This file is indexed.

/usr/include/mia-2.4/mia/template/watershed.hh is in libmia-2.4-dev 2.4.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/* -*- mia-c++  -*-
 *
 * This file is part of MIA - a toolbox for medical image analysis 
 * Copyright (c) Leipzig, Madrid 1999-2017 Gert Wollny
 *
 * MIA is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MIA; if not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef mia_internal_watershed_hh
#define mia_internal_watershed_hh

#include <mia/core/filter.hh>
#include <queue>

NS_MIA_BEGIN 

/**
   @ingroup filtering 
   @brief templated version of the standard watershed algorithm 
   @tparam dim Dimension for the input images 
*/
template <int dim>
class TWatershed : public watershed_traits<dim>::Handler::Product {
public:
	typedef typename watershed_traits<dim>::PNeighbourhood  PNeighbourhood; 
	typedef typename PNeighbourhood::element_type::value_type MPosition; 
	typedef typename watershed_traits<dim>::Handler Handler; 
	typedef typename Handler::Product CFilter; 
	typedef typename CFilter::Pointer PFilter; 
	typedef typename CFilter::Image CImage; 
	typedef typename CImage::Pointer PImage; 
	typedef typename CImage::dimsize_type Position; 


	TWatershed(PNeighbourhood neighborhood, bool with_borders, float treash, bool eval_grad);

	template <template <typename>  class Image, typename T>
	typename TWatershed<dim>::result_type operator () (const Image<T>& data) const ;
private:
	struct PixelWithLocation {
		Position pos; 
		float value; 
	}; 

	typename TWatershed<dim>::result_type do_filter(const CImage& image) const;

	template <template <typename>  class Image, typename T>
	bool grow(const PixelWithLocation& p, Image<unsigned int>& labels, const Image<T>& data) const;

	friend bool operator < (const PixelWithLocation& lhs, const PixelWithLocation& rhs) {
		mia::less_then<Position> l; 
		return lhs.value > rhs.value|| 
			( lhs.value ==  rhs.value && l(rhs.pos, lhs.pos)); 
	}

	std::vector<MPosition> m_neighborhood; 
	PFilter m_togradnorm; 
	bool m_with_borders; 
	float m_thresh;
};


/**
   @ingroup filtering 
   @brief plugin for the templated version of the standard watershed algorithm 
   @tparam dim Dimension for the input images 
*/
template <int dim>
class TWatershedFilterPlugin: public watershed_traits<dim>::Handler::Interface {
public:
	TWatershedFilterPlugin();
private:
	virtual typename watershed_traits<dim>::Handler::Product *do_create()const;
	virtual const std::string do_get_descr()const;
	typename watershed_traits<dim>::PNeighbourhood m_neighborhood; 
	bool m_with_borders; 
	float m_thresh; 
	bool m_eval_grad; 
};


template <int dim>
TWatershed<dim>::TWatershed(PNeighbourhood neighborhood, bool with_borders, float thresh, bool eval_grad):
	m_with_borders(with_borders), 
	m_thresh(thresh)
	
{
	m_neighborhood.reserve(neighborhood->size() - 1);
	for (auto i = neighborhood->begin(); i != neighborhood->end();++i) 
		if ( *i != MPosition::_0 ) 
			m_neighborhood.push_back(*i); 

	if (eval_grad) 
		m_togradnorm = Handler::instance().produce("gradnorm"); 
}

static const unsigned int boundary_label = std::numeric_limits<unsigned int>::max(); 

template <int dim>
template <template <typename>  class Image, typename T>
bool TWatershed<dim>::grow(const PixelWithLocation& p, Image<unsigned int>& labels, const Image<T>& data) const 
{
	const auto size = data.get_size(); 
	std::vector<Position> backtrack; 
	std::priority_queue<Position, std::vector<Position>, mia::less_then<Position> > locations; 
	bool has_backtracked = false; 

	backtrack.push_back(p.pos); 
	
	std::vector<Position> new_positions; 
	new_positions.reserve(m_neighborhood.size()); 
	
