/usr/include/libMems-1.6/libMems/DistanceMatrix.h is in libmems-1.6-dev 1.6.0+4725-4build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | /*******************************************************************************
* This file is copyright 2002-2007 Aaron Darling and authors listed in the AUTHORS file.
* This file is licensed under the GPL.
* Please see the file called COPYING for licensing details.
* **************
******************************************************************************/
#ifndef __DistanceMatrix_h__
#define __DistanceMatrix_h__
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "libGenome/gnSequence.h"
#include "libMems/SubstitutionMatrix.h"
#include "libMems/IntervalList.h"
#include "libMems/MatchList.h"
#include "libMems/GappedAlignment.h"
#include "libMems/CompactGappedAlignment.h"
namespace mems {
void TransformDistanceIdentity( NumericMatrix<double>& identity );
void DistanceMatrix( const MatchList& mlist, NumericMatrix<double>& identity );
template< class AbstractMatchVectorType >
void IdentityMatrix( const AbstractMatchVectorType& matches, const std::vector< genome::gnSequence* >& seq_table, NumericMatrix<double>& identity );
template<class AbstractMatchType>
void MatchIdentityMatrix( const AbstractMatchType& amt, const std::vector< genome::gnSequence* >& seq_table, NumericMatrix<double>& identity);
void DistanceMatrix( uint seq_count, const std::vector< std::pair< uint64, uint64 > >& detail_list, NumericMatrix<double>& distance );
void IdentityMatrix( const IntervalList& iv_list, NumericMatrix<double>& identity );
inline
void IdentityMatrix( const IntervalList& iv_list, NumericMatrix<double>& identity )
{
std::vector< const AbstractMatch* > am_list;
for( size_t ivI = 0; ivI < iv_list.size(); ivI++ )
am_list.push_back( &iv_list[ivI] );
IdentityMatrix( am_list, iv_list.seq_table, identity );
}
template< class AbstractMatchVectorType >
void IdentityMatrix( const AbstractMatchVectorType& matches, const std::vector< genome::gnSequence* >& seq_table, NumericMatrix<double>& identity ){
if( matches.size() == 0 )
return;
uint seq_count = seq_table.size();
identity = NumericMatrix<double>( seq_count, seq_count );
identity.init( 0 );
NumericMatrix<double> possible( seq_count, seq_count );
possible.init( 0 );
for( uint ivI = 0; ivI < matches.size(); ivI++ ){
AddToMatchIdentityMatrix( *matches[ ivI ], seq_table, identity );
}
for( uint seqI = 0; seqI < seq_count; seqI++ ){
for( uint seqJ = 0; seqJ < seq_count; seqJ++ ){
gnSeqI shorter_len = seq_table[seqI]->length() < seq_table[seqJ]->length() ? seq_table[seqI]->length() : seq_table[seqJ]->length();
possible( seqI, seqJ ) += shorter_len;
}
}
identity /= possible;
}
template< class AbstractMatchVectorType >
void BackboneIdentityMatrix( const AbstractMatchVectorType& matches, const std::vector< genome::gnSequence* >& seq_table, NumericMatrix<double>& identity ){
if( matches.size() == 0 )
return;
size_t seq_count = seq_table.size();
identity = NumericMatrix<double>( seq_count, seq_count );
identity.init( 0 );
for( uint ivI = 0; ivI < matches.size(); ivI++ ){
AddToMatchIdentityMatrix( *matches[ ivI ], seq_table, identity );
}
NumericMatrix<double> possible( seq_count, seq_count );
possible.init( 0 );
for( size_t mI = 0; mI < matches.size(); ++mI ){
std::vector< std::string > alignment;
GetAlignment( *(matches[mI]), seq_table, alignment );
