/usr/include/meep/vec.hpp is in libmeep-lam4-dev 1.3-2build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 | // -*- C++ -*-
/* Copyright (C) 2005-2015 Massachusetts Institute of Technology
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software Foundation,
% Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef MEEP_VEC_H
#define MEEP_VEC_H
#include <complex>
namespace meep {
const int NUM_FIELD_COMPONENTS = 20;
const int NUM_FIELD_TYPES = 8;
enum component { Ex=0, Ey, Er, Ep, Ez, Hx, Hy, Hr, Hp, Hz,
Dx, Dy, Dr, Dp, Dz, Bx, By, Br, Bp, Bz, Dielectric, Permeability };
#define Centered Dielectric // better name for centered "dielectric" grid
enum derived_component { Sx=100, Sy, Sr, Sp, Sz, EnergyDensity,
D_EnergyDensity, H_EnergyDensity };
enum ndim { D1=0, D2, D3, Dcyl };
enum field_type { E_stuff=0, H_stuff=1, D_stuff=2, B_stuff=3, PE_stuff=4, PH_stuff=5, WE_stuff=6, WH_stuff=7 };
enum boundary_side { High=0, Low };
enum direction { X=0,Y,Z,R,P, NO_DIRECTION };
struct signed_direction {
signed_direction(direction dd=X,bool f=false, std::complex<double> ph=1.0) {
d = dd; flipped = f; phase = ph;
};
signed_direction(const signed_direction &sd) {
d = sd.d; flipped = sd.flipped; phase = sd.phase;
}
signed_direction operator*(std::complex<double> ph);
bool operator==(const signed_direction &sd) const { return (d == sd.d &&
flipped == sd.flipped
&& phase == sd.phase); }
bool operator!=(const signed_direction &sd) const { return !(*this == sd); }
direction d;
bool flipped;
std::complex<double> phase;
};
inline int number_of_directions(ndim dim) {
return (int) (dim + 1 - 2 * (dim == Dcyl));
}
inline direction start_at_direction(ndim dim) {
return (direction) (((dim == D1) || (dim == Dcyl)) ? 2 : 0);
}
inline direction stop_at_direction(ndim dim) {
return (direction) (dim + 1 + 2 * (dim == D1));
}
component first_field_component(field_type ft);
#define FOR_FIELD_TYPES(ft) for (meep::field_type ft = meep::E_stuff; \
ft <= meep::WH_stuff; \
ft = (meep::field_type) (ft+1))
#define FOR_ELECTRIC_COMPONENTS(c) for (meep::component c = meep::Ex; \
c < meep::Hx; \
c = (meep::component) (c+1))
#define FOR_MAGNETIC_COMPONENTS(c) for (meep::component c = meep::Hz; \
c > meep::Ez; \
c = (meep::component) (c-1))
#define FOR_B_COMPONENTS(c) for (meep::component c = meep::Bz; \
c > meep::Dz; c = (meep::component) (c-1))
#define FOR_H_AND_B(h,b) for (meep::component h=meep::Hx, b=meep::Bx; \
h <= meep::Hz; \
h = (meep::component) (h+1), \
b = (meep::component) (b+1))
#define FOR_D_COMPONENTS(c) for (meep::component c = meep::Dz; \
c > meep::Hz; c = (meep::component) (c-1))
#define FOR_E_AND_D(e,d) for (meep::component e = meep::Ex, d = meep::Dx; \
e <= meep::Ez; e = (meep::component) (e+1), \
d = (component) (d+1))
#define FOR_E_AND_H(c) for (meep::component c = meep::Ex; c < meep::Dx; \
c = (meep::component) (c+1))
#define FOR_D_AND_B(c) for (meep::component c = meep::Dx; \
c < meep::Dielectric; c = (meep::component) (c+1))
#define FOR_FT_COMPONENTS(ft,c) for (meep::component c = meep::first_field_component(ft), loop_cstop = meep::component(meep::first_field_component(ft) + 5); c < loop_cstop; c = meep::component(c+1))
#define FOR_COMPONENTS(c) for (meep::component c = meep::Ex, \
loop_stop_co = meep::Ey; \
c != loop_stop_co; \
c = (meep::component)((c+1) % \
meep::NUM_FIELD_COMPONENTS), \
loop_stop_co = meep::Ex)
