/usr/include/mia-2.4/mia/template/nonrigidregister.cxx is in libmia-2.4-dev 2.4.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | /* -*- mia-c++ -*-
*
* This file is part of MIA - a toolbox for medical image analysis
* Copyright (c) Leipzig, Madrid 1999-2017 Gert Wollny
*
* MIA is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MIA; if not, see <http://www.gnu.org/licenses/>.
*
*/
#define VSTREAM_DOMAIN "NR-REG"
#include <iomanip>
NS_MIA_BEGIN
template <int dim>
struct TNonrigidRegisterImpl {
typedef dimension_traits<dim> this_dim_traits;
typedef typename this_dim_traits::PTransformation PTransformation;
typedef typename this_dim_traits::Size Size;
typedef typename this_dim_traits::Image Image;
typedef typename this_dim_traits::PImage PImage;
typedef typename this_dim_traits::PTransformationFactory PTransformationFactory;
typedef typename this_dim_traits::FullCostList FullCostList;
typedef typename this_dim_traits::Filter Filter;
typedef typename this_dim_traits::FilterPluginHandler FilterPluginHandler;
TNonrigidRegisterImpl(FullCostList& costs, PMinimizer minimizer,
PTransformationFactory transform_creator,
size_t mg_levels, int idx);
PTransformation run(PImage src, PImage ref) const;
PTransformation run() const;
void set_refinement_minimizer(PMinimizer minimizer);
private:
FullCostList& m_costs;
PMinimizer m_minimizer;
PMinimizer m_refinement_minimizer;
PTransformationFactory m_transform_creator;
size_t m_mg_levels;
int m_idx;
};
template <int dim>
class TNonrigRegGradientProblem: public CMinimizer::Problem {
public:
typedef dimension_traits<dim> this_dim_traits;
typedef typename this_dim_traits::Transformation Transformation;
typedef typename this_dim_traits::Size Size;
typedef typename this_dim_traits::Image Image;
typedef typename this_dim_traits::PImage PImage;
typedef typename this_dim_traits::PTransformationFactory PTransformationFactory;
typedef typename this_dim_traits::FullCostList FullCostList;
typedef typename this_dim_traits::Filter Filter;
typedef typename this_dim_traits::FilterPluginHandler FilterPluginHandler;
TNonrigRegGradientProblem(const FullCostList& costs, Transformation& transf);
void reset_counters();
typedef std::shared_ptr<TNonrigRegGradientProblem<dim> > PNonrigRegGradientProblem;
private:
double do_f(const CDoubleVector& x);
void do_df(const CDoubleVector& x, CDoubleVector& g);
double do_fdf(const CDoubleVector& x, CDoubleVector& g);
double evaluate_fdf(const CDoubleVector& x, CDoubleVector& g);
bool do_has(const char *property) const;
size_t do_size() const;
const FullCostList& m_costs;
Transformation& m_transf;
size_t m_func_evals;
size_t m_grad_evals;
double m_start_cost;
};
template <int dim>
TNonrigidRegister<dim>::TNonrigidRegister(FullCostList& costs, PMinimizer minimizer,
PTransformationFactory transform_creation,
size_t mg_levels, int idx):
impl(new TNonrigidRegisterImpl<dim>( costs, minimizer, transform_creation, mg_levels, idx))
{
}
template <int dim>
TNonrigidRegister<dim>::~TNonrigidRegister()
{
delete impl;
}
template <int dim>
typename TNonrigidRegister<dim>::PTransformation
TNonrigidRegister<dim>::run(PImage src, PImage ref) const
{
return impl->run(src, ref);
}
template <int dim>
typename TNonrigidRegister<dim>::PTransformation
TNonrigidRegister<dim>::run() const
{
return impl->run();
}
template <int dim>
void TNonrigidRegister<dim>::set_refinement_minimizer(PMinimizer minimizer)
{
impl->set_refinement_minimizer(minimizer);
}
template <int dim>
TNonrigidRegisterImpl<dim>::TNonrigidRegisterImpl(FullCostList& costs, PMinimizer minimizer,
PTransformationFactory transform_creation, size_t mg_levels, int idx):
m_costs(costs),
m_minimizer(minimizer),
m_transform_creator(transform_creation),
m_mg_levels(mg_levels),
m_idx(idx)
{
}
/*
This filter could be replaced by a histogram equalizing filter
or it should be moved outside the registration function
and considered what it is, a pre-processing step
*/
template <int dim>
