWriteScanline(output, row.get(), next_scanline, 0);
++next_scanline;
}
}
else if (TIFF_WRITE_STRIPPED == config.method)
{
std::size_t rows_per_strip = config.rows_per_strip;
if (0 == rows_per_strip)
{
rows_per_strip = height;
}
TIFFSetField(output, TIFFTAG_ROWSPERSTRIP, rows_per_strip);
std::size_t strip_size = width * rows_per_strip;
std::unique_ptr<pixel_type[]> strip_buffer(new pixel_type[strip_size]);
for (int y=0; y < height; y+=rows_per_strip)
{
int ty1 = std::min(height, static_cast<int>(y + rows_per_strip)) - y;
int row = y;
for (int ty = 0; ty < ty1; ++ty, ++row)
{
std::copy(image.get_row(row), image.get_row(row) + width, strip_buffer.get() + ty * width);
}
if (TIFFWriteEncodedStrip(output, TIFFComputeStrip(output, y, 0), strip_buffer.get(), strip_size * sizeof(pixel_type)) == -1)
{
throw image_writer_exception("Could not write TIFF - TIFF Tile Write failed");
}
}
}
else if (TIFF_WRITE_TILED == config.method)
{
int tile_width = config.tile_width;
int tile_height = config.tile_height;
if (0 == tile_height)
{
tile_height = height;
if (height % 16 > 0)
{
tile_height = height + 16 - (height % 16);
}
}
if (0 == tile_width)
{
tile_width = width;
if (width % 16 > 0)
{
tile_width = width + 16 - (width % 16);
}
}
TIFFSetField(output, TIFFTAG_TILEWIDTH, tile_width);
TIFFSetField(output, TIFFTAG_TILELENGTH, tile_height);
TIFFSetField(output, TIFFTAG_TILEDEPTH, 1);
std::size_t tile_size = tile_width * tile_height;
std::unique_ptr<pixel_type[]> image_out (new pixel_type[tile_size]);
int end_y = (height / tile_height + 1) * tile_height;
int end_x = (width / tile_width + 1) * tile_width;
end_y = std::min(end_y, height);
end_x = std::min(end_x, width);
for (int y = 0; y < end_y; y += tile_height)
{
int ty1 = std::min(height, y + tile_height) - y;
for (int x = 0; x < end_x; x += tile_width)
{
// Prefill the entire array with zeros.
std::fill(image_out.get(), image_out.get() + tile_size, 0);
int tx1 = std::min(width, x + tile_width);
int row = y;
for (int ty = 0; ty < ty1; ++ty, ++row)
{
std::copy(image.get_row(row, x), image.get_row(row, tx1), image_out.get() + ty * tile_width);
}
if (TIFFWriteEncodedTile(output, TIFFComputeTile(output, x, y, 0, 0), image_out.get(), tile_size * sizeof(pixel_type)) == -1)
{
throw image_writer_exception("Could not write TIFF - TIFF Tile Write failed");
}
}
}
}
// TODO - handle palette images
// std::vector<mapnik::rgb> const& palette
// unsigned short r[256], g[256], b[256];
// for (int i = 0; i < (1 << 24); ++i)
// {
// r[i] = (unsigned short)palette[i * 3 + 0] << 8;
// g[i] = (unsigned short)palette[i * 3 + 1] << 8;
// b[i] = (unsigned short)palette[i * 3 + 2] << 8;
// }
// TIFFSetField(output, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_PALETTE);
// TIFFSetField(output, TIFFTAG_COLORMAP, r, g, b);
RealTIFFClose(output);
}
}
#endif // MAPNIK_TIFF_IO_HPP
|