#define FOR_DIRECTIONS(d) for (meep::direction d = meep::X, \
loop_stop_di = meep::Y; \
d != loop_stop_di; \
d = (meep::direction)((d+1)%5), \
loop_stop_di = meep::X)
#define FOR_SIDES(s) for (meep::boundary_side s = meep::High, \
loop_stop_bi = meep::Low; \
s != loop_stop_bi; \
s = (meep::boundary_side) ((s+1) % 2), \
loop_stop_bi = meep::High)
// only loop over directions where we have coordinates
#define LOOP_OVER_DIRECTIONS(dim, d) \
for (meep::direction d = meep::start_at_direction(dim), \
loop_stop_directi = meep::stop_at_direction(dim); \
d < loop_stop_directi; d = (meep::direction) (d+1))
// loop over all directions in which we might have fields
#define LOOP_OVER_FIELD_DIRECTIONS(dim, d) for (meep::direction d = dim == meep::Dcyl ? meep::Z : meep::X; d < (dim == meep::Dcyl ? meep::NO_DIRECTION : meep::R); d = meep::direction(d+1))
// loop over indices idx from is to ie (inclusive) in gv
#define LOOP_OVER_IVECS(gv, is, ie, idx) \
for (int loop_is1 = (is).yucky_val(0), \
loop_is2 = (is).yucky_val(1), \
loop_is3 = (is).yucky_val(2), \
loop_n1 = ((ie).yucky_val(0) - loop_is1) / 2 + 1, \
loop_n2 = ((ie).yucky_val(1) - loop_is2) / 2 + 1, \
loop_n3 = ((ie).yucky_val(2) - loop_is3) / 2 + 1, \
loop_d1 = (gv).yucky_direction(0), \
loop_d2 = (gv).yucky_direction(1), \
loop_d3 = (gv).yucky_direction(2), \
loop_s1 = (gv).stride((meep::direction) loop_d1), \
loop_s2 = (gv).stride((meep::direction) loop_d2), \
loop_s3 = (gv).stride((meep::direction) loop_d3), \
idx0 = (is - (gv).little_corner()).yucky_val(0) / 2 * loop_s1 \
+ (is - (gv).little_corner()).yucky_val(1) / 2 * loop_s2 \
+ (is - (gv).little_corner()).yucky_val(2) / 2 * loop_s3,\
loop_i1 = 0; loop_i1 < loop_n1; loop_i1++) \
for (int loop_i2 = 0; loop_i2 < loop_n2; loop_i2++) \
for (int idx = idx0 + loop_i1*loop_s1 + loop_i2*loop_s2, \
loop_i3 = 0; loop_i3 < loop_n3; loop_i3++, idx+=loop_s3)
#define LOOP_OVER_VOL(gv, c, idx) \
LOOP_OVER_IVECS(gv, (gv).little_corner() + (gv).iyee_shift(c), (gv).big_corner() + (gv).iyee_shift(c), idx)
#define LOOP_OVER_VOL_OWNED(gv, c, idx) \
LOOP_OVER_IVECS(gv, (gv).little_owned_corner(c), (gv).big_corner(), idx)
#define LOOP_OVER_VOL_OWNED0(gv, c, idx) \
LOOP_OVER_IVECS(gv, (gv).little_owned_corner0(c), (gv).big_corner(), idx)
#define LOOP_OVER_VOL_NOTOWNED(gv, c, idx) \
for (ivec loop_notowned_is((gv).dim,0), loop_notowned_ie((gv).dim,0); \
loop_notowned_is == zero_ivec((gv).dim);) \
for (int loop_ibound = 0; (gv).get_boundary_icorners(c, loop_ibound, \
&loop_notowned_is, \
&loop_notowned_ie); \
loop_ibound++) \
LOOP_OVER_IVECS(gv, loop_notowned_is, loop_notowned_ie, idx)
#define LOOPS_ARE_STRIDE1(gv) ((gv).stride((gv).yucky_direction(2)) == 1)
// The following work identically to the LOOP_* macros above,
// but assume that the inner loop is stride-1: LOOPS_ARE_STRIDE1(gv) *must*
// be true. These are useful in allowing gcc to auto-vectorize the inner
// loop, since gcc's vectorizer requires the array stride to be known at
// compile time. Note that stride-1 loops are the most common case in Meep.
// Note that we also specify _Pragma("ivdep"), which is a hint to
// compilers like icc (and hopefully gcc at some point) that the loop
// iterations don't have data dependencies. This means that you
// should only use these macros where that is true! (Basically,
// all of this is here to support performance hacks of step_generic.)
