/usr/include/memtailor/Arena.h is in libmemtailor-dev 1.0~git20160302-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | /* Copyright (C) 2011 Bjarke Hammersholt Roune (www.broune.com)
MemTailor is distributed under the Modified BSD License. See license.txt. */
#ifndef MEMT_ARENA_GUARD
#define MEMT_ARENA_GUARD
#include "MemoryBlocks.h"
#include "stdinc.h"
#include <new>
#include <cstddef>
#include <utility>
#include <vector>
#ifdef MEMT_DEBUG
#include <vector>
#endif
namespace memt {
/** This is an arena allocator. Arena allocators are very fast at the
cost of imposing limitations on how memory can be deallocated.
Allocation and deallocation must occur in stack order (LIFO). In
other words, only the most recently allocated buffer that has not
been deallocated yet can be deallocated. It is also possible to
deallocate all buffers that were deallocated after a given buffer. In
DEBUG mode stack order is enforced by ASSERTs.
Arena satisfies allocation requests out of a larger block of
memory. When a block is exhausted another block must be allocated
using new. This new block is at least twice the size of the previous
block. Old blocks are never re-used though they will be deallocated
if they become old. So the current block is replaced if and only if
it becomes exhausted.
The scheme of geometric block growth is used because it allows a
very fast implementation with excellent locality of
reference. This can consume memory beyond that which the user of
the Arena needs - all allocators have memory overhead. Optimal
performance on both speed and memory consumption can usully be
reached by all code using the same Arena object when that is
possible given the stack-order limitation on deallocation.
All methods throw bad_alloc if backing memory allocation using
new fails.
*/
class Arena {
public:
Arena();
~Arena();
// ***** Basic void* interface *****
/** Returns a pointer to a buffer of size bytes. Throws bad_alloc if
that is not possible. All allocated and not freed buffers have
unique addresses even when size is zero. */
void* alloc(size_t size);
/** Frees the buffer pointed to by ptr. That buffer must be the most
recently allocated buffer from this Arena that has not yet been
freed. Double frees are not allowed. ptr must not be null. */
void freeTop(void* ptr);
/** Frees the buffer pointed to by ptr and all not yet freed
allocations that have happened since that buffer was allocated. ptr
must not be null. */
void freeAndAllAfter(void* ptr);
/** Marks all previous allocations as freed. Does not deallocate
all the backing memory. */
void freeAllAllocs();
/** Marks all previous allocations as freed and deallocates all
backing memory. */
void freeAllAllocsAndBackingMemory();
// ***** Object interface *****
/** Allocates and default constructs an instance of T.
Only default construction supported. */
template<class T>
T* allocObject() {
return new (allocObjectNoCon<T>()) T();
}
/** Allocates memory for an instance of T. No construction
is performed. */
template<class T>
T* allocObjectNoCon() {
return static_cast<T*>(alloc(sizeof(T)));
}
/** Destructs *ptr and then frees it as a memory buffer.
That buffer must be the most recently allocated buffer from
this Arena that has not yet been freed. Double frees are not
allowed. ptr must not be null. */
template<class T>
void freeTopObject(T* ptr) {
ptr->~T();
freeTop(ptr);
}
/** Destructs *ptr and then frees it as a memory buffer
along with all not yet freed allocations that have happened
since that buffer was allocated. ptr must not be null. */
template<class T>
void freeObjectAndAllAfter(T* ptr) {
ptr->~T();
freeAndAllAfter(ptr);
}
// ***** Array interface *****
/** As alloc(elementCount * sizeof(T)). Constructors for the
elements of the array are not called. */
template<class T>
std::pair<T*, T*> allocArrayNoCon(size_t elementCount);
/** As allocArrayNoCon except that constructors for the elements of
the array are called. The constructors are called in increasing
order of index. Constructed objects are destructed in reverse
order if a constructor throws an exception. */
template<class T>
std::pair<T*, T*> allocArray(size_t elementCount);
/** As freeTop(array) except that the elements of the array in the
range (array, arrayEnd] are deconstructed in decreasing order of
index. The destructors must not throw exceptions.
array and arrayEnd must not be zero. */
template<class T>
void freeTopArray(T* array, T* arrayEnd);
/** As freeTopArray(p.first, p.second). */
template<class T>
void freeTopArray(std::pair<T*, T*> p) {freeTopArray(p.first, p.second);}
/** As freeAndAllAfter(array) except that the elements of the array
in the range (array, arrayEnd] are deconstructed in decreasing
order of index. The destructors must not throw exceptions. */
template<class T>
void freeArrayAndAllAfter(T* array, T* arrayEnd);
/** As freeTopArrayAndAllAfter(p.first, p.second). */
template<class T>
void freeArrayAndAllAfter(std::pair<T*, T*> p) {
freeArrayAndAllAfter(p.first, p.second);
}
// ***** RAII handles *****
// These would work much better with the features of C++11
// but C++11 is not yet available everywhere.
