This file is indexed.

/usr/include/mia-2.4/mia/mesh/triangulate.hh is in libmia-2.4-dev 2.4.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/* -*- mia-c++  -*-
 *
 * This file is part of MIA - a toolbox for medical image analysis 
 * Copyright (c) Leipzig, Madrid 1999-2017 Gert Wollny
 *
 * MIA is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MIA; if not, see <http://www.gnu.org/licenses/>.
 *
 */
	
#include <mia/mesh/clist.hh>
#include <mia/core/msgstream.hh>
#include <iostream>

NS_MIA_BEGIN

/**
   \brief class to make a triangle mesh from a closed polygon

   This class is used to convert a closed polygon into a mesh defined 
   by triangles. 

   \tparam VertexVector type of the vector that contains the vertices
   \tparam Polygon The type of the Polygon   

*/
template <class VertexVector, class Polygon>
class TPolyTriangulator {
public:
	/**
	   Constructor to be initializes with a vector of vertices that used when defining the polygon 
	   \param vv the vertices
	 */
	TPolyTriangulator(const VertexVector& vv);
	
	/**
	   Evaluate the triangulation of the polygon that is defined by the vertices given above and 
	   their ordering by indices as given in poly. 
	   \param [out] output the list of triangles as list of index triples into the vertex arrey given in the 
	   constructor 
	   \param [in] poly the index array into the vertex array describing the polygon 
	   \returns true of the triangulation was successfull and false if the polygon only consisted only 
	   of two corners.
	 */
	template <class TriangleList>
	bool triangulate(TriangleList& output, const Polygon& poly) const;

private:
	typedef clist<typename Polygon::value_type> CPoly;
	typedef typename VertexVector::value_type Vector;

	Vector eval_orientation(const Polygon& poly) const;
	bool is_convex(const typename CPoly::const_iterator& i, bool debug = false) const;
	bool is_ear(const typename CPoly::const_iterator& p, const CPoly& cpoly, bool debug = false) const;

	bool is_inside(
		const typename VertexVector::value_type& a,
		const typename VertexVector::value_type& b,
		const typename VertexVector::value_type& c,
		const typename VertexVector::value_type& p,
		bool debug = false ) const;

	
	const VertexVector& m_vv;
	mutable Vector m_orientation;
};

template <class VertexVector, class Polygon>
TPolyTriangulator<VertexVector,Polygon>::TPolyTriangulator(const VertexVector& vv):
	m_vv(vv)
{
}

template <class VertexVector, class Polygon>
template <class TriangleList>
bool 
TPolyTriangulator<VertexVector,Polygon>::triangulate(TriangleList& output, const Polygon& poly) const
{
	size_t poly_size = poly.size();
	
	if ( poly_size < 3) // no triangles at all
		return false;
	
	typedef clist<typename Polygon::value_type> CPoly; 
	
	CPoly cpoly; 

	m_orientation = eval_orientation(poly);

	typename Polygon::const_iterator pi = poly.begin();
	typename Polygon::const_iterator pe = poly.end();

	while (pi != pe)
		cpoly.push_back(*pi++);

	typename CPoly::iterator  p_i = cpoly.begin();
	typename CPoly::iterator  p_e = cpoly.end();

	p_i = p_i->succ; 
	
	while ( (p_i != p_e) && (poly_size > 3)) {
		if (is_ear(p_i, cpoly, false)) {
			// we have a valid triangle, store it 
				output.push_back(typename TriangleList::value_type(**p_i->succ, **p_i, **p_i->prev));
			
			// set the current middle node 
			typename CPoly::iterator  p_r = p_i;
			p_i = (p_i->prev != cpoly.begin()) ? p_i->prev : p_i->succ; 
			
			cpoly.remove(p_r);
			--poly_size;
		}else
			p_i = p_i->succ; 
	}
	
	if ((p_i == p_e) && (poly_size > 3)) {
		cvdebug()  <<"gotcha\n";
		
		p_i = cpoly.begin();
		
		p_i = p_i->succ; 
		
		while ( (p_i != p_e) && (poly_size > 3)) {
			
			if (is_ear(p_i, cpoly, true)) {
				// we have a valid triangle, store it 
				output.push_back(typename TriangleList::value_type(**p_i->succ, **p_i, **p_i->prev));
				