// loop over indices idx from is to ie (inclusive) in gv
#define S1LOOP_OVER_IVECS(gv, is, ie, idx) \
for (int loop_is1 = (is).yucky_val(0), \
loop_is2 = (is).yucky_val(1), \
loop_is3 = (is).yucky_val(2), \
loop_n1 = ((ie).yucky_val(0) - loop_is1) / 2 + 1, \
loop_n2 = ((ie).yucky_val(1) - loop_is2) / 2 + 1, \
loop_n3 = ((ie).yucky_val(2) - loop_is3) / 2 + 1, \
loop_d1 = (gv).yucky_direction(0), \
loop_d2 = (gv).yucky_direction(1), \
loop_s1 = (gv).stride((meep::direction) loop_d1), \
loop_s2 = (gv).stride((meep::direction) loop_d2), \
loop_s3 = 1, \
idx0 = (is - (gv).little_corner()).yucky_val(0) / 2 * loop_s1 \
+ (is - (gv).little_corner()).yucky_val(1) / 2 * loop_s2 \
+ (is - (gv).little_corner()).yucky_val(2) / 2 * loop_s3,\
loop_i1 = 0; loop_i1 < loop_n1; loop_i1++) \
for (int loop_i2 = 0; loop_i2 < loop_n2; loop_i2++) _Pragma("ivdep") \
for (int idx = idx0 + loop_i1*loop_s1 + loop_i2*loop_s2, \
loop_i3 = 0; loop_i3 < loop_n3; loop_i3++, idx++)
#define S1LOOP_OVER_VOL(gv, c, idx) \
S1LOOP_OVER_IVECS(gv, (gv).little_corner() + (gv).iyee_shift(c), (gv).big_corner() + (gv).iyee_shift(c), idx)
#define S1LOOP_OVER_VOL_OWNED(gv, c, idx) \
S1LOOP_OVER_IVECS(gv, (gv).little_owned_corner(c), (gv).big_corner(), idx)
#define S1LOOP_OVER_VOL_OWNED0(gv, c, idx) \
S1LOOP_OVER_IVECS(gv, (gv).little_owned_corner0(c), (gv).big_corner(), idx)
#define S1LOOP_OVER_VOL_NOTOWNED(gv, c, idx) \
for (ivec loop_notowned_is((gv).dim,0), loop_notowned_ie((gv).dim,0); \
loop_notowned_is == meep::zero_ivec((gv).dim);) \
for (int loop_ibound = 0; (gv).get_boundary_icorners(c, loop_ibound, \
&loop_notowned_is, \
&loop_notowned_ie); \
loop_ibound++) \
S1LOOP_OVER_IVECS(gv, loop_notowned_is, loop_notowned_ie, idx)
#define IVEC_LOOP_AT_BOUNDARY \
((loop_s1 != 0 && (loop_i1 == 0 || loop_i1 == loop_n1-1)) || \
(loop_s2 != 0 && (loop_i2 == 0 || loop_i2 == loop_n2-1)) || \
(loop_s3 != 0 && (loop_i3 == 0 || loop_i3 == loop_n3-1)))
#define IVEC_LOOP_ILOC(gv, iloc) \
ivec iloc((gv).dim); \
iloc.set_direction(direction(loop_d1), loop_is1 + 2*loop_i1); \
iloc.set_direction(direction(loop_d2), loop_is2 + 2*loop_i2); \
iloc.set_direction(direction(loop_d3), loop_is3 + 2*loop_i3)
#define IVEC_LOOP_LOC(gv, loc) \
vec loc((gv).dim); \
loc.set_direction(direction(loop_d1), (0.5*loop_is1 + loop_i1) * (gv).inva); \
loc.set_direction(direction(loop_d2), (0.5*loop_is2 + loop_i2) * (gv).inva); \
loc.set_direction(direction(loop_d3), (0.5*loop_is3 + loop_i3) * (gv).inva)
// integration weight for using LOOP_OVER_IVECS with field::integrate
#define IVEC_LOOP_WEIGHT1x(s0, s1, e0, e1, i, n, dir) ((i > 1 && i < n - 2) ? 1.0 : (i == 0 ? (s0).in_direction(meep::direction(dir)) : (i == 1 ? (s1).in_direction(meep::direction(dir)) : i == n - 1 ? (e0).in_direction(meep::direction(dir)) : (i == n - 2 ? (e1).in_direction(meep::direction(dir)) : 1.0))))
#define IVEC_LOOP_WEIGHT1(s0, s1, e0, e1, k) IVEC_LOOP_WEIGHT1x(s0, s1, e0, e1, loop_i##k,loop_n##k,loop_d##k)
#define IVEC_LOOP_WEIGHT(s0, s1, e0, e1, dV) (IVEC_LOOP_WEIGHT1(s0, s1, e0, e1, 3) * (IVEC_LOOP_WEIGHT1(s0, s1, e0, e1, 2) * ((dV) * IVEC_LOOP_WEIGHT1(s0, s1, e0, e1, 1))))
inline signed_direction flip(signed_direction d) {
signed_direction d2 = d;
d2.flipped = !d.flipped;
return d2;
}
inline bool has_direction(ndim dim, direction d) {
LOOP_OVER_DIRECTIONS(dim, dd) if (dd == d) return true;
return false;
}
inline bool has_field_direction(ndim dim, direction d) {
LOOP_OVER_FIELD_DIRECTIONS(dim, dd) if (dd == d) return true;
return false;
}
// true if d is polar while dim is cartesian, or vice versa
inline bool coordinate_mismatch(ndim dim, direction d) {
return (d != NO_DIRECTION &&
((dim >= D1 && dim <= D3 && d != X && d != Y && d != Z) ||
(dim == Dcyl && d != R && d != P && d != Z)));