class FScaleFilterCreator: public TFilter<typename TNonrigidRegisterImpl<dim>::FilterPluginHandler::ProductPtr> {
typedef typename TNonrigidRegisterImpl<dim>::FilterPluginHandler FilterPluginHandler;
public:
typedef typename TFilter<typename TNonrigidRegisterImpl<dim>::FilterPluginHandler::ProductPtr>::result_type result_type;
template <typename V, typename S>
result_type operator ()(const V& a, const S& b) const {
double sum = 0.0;
double sum2 = 0.0;
int n = 2 * a.size();
auto ia = a.begin();
for(auto ib = b.begin(); ia != a.end(); ++ia, ++ib) {
double fa = *ia;
double fb = *ib;
sum += fa + fb;
sum2 += fa * fa + fb * fb;
}
double mean = sum / n;
double sigma = sqrt((sum2 - sum * sum / n) / (n - 1));
// both images are of the same single color
if (sigma == 0.0)
return result_type();
// I want a conversion filter, that makes the images together zero mean
// and diversion 1
std::stringstream filter_descr;
filter_descr << "convert:repn=float,map=linear,b=" << -mean/sigma << ",a=" << 1.0/sigma;
cvinfo() << "Will convert using the filter:" << filter_descr.str() << "\n";
return FilterPluginHandler::instance().produce(filter_descr.str());
};
};
template <int dim>
void TNonrigidRegisterImpl<dim>::set_refinement_minimizer(PMinimizer minimizer)
{
m_refinement_minimizer = minimizer;
}
template <int dim>
typename TNonrigidRegisterImpl<dim>::PTransformation
TNonrigidRegisterImpl<dim>::run(PImage src, PImage ref) const
{
assert(src);
assert(ref);
assert(src->get_size() == ref->get_size());
PTransformation transform;
// convert the images to float ans scale to a mean=0, sigma=1 intensity distribution
// this should be replaced by some kind of general pre-filter plug-in
FScaleFilterCreator<dim> fc;
auto tofloat_converter = ::mia::filter(fc, *src, *ref);
if (tofloat_converter) {
src = tofloat_converter->filter(*src);
ref = tofloat_converter->filter(*ref);
}
else // both images have only one value, and are, therefore, already registered
return m_transform_creator->create(src->get_size());
int shift = m_mg_levels;
std::string src_name("src.@");
std::string ref_name("ref.@");
if (m_idx >= 0) {
std::stringstream src_ss;
std::stringstream ref_ss;
src_ss << "src" << m_idx << ".@";
ref_ss << "ref" << m_idx << ".@";
src_name = src_ss.str();
ref_name = ref_ss.str();
}
save_image(src_name, src);
save_image(ref_name, ref);
m_costs.reinit();
Size global_size;
if (!m_costs.get_full_size(global_size))
throw std::invalid_argument("Nonrigidregister: the given combination of cost functions doesn't"
"agree on the size of the registration problem");
do {
shift--;
int scale_factor = 1 << shift;
Size local_size = global_size / scale_factor;
cvinfo() << "scale_factor = " << scale_factor << " from shift " << shift
<< ", global size = " << global_size << "\n";
if (transform) {
cvinfo() << "Upscale transform to " << local_size << " \n";
transform = transform->upscale(local_size);
cvinfo() << "done\n";
}else{
cvinfo() << "Create transform with size " << local_size << "\n";
transform = m_transform_creator->create(local_size);
cvinfo() << "done\n";
}
m_costs.set_size(local_size);
std::shared_ptr<TNonrigRegGradientProblem<dim> >
gp(new TNonrigRegGradientProblem<dim>( m_costs, *transform));
m_minimizer->set_problem(gp);
auto x = transform->get_parameters();
cvmsg() << "Registration at " << local_size << " with " << x.size() << " parameters\n";
m_minimizer->run(x);
if (m_refinement_minimizer) {
m_refinement_minimizer->set_problem(gp);
m_refinement_minimizer->run(x);
}
cvmsg() << "\ndone\n";
transform->set_parameters(x);
// run the registration at refined splines
if (transform->refine()) {
gp->reset_counters();
m_minimizer->set_problem(gp);
x = transform->get_parameters();
cvmsg() << "Registration at " << local_size << " with " << x.size() << " parameters\n";
m_minimizer->run(x);
if (m_refinement_minimizer) {
m_refinement_minimizer->set_problem(gp);
m_refinement_minimizer->run(x);
}
cvmsg() << "\ndone\n";
transform->set_parameters(x);
}
} while (shift);
return transform;