	float value = p.value; 
	unsigned int label = labels(p.pos); 

	for (auto i = m_neighborhood.begin(); i != m_neighborhood.end(); ++i) {
		Position new_pos( p.pos + *i);
		if (new_pos < size && !labels(new_pos) && data(new_pos) <= value) {
			locations.push(new_pos); 
			backtrack.push_back(new_pos); 
		}
	}

	while (!locations.empty()) {
		// incoming locations are always un-labelled, and the gradient value is equal or below the target value
		auto loc = locations.top(); 
		locations.pop(); 
		
		new_positions.clear(); 

		unsigned int first_label = 0; 
		bool loc_is_boundary = false; 

		for (auto i = m_neighborhood.begin(); i != m_neighborhood.end() && !loc_is_boundary; ++i) {
			Position new_pos( loc + *i);
			
			if (! (new_pos < size) )
				continue; 
			
			cverb << data(new_pos); 

			if (data(new_pos) > value)
				continue; 
			
			unsigned int new_pos_label = labels(new_pos);
			if (!new_pos_label) {
				new_positions.push_back(new_pos); 
				continue; 
			}
			
			// already visited? 
			if (new_pos_label == label || new_pos_label == boundary_label)
				continue; 
			
			// first label hit 
			if (!first_label) { 
				first_label = new_pos_label; 
			}else if (first_label != new_pos_label) {
				// hit two different labels (apart from the original one) 
				loc_is_boundary = true; 
			}
		}
		if (first_label) {
			if (!loc_is_boundary) {
				labels(loc) = first_label; 
				backtrack.push_back(loc); 
				if (first_label != label) {

					// we hit a single label from a lower gradient value, this means 
					// we are connected to an already labeled basin -> 
					//   first time = backtrack 
					//   later = boundary 
					if (!has_backtracked) {
						for_each(backtrack.begin(), backtrack.end(), 
							 [&first_label, &labels](const Position& p){labels(p) = first_label;}); 
						label = first_label; 
						has_backtracked = true; 
					}else 
						labels(loc) = m_with_borders ? boundary_label : label; 
				}
			}else 
				labels(loc) = m_with_borders ? boundary_label : label;
		} else { 
			labels(loc) = label;
			backtrack.push_back(loc); 
		}
		
		if (labels(loc) != boundary_label) {
			for_each(new_positions.begin(), new_positions.end(), 
				 [&locations](const Position& p){locations.push(p);}); 
		}

		// is there a queue that doesn't repeat values? 
		while (!locations.empty() && locations.top() == loc)
			locations.pop(); 
		
	}
	return has_backtracked; 
}

template <int dim>
template <template <typename>  class Image, typename T>
typename TWatershed<dim>::result_type TWatershed<dim>::operator () (const Image<T>& data) const 
{
	auto sizeND =  data.get_size(); 
	Image<unsigned int> labels(data.get_size()); 

	// evaluate the real thresh hold based on the actual gradient range 
	auto gradient_range = std::minmax_element(data.begin(), data.end()); 
	float thresh = m_thresh * (*gradient_range.second - *gradient_range.first) + *gradient_range.first; 
	
	std::priority_queue<PixelWithLocation> pixels;
	PixelWithLocation p; 
	auto i = data.begin_range(Position::_0, data.get_size());
	auto e = data.end_range(Position::_0, data.get_size());
	auto l = labels.begin(); 
	long next_label = 1; 	
	while (i != e) {
		p.pos = i.pos(); 
		p.value = *i > thresh ? *i : thresh; 
		if (p.value <= thresh) {
			if (!*l) {
				*l = next_label;
				if (!grow(p, labels, data)) 
					++next_label; 
			}
		}else
			pixels.push(p); 
		++i; 
		++l; 
	}

	while (!pixels.empty()) {
		auto pixel = pixels.top(); 
		pixels.pop(); 
		// this label was set because we grew an initial region
		if (labels(pixel.pos)) {
			continue; 
		}