}
bool is_tm(component c);
extern void abort(const char *, ...); // mympi.cpp
inline bool is_electric(component c) { return c < Hx; }
inline bool is_magnetic(component c) { return c >= Hx && c < Dx; }
inline bool is_D(component c) { return c >= Dx && c < Bx; }
inline bool is_B(component c) { return c >= Bx && c < Dielectric; }
inline bool is_derived(int c) { return c >= Sx; }
inline bool is_poynting(derived_component c) { return c < EnergyDensity; }
inline bool is_energydensity(derived_component c) { return c>=EnergyDensity; }
inline field_type type(component c) {
if (is_electric(c)) return E_stuff;
else if (is_magnetic(c)) return H_stuff;
else if (is_D(c)) return D_stuff;
else if (is_B(c)) return B_stuff;
abort("Invalid field in type.\n");
return E_stuff; // This is never reached.
}
const char *component_name(component c);
const char *component_name(derived_component c);
const char *component_name(int c);
const char *direction_name(direction);
const char *dimension_name(ndim);
inline int component_index(component c) {
switch (c) {
case Ex: case Hx: case Dx: case Bx: return 0;
case Ey: case Hy: case Dy: case By: return 1;
case Ez: case Hz: case Dz: case Bz: return 2;
case Er: case Hr: case Dr: case Br: return 0;
case Ep: case Hp: case Dp: case Bp: return 1;
case Dielectric: return -1;
case Permeability: return -1;
}
return -2; // This code is never reached...
}
direction component_direction(int c);
int direction_component(int c, direction d);
inline direction component_direction(component c) {
switch (c) {
case Ex: case Hx: case Dx: case Bx: return X;
case Ey: case Hy: case Dy: case By: return Y;
case Ez: case Hz: case Dz: case Bz: return Z;
case Er: case Hr: case Dr: case Br: return R;
case Ep: case Hp: case Dp: case Bp: return P;
case Dielectric: return NO_DIRECTION;
case Permeability: return NO_DIRECTION;
}
return X; // This code is never reached...
}
inline direction component_direction(derived_component c) {
switch (c) {
case Sx: return X;
case Sy: return Y;
case Sz: return Z;
case Sr: return R;
case Sp: return P;
case EnergyDensity: case D_EnergyDensity: case H_EnergyDensity:
return NO_DIRECTION;
}
return X; // This code is never reached...
}
inline direction component_direction(int c) {
if (is_derived(c))
return component_direction(derived_component(c));
else
return component_direction(component(c));
}
inline component direction_component(component c, direction d) {
component start_point;
if (is_electric(c)) start_point = Ex;
else if (is_magnetic(c)) start_point = Hx;
else if (is_D(c)) start_point = Dx;
else if (is_B(c)) start_point = Bx;
else if (c == Dielectric && d == NO_DIRECTION) return Dielectric;
else if (c == Permeability && d == NO_DIRECTION) return Permeability;
else abort("unknown field component %d", c);
switch (d) {
case X: return start_point;
case Y: return (component) (start_point + 1);
case Z: return (component) (start_point + 4);
case R: return (component) (start_point + 2);
case P: return (component) (start_point + 3);
case NO_DIRECTION: abort("vector %d component in NO_DIRECTION", c);
}
return Ex; // This is never reached.
}
inline derived_component direction_component(derived_component c, direction d) {
derived_component start_point;
if (is_poynting(c)) start_point = Sx;
else if (is_energydensity(c) && d == NO_DIRECTION) return c;
else abort("unknown field component %d", c);
switch (d) {
case X: return start_point;
case Y: return (derived_component) (start_point + 1);
case Z: return (derived_component) (start_point + 4);
case R: return (derived_component) (start_point + 2);
case P: return (derived_component) (start_point + 3);
case NO_DIRECTION: abort("vector %d derived_component in NO_DIRECTION", c);
}
return Sx; // This is never reached.