template<class T>
class PtrNoConNoDecon {
public:
PtrNoConNoDecon(Arena& arena):
mArena(arena),
mPtr(arena.allocObjectNoCon<T>()) {}
~PtrNoConNoDecon() {mArena.freeTop(mPtr);}
T* operator->() {return mPtr;}
T const* operator->() const {return mPtr;}
T* get() {return mPtr;}
T const* get() const {return mPtr;}
T& operator*() {return *mPtr;}
T const& operator*() const {return *mPtr;}
private:
PtrNoConNoDecon(const PtrNoConNoDecon&); // not available
void operator=(const PtrNoConNoDecon&); // not available
Arena& mArena;
T* const mPtr;
};
// In the destructor, frees all allocations made since the
// constructor unless the guard has been released. The most recent
// allocation at the point of the constructor must not have been
// freed at the point of the destructor -- this restriction only
// applies if the guard has not been released.
class Guard {
public:
Guard(Arena& arena): mArena(&arena), mPosition(arena.guardPoint()) {}
~Guard() {
if (mArena != 0)
mArena->restoreToGuardPoint(mPosition);
}
void release() {mArena = 0;}
private:
Arena* mArena; // guard has been released if null
void* mPosition;
};
// ***** Miscellaneous *****
/** Returns true if ptr is within the range of any memory buffer
that has been allocated from this arena and that has not yet
been deallocated. Pointers that are one-past-the-end of an
allocated buffer are not within the range, but they may be
inside a subsequent buffer and so may still yield a return
value of true. Also, the allocated range may be larger than
requested due to alignment in which case the pointer that is
one-past-the-end would be inside the range. This method is
useful for debugging and testing. */
bool fromArena(void const* ptr);
/** Returns true if there are no live allocations for this Arena. */
inline bool isEmpty() const;
/** Returns the total amount of memory allocated by this object. Includes
excess capacity that has not been allocated by a client yet. Does NOT
include memory for a DEBUG-only mechanism to catch bugs. */
size_t getMemoryUse() const {return _blocks.getMemoryUse();}
/** Returns the total amount of memory allocated by this object to
clients. Does not include excess capacity that is not currently
allocated by a client. Does not include memory for a DEBUG-only
mechanism to catch bugs. */
size_t getAllocatedMemoryUse() const {return _blocks.getMemoryUseToLeft();}
/** Returns an arena object that can be used for non-thread safe
scratch memory after static objects have been initialized. The
default contract is that each function leaves this arena with the
exact same objects allocated as before the function was entered. It
is fine for functions to collaborate for example by using the arena
to return variable size objects without calling new, though care
should be used in such cases. */
static Arena& getArena() {return _scratchArena;}
private:
Arena(const Arena&); // not available
void operator=(Arena&); // not available
typedef MemoryBlocks::Block Block;
Block& block() {return _blocks.getFrontBlock();}
const Block& block() const {return _blocks.getFrontBlock();}
/** Allocate a new block with at least needed bytes and at least
double the capacity of the current block. */
void growCapacity(size_t needed);
/** As freeTop where ptr was allocated from an old block. */
void freeTopFromOldBlock(void* ptr);
/** As freeAndAllAfter where ptr was allocated from an old block. */
void freeAndAllAfterFromOldBlock(void* ptr);
/** Obtain current state so that it can be restored later. The
guard point is invalidated if the most recent allocation at the
point this method is called is freed. */
void* guardPoint();
/** As freeAndAllAfter except that there need not be an allocation
of ptr - it is just a position that the arena had in the past. */
void restoreToGuardPoint(void* ptr);
MemoryBlocks _blocks;
#ifdef MEMT_DEBUG
std::vector<void const*> _debugAllocs;
#endif
static Arena _scratchArena;
};
inline bool Arena::isEmpty() const {
return !block().hasPreviousBlock() && block().empty();
}
inline void* Arena::alloc(size_t size) {
// It is OK to check capacity before aligning size as capacity is aligned.