for( gnSeqI charI = 0; charI < matches[mI]->AlignmentLength(); charI++ ){
for( size_t seqI = 0; seqI < seq_count; seqI++ ){
for( size_t seqJ = seqI + 1; seqJ < seq_count; seqJ++ ){
if( alignment[ seqI ][ charI ] != '-' &&
alignment[ seqJ ][ charI ] != '-' ){
possible( seqI, seqJ ) += 1;
}
}
}
}
}
identity /= possible;
}
template<class AbstractMatchType>
void MatchIdentityMatrix( const AbstractMatchType& amt, const std::vector< genome::gnSequence* >& seq_table, NumericMatrix<double>& identity)
{
if( amt.SeqCount() == 0 )
return;
uint seq_count = amt.SeqCount();
identity = NumericMatrix<double>( seq_count, seq_count );
identity.init( 0 );
uint seqI;
uint seqJ;
std::vector< std::string > alignment;
GetAlignment( amt, seq_table, alignment );
for( gnSeqI charI = 0; charI < amt.AlignmentLength(); charI++ ){
for( seqI = 0; seqI < seq_count; seqI++ ){
for( seqJ = seqI + 1; seqJ < seq_count; seqJ++ ){
if( ( toupper( alignment[ seqI ][ charI ] ) ==
toupper( alignment[ seqJ ][ charI ] ) ) &&
alignment[ seqI ][ charI ] != '-' ){
identity( seqI, seqJ ) += 1;
}
}
}
}
for( seqI = 0; seqI < seq_count; seqI++ ){
for( seqJ = seq_count; seqJ > 0; seqJ-- ){
if( seqI == seqJ - 1 )
// set the diagonal to identical
identity( seqI, seqJ - 1 ) = 1;
else if( seqI < seqJ - 1 ){
// determine the length of the shorter sequence
gnSeqI shorter_len = amt.Length( seqI ) < amt.Length( seqJ - 1 ) ? amt.Length( seqI ) : amt.Length( seqJ - 1 );
// divide through
identity( seqI, seqJ - 1 ) /= (double)shorter_len;
// maxes out at 1
if( identity( seqI, seqJ - 1 ) > 1 )
identity( seqI, seqJ - 1 ) = 1;
}else // copy the other one
identity( seqI, seqJ - 1 ) = identity( seqJ - 1, seqI );
}
}
}
template<class AbstractMatchType>
void AddToMatchIdentityMatrix( const AbstractMatchType& amt, const std::vector< genome::gnSequence* >& seq_table, NumericMatrix<double>& identity)
{
if( amt.SeqCount() == 0 )
return;
uint seq_count = amt.SeqCount();
uint seqI;
uint seqJ;
std::vector< std::string > alignment;
GetAlignment( amt, seq_table, alignment );
for( gnSeqI charI = 0; charI < amt.AlignmentLength(); charI++ ){
for( seqI = 0; seqI < seq_count; seqI++ ){
for( seqJ = seqI + 1; seqJ < seq_count; seqJ++ ){
if( ( toupper( alignment[ seqI ][ charI ] ) ==
toupper( alignment[ seqJ ][ charI ] ) ) &&
alignment[ seqI ][ charI ] != '-' ){
identity( seqI, seqJ ) += 1;
}
}
}
}
}
/*
// template specialization for (exact) matches
inline
void AddToMatchIdentityMatrix( const Match& m, const std::vector< genome::gnSequence* >& seq_table, NumericMatrix<double>& identity)
{
if( m.SeqCount() == 0 )
return;
for( uint seqI = 0; seqI < m.SeqCount(); seqI++ )
if( m.LeftEnd(seqI) != NO_MATCH )
for( uint seqJ = seqI + 1; seqJ < m.SeqCount(); seqJ++ )
if( m.LeftEnd(seqJ) != NO_MATCH )
identity(seqI,seqJ) += m.Length();
}
*/
template< typename MatchVector >
void SingleCopyDistanceMatrix( MatchVector& iv_list, std::vector< genome::gnSequence* >& seq_table, NumericMatrix<double>& distance )
{
uint seq_count = seq_table.size();
distance = NumericMatrix<double>( seq_count, seq_count );
distance.init( 0 );
uint seqI;
uint seqJ;
std::vector< std::pair< bitset_t, bitset_t > > tmp_comp( seq_count );
std::vector< std::vector< std::pair< bitset_t, bitset_t > > > pair_comp( seq_count, tmp_comp );
for( uint seqI = 0; seqI < seq_count; ++seqI )
{
for( uint seqJ = seqI+1; seqJ < seq_count; ++seqJ )