}
inline int direction_component(int c, direction d) {
if (is_derived(c))
return int(direction_component(derived_component(c), d));
else
return int(direction_component(component(c), d));
}
inline component field_type_component(field_type ft, component c) {
return direction_component(first_field_component(ft),
component_direction(c));
}
inline bool coordinate_mismatch(ndim dim, component c) {
return coordinate_mismatch(dim, component_direction(c));
}
inline bool coordinate_mismatch(ndim dim, derived_component c) {
return coordinate_mismatch(dim, component_direction(c));
}
// cyclically shift a direction d or a component c by shift
// assumes: shift >= -99, {d, component_direction(c)} != NO_DIRECTION,
// and has_direction(dim, {d, component_direction(c)})
inline direction cycle_direction(ndim dim, direction d, int shift) {
int start = dim == Dcyl ? 2 : 0;
return direction((d - start + shift + 99) % 3 + start);
}
inline component cycle_component(ndim dim, component c, int shift) {
return direction_component(c, cycle_direction(dim, component_direction(c), shift));
}
class vec;
vec veccyl(double rr, double zz);
vec zero_vec(ndim);
class vec {
public:
vec() {};
vec(ndim di) { dim = di; };
vec(ndim di, double val) { dim = di; t[0]=t[1]=t[2]=t[3]=t[4]=val; };
vec(double zz) { dim = D1; t[Z] = zz; };
vec(double xx, double yy) { dim = D2; t[X] = xx; t[Y] = yy; };
vec(double xx, double yy, double zz) {
dim = D3; t[X] = xx; t[Y] = yy; t[Z] = zz; };
friend vec veccyl(double rr, double zz);
~vec() {};
vec operator+(const vec &a) const {
vec result = a;
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] += t[d];
return result;
};
vec operator+=(const vec &a) {
LOOP_OVER_DIRECTIONS(dim, d) t[d] += a.t[d];
return *this;
};
vec operator-(const vec &a) const {
vec result = a;
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = t[d] - result.t[d];
return result;
};
vec operator-(void) const {
vec result(dim);
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = -t[d];
return result;
};
vec operator-=(const vec &a) {
LOOP_OVER_DIRECTIONS(dim, d) t[d] -= a.t[d];
return *this;
};
bool operator!=(const vec &a) const {
LOOP_OVER_DIRECTIONS(dim, d) if (t[d] != a.t[d]) return true;
return false;
};
bool operator==(const vec &a) const {
LOOP_OVER_DIRECTIONS(dim, d) if (t[d] != a.t[d]) return false;
return true;
};
vec round_float(void) const {
vec result = *this;
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = float(result.t[d]);
return result;
}
vec operator*(double s) const {
vec result = *this;
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] *= s;
return result;
};
vec operator/(double s) const {
vec result = *this;
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] *= (1.0/s);
return result;
};
// I use & as a dot product.
double operator&(const vec &a) const {
double result = 0.0;
LOOP_OVER_DIRECTIONS(dim, d) result += t[d] * a.t[d];
return result;
};
ndim dim;
double r() const { return t[R]; };
double x() const { return t[X]; };
double y() const { return t[Y]; };
double z() const { return t[Z]; };
double in_direction(direction d) const { return t[d]; };
void set_direction(direction d, double val) { t[d] = val; };
double project_to_boundary(direction, double boundary_loc);
friend vec zero_vec(ndim);
friend vec one_vec(ndim);
private:
double t[5];
};
inline double abs(const vec &pt) { return sqrt(pt & pt); }
inline vec zero_vec(ndim di) {
vec pt(di); LOOP_OVER_DIRECTIONS(di, d) pt.set_direction(d, 0.0);
return pt;
}
inline vec one_vec(ndim di) {
vec pt(di); LOOP_OVER_DIRECTIONS(di, d) pt.set_direction(d, 1.0);
return pt;
}
inline vec unit_vec(ndim di, direction d) {
vec pt(zero_vec(di));
pt.set_direction(d, 1.0);
return pt;
}
inline vec clean_vec(const vec &pt, double val_unused = 0.0) {
vec ptc(pt.dim, val_unused);
LOOP_OVER_DIRECTIONS(pt.dim, d) ptc.set_direction(d, pt.in_direction(d));
return ptc;
}
inline vec veccyl(double rr, double zz) {
vec pt(Dcyl); pt.t[R] = rr; pt.t[Z] = zz; return pt;
}
class ivec;
ivec iveccyl(int xx, int yy);
ivec zero_ivec(ndim);
ivec one_ivec(ndim);
class ivec {
public:
ivec() { dim = D2; t[X] = t[Y] = 0; };
ivec(ndim di) { dim = di; };
ivec(ndim di, int val) { dim = di; t[0]=t[1]=t[2]=t[3]=t[4]=val; };
ivec(int zz) { dim = D1; t[Z] = zz; };
ivec(int xx, int yy) { dim = D2; t[X] = xx; t[Y] = yy; };
ivec(int xx, int yy, int zz) {
dim = D3; t[X] = xx; t[Y] = yy; t[Z] = zz; };
friend ivec iveccyl(int xx, int yy);
~ivec() {};
// Only an idiot (or a macro) would use a yucky function. Don't be an
// idiot.