				// set the current middle node 
				typename CPoly::iterator  p_r = p_i;
			p_i = (p_i->prev != cpoly.begin()) ? p_i->prev : p_i->succ; 
			
			cpoly.remove(p_r);
			--poly_size;
			}else
				p_i = p_i->succ; 
		}
	}
	
	output.push_back(typename TriangleList::value_type(**p_i->succ, **p_i, **p_i->prev));
	return true; 
	

}



template <class VertexVector, class Polygon>
typename TPolyTriangulator<VertexVector,Polygon>::Vector
TPolyTriangulator<VertexVector,Polygon>::eval_orientation(const Polygon& poly) const
{
	typename VertexVector::value_type result(0,0,0); 
	
	typename Polygon::const_iterator pb = poly.begin();
	typename Polygon::const_iterator be = poly.end();

	typename Polygon::const_iterator c1 = pb; 
	++c1; 

	typename Polygon::const_iterator c2 = c1; 
	++c2; 
	
	typename VertexVector::value_type a = m_vv[*pb];
	
	while (c1 != be && c2 != be) {
		result += (m_vv[*c1++] - a) ^ (m_vv[*c2++] - a);
	}
	return result;

}

template <class VertexVector, class Polygon>
bool TPolyTriangulator<VertexVector,Polygon>::is_convex(const typename CPoly::const_iterator& i, bool /*debug*/) const
{
	typename VertexVector::value_type a = m_vv[**i->prev];
	typename VertexVector::value_type b = m_vv[**i];
	typename VertexVector::value_type c = m_vv[**i->succ];
	
	typename VertexVector::value_type ab = a - b;
	typename VertexVector::value_type cb = c - b; 
	
	typename VertexVector::value_type cross = ab ^ cb;

	const bool result = dot(cross, m_orientation) > 0; 
	
	return result; 

}

template <class VertexVector, class Polygon>
bool TPolyTriangulator<VertexVector,Polygon>::is_ear(const typename CPoly::const_iterator& p, const CPoly& cpoly, bool debug) const
{
	if (!is_convex(p,debug)) {
		cvdebug() << "corner is concave\n"; 
		return false; 
	}
	
	typename VertexVector::value_type a = m_vv[**p->prev];
	typename VertexVector::value_type b = m_vv[**p];
	typename VertexVector::value_type c = m_vv[**p->succ];
	
	cvdebug() << "check triangle" << a << b << c << " = (" << **p->prev << "," << **p << "," << **p->succ << "\n"; 
	
	
	typename CPoly::const_iterator i = cpoly.begin();
	i = i->succ;
	while (i != cpoly.end()) {
		if (i != p && i != p->prev && i != p->succ)
			if (!is_convex(i, debug) && is_inside(a,b,c,m_vv[**i], debug)) {
				cvdebug() << "point " << **i << ":" << m_vv[**i] << " is concave and inside\n"; 
		
				return false; 
			}
		
		i = i->succ;
	}
	return true; 
}

template <class VertexVector, class Polygon>
bool TPolyTriangulator<VertexVector,Polygon>::is_inside(
	const typename VertexVector::value_type& a,
	const typename VertexVector::value_type& b,
	const typename VertexVector::value_type& c,
	const typename VertexVector::value_type& p,
	bool /*debug*/) const
{
	double abc = ((a-b)^(c-b)).norm() * 0.5;
	double abp = ((a-p)^(b-p)).norm() * 0.5;
	double acp = ((a-p)^(c-p)).norm() * 0.5;
	double bcp = ((b-p)^(c-p)).norm() * 0.5;

	const bool result = (abc >= abp + acp + bcp); 
	
	return result; 
}

NS_MIA_END