// This single if checks for three different special circumstances:
// * size is 0 (size - 1 will overflow)
// * there is not enough capacity (size > capacity)
// * aligning size would cause an overflow (capacity is aligned)
const size_t capacity = block().getBytesToRight();
MEMT_ASSERT(capacity % MemoryAlignment == 0);
if (size - 1 >= capacity) {
MEMT_ASSERT(size == 0 || size > capacity);
if (size == 0) {
size = 1;
if (capacity > 0)
goto capacityOK;
}
growCapacity(size);
}
capacityOK:
MEMT_ASSERT(0 < size);
MEMT_ASSERT(size <= block().getBytesToRight());
MEMT_ASSERT(MemoryBlocks::alignNoOverflow(size) <= block().getBytesToRight());
char* ptr = block().position();
block().setPosition(ptr + MemoryBlocks::alignNoOverflow(size));
#ifdef MEMT_DEBUG
_debugAllocs.push_back(ptr);
#endif
return ptr;
}
inline void Arena::freeTop(void* ptr) {
MEMT_ASSERT(ptr != 0);
#ifdef MEMT_DEBUG
MEMT_ASSERT(!_debugAllocs.empty());
MEMT_ASSERT(_debugAllocs.back() == ptr);
_debugAllocs.pop_back();
#endif
if (!block().empty())
block().setPosition(ptr);
else
freeTopFromOldBlock(ptr);
}
inline void Arena::freeAndAllAfter(void* ptr) {
MEMT_ASSERT(ptr != 0);
#ifdef MEMT_DEBUG
while (!_debugAllocs.empty() && ptr != _debugAllocs.back())
_debugAllocs.pop_back();
MEMT_ASSERT(!_debugAllocs.empty());
MEMT_ASSERT(_debugAllocs.back() == ptr);
_debugAllocs.pop_back();
#endif
if (block().isInBlock(ptr))
block().setPosition(ptr);
else
freeAndAllAfterFromOldBlock(ptr);
}
template<class T>
std::pair<T*, T*> Arena::allocArrayNoCon(size_t elementCount) {
if (elementCount > static_cast<size_t>(-1) / sizeof(T))
throw std::bad_alloc();
const size_t size = elementCount * sizeof(T);
MEMT_ASSERT(size / sizeof(T) == elementCount);
char* buffer = static_cast<char*>(alloc(size));
T* array = reinterpret_cast<T*>(buffer);
T* arrayEnd = reinterpret_cast<T*>(buffer + size);
return std::make_pair(array, arrayEnd);
}
template<class T>
std::pair<T*, T*> Arena::allocArray(size_t elementCount) {
std::pair<T*, T*> p = allocArrayNoCon<T>(elementCount);
T* it = p.first;
try {
for (; it != p.second; ++it) {
new (it) T();
}
} catch (...) {
freeTopArray<T>(p.first, it);
throw;
}
return p;
}
template<class T>
void Arena::freeTopArray(T* array, T* arrayEnd) {
MEMT_ASSERT(array != 0);
MEMT_ASSERT(array <= arrayEnd);
while (arrayEnd != array) {
--arrayEnd;
arrayEnd->~T();
}
freeTop(array);
}
template<class T>
void Arena::freeArrayAndAllAfter(T* array, T* arrayEnd) {
MEMT_ASSERT(array != 0);
MEMT_ASSERT(array <= arrayEnd);
while (arrayEnd != array) {
--arrayEnd;
arrayEnd->~T();
}
freeAndAllAfter(array);
}
inline void* Arena::guardPoint() {
// Supporting guard points is significantly more tricky than it
// may at first seem. Do not alter guardPoint() and
// restoreToGuardPoint() unless you are certain you understand the
// code completely and have carefully considered the change.
//
// We cannot allow the guard point to be inside an empty block
// since such blocks can be deallocated and that memory could then
// potentially be somewhere inside a later-allocated block. This
// problem does not appear for a non-empty block because the guard
// point is invalidated if any of the allocations in that block
// are later freed.
if (!block().empty()) {
MEMT_ASSERT_NO_ASSUME(!_debugAllocs.empty());
MEMT_ASSERT_NO_ASSUME(block().isInBlock(_debugAllocs.back()));
MEMT_ASSERT_NO_ASSUME(_debugAllocs.back() < block().position());
return block().position(); // no problems in this case
}
if (block().hasPreviousBlock()) {
// The previous block is not empty as then it would have been
// deallocated, so it is safe to take the guard point from the
// previous block.
MEMT_ASSERT(!block().previousBlock()->empty());
MEMT_ASSERT_NO_ASSUME(!_debugAllocs.empty());
MEMT_ASSERT_NO_ASSUME
(block().previousBlock()->isInBlock(_debugAllocs.back()));
MEMT_ASSERT_NO_ASSUME
(_debugAllocs.back() < block().previousBlock()->position());
return block().previousBlock()->position();
} else {
// Here the arena is empty, so there is no non-empty block.
MEMT_ASSERT(isEmpty());
MEMT_ASSERT_NO_ASSUME(_debugAllocs.empty());
// Return null to indicate empty arena.
return 0;
}
}
inline void Arena::restoreToGuardPoint(void* ptr) {
if (ptr == static_cast<void const*>(0)) { // null indicates empty arena
freeAllAllocs();
return;
}
Block* b = &block();
while (!(b->begin() < ptr && ptr <= b->end())) {
b->setPosition(b->begin());
b = b->previousBlock();
// If you get an assert here then most likely the guard point was
// invalidated by deallocating memory that was live at the point
// the guard point was created.
MEMT_ASSERT(b != 0);
}
MEMT_ASSERT(b->begin() < ptr && ptr <= b->end());
b->setPosition(ptr);
#ifdef MEMT_DEBUG // update _debugAllocs
// there is always at least one allocation in the block of the
// guard ptr, so _debugAllocs will have a pointer in that block.
while (!_debugAllocs.empty() && !b->isInBlock(_debugAllocs.back()))
_debugAllocs.pop_back();
MEMT_ASSERT(!_debugAllocs.empty());
while (!_debugAllocs.empty() && _debugAllocs.back() >= ptr) {
MEMT_ASSERT(b->isInBlock(_debugAllocs.back()));
_debugAllocs.pop_back();
}
MEMT_ASSERT(!_debugAllocs.empty());
MEMT_ASSERT(b->isInBlock(_debugAllocs.back()));
MEMT_ASSERT(_debugAllocs.back() < ptr);
#endif
}
}
#endif
|