int yucky_val(int) const;
ivec operator+(const ivec &a) const {
ivec result = a;
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] += t[d];
return result;
};
ivec operator+=(const ivec &a) {
LOOP_OVER_DIRECTIONS(dim, d) t[d] += a.t[d];
return *this;
};
ivec operator-(const ivec &a) const {
ivec result = a;
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = t[d] - result.t[d];
return result;
};
ivec operator-(void) const {
ivec result(dim);
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] = -t[d];
return result;
};
ivec operator-=(const ivec &a) {
LOOP_OVER_DIRECTIONS(dim, d) t[d] -= a.t[d];
return *this;
};
bool operator!=(const ivec &a) const {
LOOP_OVER_DIRECTIONS(dim, d) if (t[d] != a.t[d]) return true;
return false;
};
bool operator==(const ivec &a) const {
LOOP_OVER_DIRECTIONS(dim, d) if (t[d] != a.t[d]) return false;
return true;
};
bool operator<=(const ivec &a) const {
LOOP_OVER_DIRECTIONS(dim, d) if (t[d] > a.t[d]) return false;
return true;
};
bool operator>=(const ivec &a) const {
LOOP_OVER_DIRECTIONS(dim, d) if (t[d] < a.t[d]) return false;
return true;
};
bool operator<(const ivec &a) const {
LOOP_OVER_DIRECTIONS(dim, d) if (t[d] >= a.t[d]) return false;
return true;
};
bool operator>(const ivec &a) const {
LOOP_OVER_DIRECTIONS(dim, d) if (t[d] <= a.t[d]) return false;
return true;
};
ivec operator*(int s) const {
ivec result = *this;
LOOP_OVER_DIRECTIONS(dim, d) result.t[d] *= s;
return result;
};
vec operator*(double s) const {
vec result(dim);
LOOP_OVER_DIRECTIONS(dim, d) result.set_direction(d, t[d] * s);
return result;
};
ndim dim;
int r() const { return t[R]; };
int x() const { return t[X]; };
int y() const { return t[Y]; };
int z() const { return t[Z]; };
int in_direction(direction d) const { return t[d]; };
void set_direction(direction d, int val) { t[d] = val; };
ivec round_up_to_even(void) const {
ivec result(dim);
LOOP_OVER_DIRECTIONS(dim, d)
result.t[d] = t[d] + (t[d] >= 0 ? t[d] : -t[d]) % 2;
return result;
}
friend ivec zero_ivec(ndim);
friend ivec one_ivec(ndim);
private:
int t[5];
};
inline ivec zero_ivec(ndim di) {
ivec pt; pt.dim = di; LOOP_OVER_DIRECTIONS(di, d) pt.set_direction(d, 0);
return pt;
}
inline ivec one_ivec(ndim di) {
ivec pt; pt.dim = di; LOOP_OVER_DIRECTIONS(di, d) pt.set_direction(d, 1);
return pt;
}
inline ivec unit_ivec(ndim di, direction d) {
ivec pt(zero_ivec(di));
pt.set_direction(d, 1);
return pt;
}
inline ivec iveccyl(int rr, int zz) {
ivec pt(Dcyl); pt.t[R] = rr; pt.t[Z] = zz; return pt;
}
vec max(const vec &vec1, const vec &vec2);
vec min(const vec &vec1, const vec &vec2);
ivec max(const ivec &ivec1, const ivec &ivec2);
ivec min(const ivec &ivec1, const ivec &ivec2);
ivec max_to_all(const ivec &); // in mympi.cpp
class volume {
public:
ndim dim;
volume(ndim di) { dim = di; min_corner.dim = di; max_corner.dim = di; };
volume(const vec &vec1, const vec &vec2);
volume(const vec &pt);
void set_direction_min(direction d, double val) { min_corner.set_direction(d, val); };
void set_direction_max(direction d, double val) { max_corner.set_direction(d, val); };
double in_direction_min(direction d) const { return min_corner.in_direction(d); };
double in_direction_max(direction d) const { return max_corner.in_direction(d); };
double in_direction(direction d) const { return in_direction_max(d) - in_direction_min(d); }
double computational_volume() const;
double integral_volume() const;
double full_volume() const;
vec center() const { return (min_corner + max_corner) * 0.5; }
double diameter() const;
bool contains(const vec &h) const;
bool contains(const volume &a) const;
volume intersect_with(const volume &a) const;
volume operator&(const volume &a) const {
return intersect_with(a);
};
volume operator|(const volume &a) const {
return volume(min(min_corner, a.min_corner),
max(max_corner, a.max_corner));
};
volume operator+(const vec &a) const {
return volume(min_corner + a, max_corner + a);
}
volume operator+=(const vec &a) {
min_corner += a; max_corner += a;
return *this;
}
volume operator-(const vec &a) const {
return volume(min_corner - a, max_corner - a);
}
volume operator-=(const vec &a) {
min_corner -= a; max_corner -= a;
return *this;
}
bool operator==(const volume &a) const {