{
pair_comp[seqI][seqJ].first.resize( seq_table[seqI]->length(), false );
pair_comp[seqI][seqJ].second.resize( seq_table[seqJ]->length(), false );
}
}
#pragma omp parallel for
for( int ivI = 0; ivI < iv_list.size(); ++ivI )
{
std::vector< bitset_t > aln_table;
#pragma omp critical
{
iv_list[ivI]->GetAlignment(aln_table);
}
for( uint seqI = 0; seqI < seq_count; ++seqI )
{
for( uint seqJ = seqI+1; seqJ < seq_count; ++seqJ )
{
gnSeqI seqI_pos = iv_list[ivI]->LeftEnd(seqI);
gnSeqI seqJ_pos = iv_list[ivI]->LeftEnd(seqJ);
AbstractMatch::orientation o_i = iv_list[ivI]->Orientation(seqI);
AbstractMatch::orientation o_j = iv_list[ivI]->Orientation(seqJ);
if( o_i == AbstractMatch::reverse )
seqI_pos = iv_list[ivI]->RightEnd(seqI);
if( o_j == AbstractMatch::reverse )
seqJ_pos = iv_list[ivI]->RightEnd(seqJ);
if( seqI_pos == NO_MATCH || seqJ_pos == NO_MATCH )
continue;
for( size_t colI = 0; colI < aln_table[seqI].size(); ++colI )
{
if( aln_table[seqI].test(colI) && aln_table[seqJ].test(colI) )
{
pair_comp[seqI][seqJ].first.set(seqI_pos-1,true);
pair_comp[seqI][seqJ].second.set(seqJ_pos-1,true);
}
if( aln_table[seqI].test(colI) )
if( o_i == AbstractMatch::forward )
seqI_pos++;
else
seqI_pos--;
if( aln_table[seqJ].test(colI) )
if( o_j == AbstractMatch::forward )
seqJ_pos++;
else
seqJ_pos--;
}
}
}
}
for( uint seqI = 0; seqI < seq_count; ++seqI )
{
distance(seqI,seqI) = 1;
for( uint seqJ = seqI+1; seqJ < seq_count; ++seqJ )
{
double pI = ((double)pair_comp[seqI][seqJ].first.count())/((double)pair_comp[seqI][seqJ].first.size());
double pJ = ((double)pair_comp[seqI][seqJ].second.count())/((double)pair_comp[seqI][seqJ].second.size());
distance(seqI,seqJ) = (pI + pJ) / 2.0;
distance(seqJ,seqI) = (pI + pJ) / 2.0;
}
}
TransformDistanceIdentity(distance);
}
inline
void DistanceMatrix( const MatchList& mlist, NumericMatrix<double>& distance ){
IdentityMatrix(mlist, mlist.seq_table, distance );
TransformDistanceIdentity( distance );
}
inline
void TransformDistanceIdentity( NumericMatrix<double>& identity ){
for( int i = 0; i < identity.cols(); i++ ){
for( int j = 0; j < identity.rows(); j++ ){
identity( i, j ) = 1 - identity( i, j );
}
}
}
inline
void DistanceMatrix( uint seq_count, const std::vector< std::pair< uint64, uint64 > >& detail_list, NumericMatrix<double>& distance ){
distance = NumericMatrix<double>( seq_count, seq_count );
distance.init( 0 );
uint seqI;
uint seqJ;
for( seqI = 0; seqI < seq_count; seqI++ ){
uint64 seqI_mask = 1;
seqI_mask <<= seq_count - seqI - 1;
for( seqJ = 0; seqJ < seq_count; seqJ++ ){
uint64 seqJ_mask = 1;
seqJ_mask <<= seq_count - seqJ - 1;
for( uint pairI = 0; pairI < detail_list.size(); pairI++ ){
if( (detail_list[ pairI ].first & seqI_mask) != 0 &&
(detail_list[ pairI ].first & seqJ_mask) != 0 ){
distance( seqI, seqJ ) += detail_list[ pairI ].second;
}
}
}
}
for( seqI = 0; seqI < seq_count; seqI++ ){
for( seqJ = 0; seqJ < seq_count; seqJ++ ){
if( seqI == seqJ )
continue;
double avg_length = ( distance( seqI, seqI ) + distance( seqJ, seqJ ) ) / 2;
distance( seqI, seqJ ) = 1.0 - ( distance( seqI, seqJ ) / avg_length );
if( !(distance( seqI, seqJ ) == distance( seqI, seqJ )) ){
distance( seqI, seqJ ) = 1.0;
}
}
}
// set the diagonal identical to itself
for( seqI = 0; seqI < seq_count; seqI++ )
distance( seqI, seqI ) = 0;
}
} // namespace mems
#endif // __DistanceMatrix_h__
|