/usr/share/doc/libmath-prime-util-perl/examples/ktuplet.pl is in libmath-prime-util-perl 0.70-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | #!/usr/bin/env perl
use warnings;
use strict;
use ntheory ":all";
use bigint;
$|=1;
prime_set_config(verbose=>0);
# Whether to output indices before the values
my $outbstyle = 0;
my $type = shift || die "Must supply type";
my $low = shift || 1;
my $high = shift || 1e9;
my $range = (($high-$low) > 1e15) ? 1e14 : 1+int(($high-$low)/100);
my %patterns = (
# 2-tuples (twin)
'A001359' => [2],
# 3-tuples
'A022004' => [2,6],
'A022005' => [4,6],
# 4-tuples
'A007530' => [2,6,8],
# 5-tuples
'A022007' => [4,6,10,12],
'A022006' => [2,6,8,12],
# 6-tuples
'A022008' => [4,6,10,12,16],
# 7-tuples
'A022009' => [2,6,8,12,18,20],
'A022010' => [2,8,12,14,18,20],
# 8-tuples
'A022011' => [2,6,8,12,18,20,26],
'A022012' => [2,6,12,14,20,24,26],
'A022013' => [6,8,14,18,20,24,26],
# 9-tuples
'A022547' => [4,6,10,16,18,24,28,30],
'A022548' => [4,10,12,18,22,24,28,30],
'A022545' => [2,6,8,12,18,20,26,30],
'A022546' => [2,6,12,14,20,24,26,30],
# 10-tuples
'A022569' => [2,6,8,12,18,20,26,30,32],
'A022570' => [2,6,12,14,20,24,26,30,32],
# 11-tuples
'A213646' => [4,6,10,16,18,24,28,30,34,36],
'A213647' => [2,6,8,12,18,20,26,30,32,36],
# 12-tuples
'A213601' => [6,10,12,16,22,24,30,34,36,40,42],
'A213645' => [2,6,8,12,18,20,26,30,32,36,42],
# 13-tuples
'A214947' => [6,12,16,18,22,28,30,36,40,42,46,48],
'A257137' => [4,6,10,16,18,24,28,30,34,40,46,48],
'A257138' => [4,6,10,16,18,24,28,30,34,36,46,48],
'A257139' => [2,6,8,12,18,20,26,30,32,36,42,48],
'A257140' => [2,8,14,18,20,24,30,32,38,42,44,48],
'A257141' => [2,12,14,18,20,24,30,32,38,42,44,48],
# 14-tuples
'A257167' => [2,6,8,12,18,20,26,30,32,36,42,48,50],
'A257168' => [2,8,14,18,20,24,30,32,38,42,44,48,50],
# 15-tuples
'A257304' => [2,6,8,12,18,20,26,30,32,36,42,48,50,56], # A257167 + 56
'A257305' => [2,6,12,14,20,24,26,30,36,42,44,50,54,56],
'A257306' => [2,6,12,14,20,26,30,32,36,42,44,50,54,56],
'A257307' => [6,8,14,20,24,26,30,36,38,44,48,50,54,56],
# other
'A257375' => [4,6,10,16,18,24,28,30,34,40,46,48,54,58,60,66],
'5TP39' => [2,6,8,18,20,30,32,36,38],
);
die "Unknown type" unless exists $patterns{$type};
my @cl = @{ $patterns{$type} };
# 30 minutes on Macbook Pro to find first 52 entries of A213601:
# my $high = 25777719656829367;
# my @cl = (6,10,12,16,22,24,30,34,36,40,42);
# which makes it ~3-4x slower than JKA's old hand-tuned code.
#
# 69 seconds on Macbook Pro for the Federighi (5TP39) sequence:
# my $high = 1e14;
# my @cl = (2,6,8,18,20,30,32,36,38);
# which comes out to about 1.5x slower than JKA's 2007 result.
my $i = 0;
my @p;
while ($low < $high) {
my $chigh = $low + $range - 1;
$chigh = $high if $chigh > $high;
# The GMP code will use more residues so favor it with big clusters
if (scalar(@cl) > 9) {
@p = Math::Prime::Util::GMP::sieve_prime_cluster($low, $chigh, @cl);
} else {
@p = sieve_prime_cluster($low, $chigh, @cl);
}
prime_set_config(verbose=>0);
if ($outbstyle) {
print ++$i," $_\n" for @p;
} else {
print "$_\n" for @p;
}
$low += $range;
}
|