return (min_corner == a.min_corner && max_corner == a.max_corner);
}
bool operator!=(const volume &a) const { return !(*this == a); };
volume round_float(void) const {
return volume(min_corner.round_float(),max_corner.round_float());
}
bool intersects(const volume &a) const;
bool operator&&(const volume &a) const {
return intersects(a);
};
vec get_min_corner() const { return min_corner; };
vec get_max_corner() const { return max_corner; };
direction normal_direction() const;
private:
vec min_corner, max_corner;
};
class grid_volume;
grid_volume volcyl(double rsize, double zsize, double a);
grid_volume volone(double zsize, double a);
grid_volume vol1d(double zsize, double a);
grid_volume voltwo(double xsize, double ysize, double a);
grid_volume vol2d(double xsize, double ysize, double a);
grid_volume vol3d(double xsize, double ysize, double zsize, double a);
class grid_volume {
public:
grid_volume() {};
ndim dim;
double a, inva /* = 1/a */;
void print() const;
int stride(direction d) const { return the_stride[d]; };
int num_direction(direction d) const {
return num[((int) d) % 3];
};
// Only an idiot (or a macro) would use a yucky function. Don't be an
// idiot.
int yucky_num(int) const;
direction yucky_direction(int) const;
void set_num_direction(direction d, int value);
int nr() const { return num_direction(R); }
int nx() const { return num_direction(X); }
int ny() const { return num_direction(Y); }
int nz() const { return num_direction(Z); }
bool has_field(component c) const {
if (dim == D1) return c == Ex || c == Hy || c == Dx || c == By;
return (dim == Dcyl)?component_direction(c)>Y:component_direction(c)<R;
}
int has_boundary(boundary_side,direction) const;
vec dr() const;
vec dx() const;
vec dy() const;
vec dz() const;
int ntot() const { return the_ntot; }
int nowned_min() const { int n = 1; LOOP_OVER_DIRECTIONS(dim,d) n *= num_direction(d); return n; }
int nowned(component c) const;
vec operator[](const ivec &p) const { return p*(0.5*inva); };
int index(component, const ivec &) const;
ivec round_vec(const vec &) const;
void interpolate(component, const vec &, int indices[8], double weights[8]) const;
void interpolate(component, const vec &, ivec locs[8], double weights[8]) const;
volume dV(component c, int index) const;
volume dV(const ivec &, double diameter = 1.0) const;
bool intersect_with(const grid_volume &vol_in, grid_volume *intersection = NULL, grid_volume *others = NULL, int *num_others = NULL) const;
double rmin() const;
double rmax() const;
double xmin() const;
double xmax() const;
double ymin() const;
double ymax() const;
double zmin() const;
double zmax() const;
vec center() const;
ivec icenter() const;
vec loc(component, int index) const;
vec loc_at_resolution(int index, double res) const;
int ntot_at_resolution(double res) const;
ivec iloc(component, int index) const;
int yee_index(component c) const {
int idx = 0;
LOOP_OVER_DIRECTIONS(dim,d)
idx += (1-iyee_shift(c).in_direction(d))*stride(d);
return idx;
}
vec yee_shift(component) const;
component eps_component() const;
void yee2cent_offsets(component c, int &offset1, int &offset2) const;
void cent2yee_offsets(component c, int &offset1, int &offset2) const;
double boundary_location(boundary_side, direction) const;
ivec big_corner() const;
ivec little_corner() const { return io; };
vec corner(boundary_side b) const;
bool contains(const vec &) const;
bool contains(const ivec &) const;
/* differs from little_owned_corner in that it doesn't count
"ownership" of the r=0 origin for Dcyl, which is updated separately */
ivec little_owned_corner0(component c) const {
return ivec(little_corner() + one_ivec(dim)*2 - iyee_shift(c));
}
ivec little_owned_corner(component c) const;
bool owns(const ivec &) const;
volume surroundings() const;
volume interior() const;
bool get_boundary_icorners(component c, int ib, ivec *cs, ivec *ce) const;
friend grid_volume volcyl(double rsize, double zsize, double a);
friend grid_volume volone(double zsize, double a);
friend grid_volume vol1d(double zsize, double a);
friend grid_volume voltwo(double xsize, double ysize, double a);
friend grid_volume vol2d(double xsize, double ysize, double a);