}
template <int dim>
typename TNonrigidRegisterImpl<dim>::PTransformation
TNonrigidRegisterImpl<dim>::run() const
{
PTransformation transform;
m_costs.reinit();
Size global_size;
if (!m_costs.get_full_size(global_size))
throw std::invalid_argument("Nonrigidregister: the given combination of cost functions doesn't"
"agree on the size of the registration problem");
int shift = m_mg_levels;
do {
// this should be replaced by a per-dimension scale that honours a minimum size of the
// downscaled images - this is especially important in 3D
shift--;
int scale_factor = 1 << shift;
Size local_size = global_size / scale_factor;
if (transform) {
cvinfo() << "Upscale transform\n";
transform = transform->upscale(local_size);
cvinfo() << "done\n";
}else{
cvinfo() << "Create transform\n";
transform = m_transform_creator->create(local_size);
cvinfo() << "done\n";
}
m_costs.set_size(local_size);
std::shared_ptr<TNonrigRegGradientProblem<dim> >
gp(new TNonrigRegGradientProblem<dim>( m_costs, *transform));
m_minimizer->set_problem(gp);
auto x = transform->get_parameters();
cvmsg() << "Registration at " << local_size << " with " << x.size() << " parameters\n";
m_minimizer->run(x);
cvmsg() << "\ndone\n";
transform->set_parameters(x);
// run the registration at refined splines
if (transform->refine()) {
m_minimizer->set_problem(gp);
x = transform->get_parameters();
cvmsg() << "Registration at " << local_size << " with " << x.size() << " parameters\n";
m_minimizer->run(x);
cvmsg() << "\ndone\n";
transform->set_parameters(x);
}
} while (shift);
return transform;
}
template <int dim>
TNonrigRegGradientProblem<dim>::TNonrigRegGradientProblem(const FullCostList& costs, Transformation& transf):
m_costs(costs),
m_transf(transf),
m_func_evals(0),
m_grad_evals(0),
m_start_cost(0.0)
{
}
template <int dim>
void TNonrigRegGradientProblem<dim>::reset_counters()
{
m_func_evals = m_grad_evals = 0;
}
template <int dim>
double TNonrigRegGradientProblem<dim>::do_f(const CDoubleVector& x)
{
m_transf.set_parameters(x);
double result = m_costs.cost_value(m_transf);
if (m_transf.has_energy_penalty())
result += m_transf.get_energy_penalty();
if (!m_func_evals && !m_grad_evals)
m_start_cost = result;
m_func_evals++;
cvmsg() << "Cost[fg=" << std::setw(4) << m_grad_evals
<< ",fe=" << std::setw(4) << m_func_evals<<"]="
<< std::setw(20) << std::setprecision(12) << result
<< "ratio:" << std::setw(20) << std::setprecision(12)
<< result / m_start_cost << "\n";
return result;
}
template <int dim>
void TNonrigRegGradientProblem<dim>::do_df(const CDoubleVector& x, CDoubleVector& g)
{
this->evaluate_fdf(x,g);
m_grad_evals++;
}
template <int dim>
double TNonrigRegGradientProblem<dim>::do_fdf(const CDoubleVector& x, CDoubleVector& g)
{
const double result = this->evaluate_fdf(x,g);
m_grad_evals++;
m_func_evals++;
return result;
}
template <int dim>
double TNonrigRegGradientProblem<dim>::evaluate_fdf(const CDoubleVector& x, CDoubleVector& g)
{
m_transf.set_parameters(x);
std::fill(g.begin(), g.end(), 0.0);
double result = m_costs.evaluate(m_transf, g);
if (m_transf.has_energy_penalty()) {
CDoubleVector help(g.size());
const double penalty = m_transf.get_energy_penalty_and_gradient(help);
result += penalty;
std::transform(help.begin(), help.end(), g.begin(), g.begin(),
[](double x, double y){return x+y;});
cvinfo() << "Penalty=" << std::setw(20) << std::setprecision(12) << penalty << "\n";
}
if (!m_func_evals && !m_grad_evals)
m_start_cost = result;
cvmsg() << "Cost[fg="<<std::setw(4)<<m_grad_evals
<< ",fe="<<std::setw(4)<<m_func_evals<<"]= with "
<< std::setw(20) << std::setprecision(12) << result
<< " ratio:" << std::setw(20) << std::setprecision(12) << result / m_start_cost << "\n";
return result;
}
template <int dim>
bool TNonrigRegGradientProblem<dim>::do_has(const char *property) const
{
return m_costs.has(property);
}
template <int dim>
size_t TNonrigRegGradientProblem<dim>::do_size() const
{
return m_transf.degrees_of_freedom();
}
NS_MIA_END
|