This file is indexed.

/usr/include/mia-2.4/mia/3d/matrix.hh is in libmia-2.4-dev 2.4.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/* -*- mia-c++  -*-
 *
 * This file is part of MIA - a toolbox for medical image analysis 
 * Copyright (c) Leipzig, Madrid 1999-2017 Gert Wollny
 *
 * MIA is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MIA; if not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef __mia_3d_matrix_hh
#define __mia_3d_matrix_hh

#include <vector>
#include <memory>

#include <mia/3d/vector.hh>
#include <mia/core/msgstream.hh>

NS_MIA_BEGIN

template <typename T>
using T3DCVector=T3DVector<std::complex<T>>; 

/**
   @ingroup basic 
   \brief a simple 3x3 matrix 
   
   This si a simple implementation of a 3x3 matrix that supports the evaluation of certain 
   properties and operations with vectors 

   \tparam T the data type of the elements of the matrix 
 */

template <typename T> 
class T3DMatrix: public T3DVector< T3DVector<T> > {


public:

	
	T3DMatrix(); 
	

	/**
	   Create a diagonal matrix 
	   \param value the value to set the diagonal elements to 
	   \returns a diagonal matrix with the gibe diagonal 
	*/
	static T3DMatrix<T> diagonal(T value); 

	/**
	   Create a diagonal matrix 
	   \param values the values to set the diagonal elements to a(0,0) = values.x, a(1,1) = values.y, ...
	   \returns a diagonal matrix with the gibe diagonal 
	*/
	static T3DMatrix<T> diagonal(const T3DVector<T>& values); 


	/**
	   Construct a matrix by copying from a differenty typed matrix 
	   \tparam I the element type of the original matrix 
	   \param o the matrix to be copied 
	 */
	template <typename I>
	T3DMatrix(const T3DMatrix<I>& o); 
	

	/**
	   Construct the matrix by giving a 3D vector of 3D vectors 
	   \remark This is needed to make transparent use of the T3DVector operators 
	   \param other  the input matrix 
	*/
	T3DMatrix(const T3DVector< T3DVector<T> >& other); 


	/**
	   Construct the matrix by giving the rows as 3D vectors 
	   \param x 1st row 
	   \param y 2st row 
	   \param z 3rd row 
	*/
	T3DMatrix(const T3DVector< T >& x, const T3DVector< T >& y, const T3DVector< T >& z ); 
	
	/**
	   inplace subtract 
	   \param other 
	   \returns 
	 */
	T3DMatrix<T>& operator -= (const T3DMatrix<T>& other);
	

	/**
	   print the matrix to an ostream 
	   \param os the output stream 
	*/
	void print( std::ostream& os) const; 


	/**
	   \returns the transposed of this matrix 
	 */
	T3DMatrix<T>  transposed()const; 


	/**
	   \returns the determinat of the matrix 
	 */
	T get_det()  const; 
	

	/**
	   \returns the rank of the matrix 
	 */
	int get_rank()const;
	
	/** calculated the eigenvalues of the matrix using the caracteristic polynome, and
	    Cardans formula 
	    \retval result stores the three eigenvalues, interprete dependend on returns
     
	    \returns 1 one real, two complex eigenvalues, real part = result->y, imaginary part = result->z
	             2 three real eigenvalues, at least two are equal
		     3 three distinct real eigenvalues
		     4 three real eigenvalues, all equal 
	*/	     

	int get_eigenvalues(T3DVector<T>& v)const; 

	/** Calculate the eigenvector to a given eigenvalues. 
	    This function doesn't work for complex valued eigenvectors 
	    \param i number of eigenvector 
	    \returns the requested eigenvector
	 */
	T3DVector<T> get_real_eigenvector(int i)const;

	/** Calculate the complex eigenvector to a given eigenvalues. 
	    \param i number of eigenvector 
	    \returns the requested eigenvector
	 */
	T3DCVector<T> get_complex_eigenvector(int i)const; 


	/// The unity matrix 
	static const T3DMatrix _1; 

	/// The zero matrix 
	static const T3DMatrix _0; 

private:
	void evaluate_ev() const; 

		
	mutable int m_ev_type; // 0 = not valid 
	mutable T3DVector<T> m_evalues;
	mutable std::vector<T3DCVector<T>> m_complex_evectors; 
	mutable std::vector<int> m_ev_order; 
}; 

template <typename T> 
template <typename I>
T3DMatrix<T>::T3DMatrix(const T3DMatrix<I>& o):
	T3DVector<T3DVector<T> >(T3DVector<T>(o.x), 
				 T3DVector<T>(o.y), 
				 T3DVector<T>(o.z)),
	m_ev_type(0)
{
}

template <typename T> 
T3DVector<T> operator * (const T3DMatrix<T>& m, const T3DVector<T>& x)
{
	return T3DVector<T>(dot(m.x, x), dot(m.y, x), dot(m.z, x)); 
}

template <typename T> 
T3DVector<T> operator * (const T3DVector<T>& x, const T3DMatrix<T>& m )
{
	return T3DVector<T>(m.x.x * x.x + m.y.x * x.y + m.z.x * x.z, 
			    m.x.y * x.x + m.y.y * x.y + m.z.y * x.z,
			    m.x.z * x.x + m.y.z * x.y + m.z.z * x.z);
}


template <typename T> 
std::ostream& operator << (std::ostream& os, const T3DMatrix<T>& m) 
{
	m.print(os); 
	return os; 
}

template <typename T> 
T3DMatrix<T>& T3DMatrix<T>::operator -= (const T3DMatrix<T>& o)
{
	m_ev_type = 0; 
	this->x -= o.x; 
	this->y -= o.y; 
	this->z -= o.z; 
	return *this; 
}

template <typename T> 
T3DMatrix<T> operator * (const T3DMatrix<T>& m, const T3DMatrix<T>& x  )
{
	return T3DMatrix<T>(T3DVector<T>(m.x.x * x.x.x + m.x.y * x.y.x + m.x.z * x.z.x, 
					 m.x.x * x.x.y + m.x.y * x.y.y + m.x.z * x.z.y, 
					 m.x.x * x.x.z + m.x.y * x.y.z + m.x.z * x.z.z), 
			    T3DVector<T>(m.y.x * x.x.x + m.y.y * x.y.x + m.y.z * x.z.x, 
					 m.y.x * x.x.y + m.y.y * x.y.y + m.y.z * x.z.y, 
					 m.y.x * x.x.z + m.y.y * x.y.z + m.y.z * x.z.z), 
			    T3DVector<T>(m.z.x * x.x.x + m.z.y * x.y.x + m.z.z * x.z.x, 
					 m.z.x * x.x.y + m.z.y * x.y.y + m.z.z * x.z.y, 
					 m.z.x * x.x.z + m.z.y * x.y.z + m.z.z * x.z.z));
}

/// a simple 3x3 matrix with single precision floating point values 
typedef T3DMatrix<float> C3DFMatrix; 

/// a simple 3x3 matrix with double precision floating point values 
typedef T3DMatrix<double> C3DDMatrix; 


template <typename T> 
const T3DMatrix<T> T3DMatrix<T>::_1(T3DVector< T >(1,0,0), 
				 T3DVector< T >(0,1,0),
				 T3DVector< T >(0,0,1));

template <typename T> 
const T3DMatrix<T> T3DMatrix<T>::_0 = T3DMatrix<T>();

extern template class EXPORT_3D T3DMatrix<float>; 
extern template class EXPORT_3D T3DMatrix<double>; 


NS_MIA_END

#endif