friend grid_volume vol3d(double xsize, double ysize, double zsize, double a);
grid_volume split(int num, int which) const;
grid_volume split_by_effort(int num, int which, int Ngv = 0, const grid_volume *v = NULL, double *effort = NULL) const;
grid_volume split_at_fraction(bool want_high, int numer) const;
grid_volume halve(direction d) const;
void pad_self(direction d);
grid_volume pad(direction d) const;
grid_volume pad() const {
grid_volume gv(*this);
LOOP_OVER_DIRECTIONS(dim,d)
gv.pad_self(d);
return gv;
}
ivec iyee_shift(component c) const {
ivec out = zero_ivec(dim);
LOOP_OVER_DIRECTIONS(dim,d)
if (c == Dielectric || c == Permeability ||
((is_electric(c) || is_D(c)) && d == component_direction(c)) ||
((is_magnetic(c) || is_B(c)) && d != component_direction(c)))
out.set_direction(d,1);
return out;
}
vec get_origin() const { return origin; }
void set_origin(const vec &o);
void set_origin(const ivec &o);
void shift_origin(const vec &s) { set_origin(origin + s); }
void shift_origin(const ivec &s) { set_origin(io + s); }
void shift_origin(direction d, int s) {shift_origin(unit_ivec(dim, d) * s);}
void set_origin(direction d, int o);
void center_origin(void) { shift_origin(-icenter()); }
double origin_in_direction(direction d) const{return origin.in_direction(d);}
int iorigin_in_direction(direction d) const{return io.in_direction(d);}
double origin_r() const { return origin.r(); }
double origin_x() const { return origin.x(); }
double origin_y() const { return origin.y(); }
double origin_z() const { return origin.z(); }
private:
grid_volume(ndim d, double ta, int na, int nb, int nc);
ivec io; // integer origin ... always change via set_origin etc.!
vec origin; // cache of operator[](io), for performance
void update_ntot();
void set_strides();
void num_changed() { update_ntot(); set_strides(); }
int num[3];
int the_stride[5];
int the_ntot;
};
class volume_list;
class symmetry;
symmetry identity();
symmetry rotate4(direction,const grid_volume &);
symmetry rotate2(direction,const grid_volume &);
symmetry mirror(direction,const grid_volume &);
symmetry r_to_minus_r_symmetry(double m);
class symmetry {
public:
symmetry();
symmetry(const symmetry &);
~symmetry();
friend symmetry identity();
friend symmetry rotate4(direction,const grid_volume &);
friend symmetry rotate2(direction,const grid_volume &);
friend symmetry mirror(direction,const grid_volume &);
signed_direction transform(direction d, int n) const;
ivec transform(const ivec &, int n) const;
vec transform(const vec &, int n) const;
ivec transform_unshifted(const ivec &, int n) const;
volume transform(const volume &, int n) const;
component transform(component, int n) const;
std::complex<double> phase_shift(component, int n) const;
derived_component transform(derived_component, int n) const;
std::complex<double> phase_shift(derived_component, int n) const;
int transform(int, int n) const;
std::complex<double> phase_shift(int, int n) const;
int multiplicity() const;
bool is_primitive(const ivec &) const;
volume_list *reduce(const volume_list *gl) const;
symmetry operator+(const symmetry &) const;
symmetry operator*(std::complex<double>) const;
symmetry operator-(const symmetry &b) const { return *this + b * (-1.0); }
symmetry operator-(void) const { return *this * (-1.0); }
void operator=(const symmetry &);
bool operator==(const symmetry &) const;
bool operator!=(const symmetry &S) const { return !(*this == S); };
private:
signed_direction S[5];
std::complex<double> ph;
vec symmetry_point;
ivec i_symmetry_point;
int g; // g is the multiplicity of the symmetry.
symmetry *next;
friend symmetry r_to_minus_r_symmetry(double m);
};
class volume_list {
public:
volume_list(const volume &v, int c, std::complex<double> weight = 1.0, volume_list *next = 0) : v(v), c(c), weight(weight), next(next) {}
~volume_list() { delete next; }
volume_list(const volume_list *vl) : v(vl->v), c(vl->c), weight(vl->weight), next(0) {
volume_list *p = vl->next, *q = this;
while (p) {
q->next = new volume_list(*p);
q = q->next;
p = p->next;
}
}
volume v;
int c; // component or derived component associated with v (e.g. for flux)
std::complex<double> weight;
volume_list *next;
};
} /* namespace meep */
#endif /* MEEP_VEC_H */
|