		unsigned int first_label = 0; 
		bool is_boundary = false; 
		// check if neighborhood is already labeled
		
		for (auto i = m_neighborhood.begin(); i != m_neighborhood.end() && !is_boundary; ++i) {
			Position new_pos( pixel.pos + *i);
			if (new_pos < sizeND) {
				auto l = labels(new_pos); 
				if ( l  && l != boundary_label) {
					if (!first_label)
						first_label = l; 
					else 
						if (first_label != l) 
							is_boundary = m_with_borders; 
				}
			}
		}
		if (first_label) {
			if (!is_boundary) 
				labels(pixel.pos) = first_label; 
			else 
				labels(pixel.pos) = boundary_label; 
			cvdebug() << " set " << pixel.pos << " with " << data(pixel.pos) << " to "<< labels(pixel.pos) <<"\n"; 
			continue; 
		}
		// new label to assign
		// if a new label is assigned, we have to grow the region of equal gradient values 
		// to assure we catch the whole bassin 
		labels(pixel.pos) = next_label; 
		if (!grow(pixel, labels, data)) 
			++next_label; 
	}
	// convert to smalles possible intensity range and convert the boundary label to highest 
	// intensity value
	CImage *r = NULL; 
	cvmsg() << "Got " << next_label << " distinct bassins\n"; 
	if (next_label < 255) {
		Image<unsigned char> *result = new Image<unsigned char>(data.get_size(), data); 
		std::transform(labels.begin(), labels.end(), result->begin(), 
			       [](unsigned int p)-> unsigned char { return (p != boundary_label) ? static_cast<unsigned char>(p) : 255; }); 
		r = result; 
	}else if (next_label < std::numeric_limits<unsigned short>::max()) {
		Image<unsigned short> *result = new Image<unsigned short>(data.get_size(), data); 
		std::transform(labels.begin(), labels.end(), result->begin(), 
			       [](unsigned int p)-> unsigned short { return (p != boundary_label) ? static_cast<unsigned short>(p) : 
					       std::numeric_limits<unsigned short>::max(); });
		r = result; 
	}else {
		Image<unsigned int> * result = new Image<unsigned int>(data.get_size(), data); 
		copy(labels.begin(), labels.end(), result->begin());
		r = result; 
	}
	return PImage(r); 
	
}

template <int dim>
typename TWatershed<dim>::result_type TWatershed<dim>::do_filter(const CImage& image) const
{
	return m_togradnorm ?  mia::filter(*this, *m_togradnorm->filter(image)):
		mia::filter(*this, image); 
}

template <int dim>
TWatershedFilterPlugin<dim>::TWatershedFilterPlugin(): 
	watershed_traits<dim>::Handler::Interface("ws"), 
	m_with_borders(false), 
	m_thresh(0.0), 
	m_eval_grad(false)
{
	this->add_parameter("n", make_param(m_neighborhood, "sphere:r=1", false, "Neighborhood for watershead region growing")); 
	this->add_parameter("mark", new mia::CBoolParameter(m_with_borders, false, "Mark the segmented watersheds with a special gray scale value")); 
	this->add_parameter("thresh", make_coi_param(m_thresh, 0, 1.0, false, "Relative gradient norm threshold. The actual value "
						     "threshold value is thresh * (max_grad - min_grad) + min_grad. Bassins "
						     "separated by gradients with a lower norm will be joined"));  
	this->add_parameter("evalgrad", new mia::CBoolParameter(m_eval_grad, false, "Set to 1 if the input image does "
								"not represent a gradient norm image")); 
}

template <int dim>
typename watershed_traits<dim>::Handler::Product *
TWatershedFilterPlugin<dim>::do_create() const
{
	return new TWatershed<dim>(m_neighborhood, m_with_borders, m_thresh, m_eval_grad);
}

template <int dim>
const std::string TWatershedFilterPlugin<dim>::do_get_descr()const
{
	return "basic watershead segmentation.";
}

NS_MIA_END

#endif