/usr/include/mia-2.4/mia/template/watershed.hh is in libmia-2.4-dev 2.4.6-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | /* -*- mia-c++ -*-
*
* This file is part of MIA - a toolbox for medical image analysis
* Copyright (c) Leipzig, Madrid 1999-2017 Gert Wollny
*
* MIA is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MIA; if not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef mia_internal_watershed_hh
#define mia_internal_watershed_hh
#include <mia/core/filter.hh>
#include <queue>
NS_MIA_BEGIN
/**
@ingroup filtering
@brief templated version of the standard watershed algorithm
@tparam dim Dimension for the input images
*/
template <int dim>
class TWatershed : public watershed_traits<dim>::Handler::Product {
public:
typedef typename watershed_traits<dim>::PNeighbourhood PNeighbourhood;
typedef typename PNeighbourhood::element_type::value_type MPosition;
typedef typename watershed_traits<dim>::Handler Handler;
typedef typename Handler::Product CFilter;
typedef typename CFilter::Pointer PFilter;
typedef typename CFilter::Image CImage;
typedef typename CImage::Pointer PImage;
typedef typename CImage::dimsize_type Position;
TWatershed(PNeighbourhood neighborhood, bool with_borders, float treash, bool eval_grad);
template <template <typename> class Image, typename T>
typename TWatershed<dim>::result_type operator () (const Image<T>& data) const ;
private:
struct PixelWithLocation {
Position pos;
float value;
};
typename TWatershed<dim>::result_type do_filter(const CImage& image) const;
template <template <typename> class Image, typename T>
bool grow(const PixelWithLocation& p, Image<unsigned int>& labels, const Image<T>& data) const;
friend bool operator < (const PixelWithLocation& lhs, const PixelWithLocation& rhs) {
mia::less_then<Position> l;
return lhs.value > rhs.value||
( lhs.value == rhs.value && l(rhs.pos, lhs.pos));
}
std::vector<MPosition> m_neighborhood;
PFilter m_togradnorm;
bool m_with_borders;
float m_thresh;
};
/**
@ingroup filtering
@brief plugin for the templated version of the standard watershed algorithm
@tparam dim Dimension for the input images
*/
template <int dim>
class TWatershedFilterPlugin: public watershed_traits<dim>::Handler::Interface {
public:
TWatershedFilterPlugin();
private:
virtual typename watershed_traits<dim>::Handler::Product *do_create()const;
virtual const std::string do_get_descr()const;
typename watershed_traits<dim>::PNeighbourhood m_neighborhood;
bool m_with_borders;
float m_thresh;
bool m_eval_grad;
};
template <int dim>
TWatershed<dim>::TWatershed(PNeighbourhood neighborhood, bool with_borders, float thresh, bool eval_grad):
m_with_borders(with_borders),
m_thresh(thresh)
{
m_neighborhood.reserve(neighborhood->size() - 1);
for (auto i = neighborhood->begin(); i != neighborhood->end();++i)
if ( *i != MPosition::_0 )
m_neighborhood.push_back(*i);
if (eval_grad)
m_togradnorm = Handler::instance().produce("gradnorm");
}
static const unsigned int boundary_label = std::numeric_limits<unsigned int>::max();
template <int dim>
template <template <typename> class Image, typename T>
bool TWatershed<dim>::grow(const PixelWithLocation& p, Image<unsigned int>& labels, const Image<T>& data) const
{
const auto size = data.get_size();
std::vector<Position> backtrack;
std::priority_queue<Position, std::vector<Position>, mia::less_then<Position> > locations;
bool has_backtracked = false;
backtrack.push_back(p.pos);
std::vector<Position> new_positions;
new_positions.reserve(m_neighborhood.size());
float value = p.value;
unsigned int label = labels(p.pos);
for (auto i = m_neighborhood.begin(); i != m_neighborhood.end(); ++i) {
Position new_pos( p.pos + *i);
if (new_pos < size && !labels(new_pos) && data(new_pos) <= value) {
locations.push(new_pos);
backtrack.push_back(new_pos);
}
}
while (!locations.empty()) {
// incoming locations are always un-labelled, and the gradient value is equal or below the target value
auto loc = locations.top();
locations.pop();
new_positions.clear();
unsigned int first_label = 0;
bool loc_is_boundary = false;
for (auto i = m_neighborhood.begin(); i != m_neighborhood.end() && !loc_is_boundary; ++i) {
Position new_pos( loc + *i);
if (! (new_pos < size) )
continue;
cverb << data(new_pos);
if (data(new_pos) > value)
continue;
unsigned int new_pos_label = labels(new_pos);
if (!new_pos_label) {
new_positions.push_back(new_pos);
continue;
}
// already visited?
if (new_pos_label == label || new_pos_label == boundary_label)
continue;
// first label hit
if (!first_label) {
first_label = new_pos_label;
}else if (first_label != new_pos_label) {
// hit two different labels (apart from the original one)
loc_is_boundary = true;
}
}
if (first_label) {
if (!loc_is_boundary) {
labels(loc) = first_label;
backtrack.push_back(loc);
if (first_label != label) {
// we hit a single label from a lower gradient value, this means
// we are connected to an already labeled basin ->
// first time = backtrack
// later = boundary
if (!has_backtracked) {
for_each(backtrack.begin(), backtrack.end(),
[&first_label, &labels](const Position& p){labels(p) = first_label;});
label = first_label;
has_backtracked = true;
}else
labels(loc) = m_with_borders ? boundary_label : label;
}
}else
labels(loc) = m_with_borders ? boundary_label : label;
} else {
labels(loc) = label;
backtrack.push_back(loc);
}
if (labels(loc) != boundary_label) {
for_each(new_positions.begin(), new_positions.end(),
[&locations](const Position& p){locations.push(p);});
}
// is there a queue that doesn't repeat values?
while (!locations.empty() && locations.top() == loc)
locations.pop();
}
return has_backtracked;
}
template <int dim>
template <template <typename> class Image, typename T>
typename TWatershed<dim>::result_type TWatershed<dim>::operator () (const Image<T>& data) const
{
auto sizeND = data.get_size();
Image<unsigned int> labels(data.get_size());
// evaluate the real thresh hold based on the actual gradient range
auto gradient_range = std::minmax_element(data.begin(), data.end());
float thresh = m_thresh * (*gradient_range.second - *gradient_range.first) + *gradient_range.first;
std::priority_queue<PixelWithLocation> pixels;
PixelWithLocation p;
auto i = data.begin_range(Position::_0, data.get_size());
auto e = data.end_range(Position::_0, data.get_size());
auto l = labels.begin();
long next_label = 1;
while (i != e) {
p.pos = i.pos();
p.value = *i > thresh ? *i : thresh;
if (p.value <= thresh) {
if (!*l) {
*l = next_label;
if (!grow(p, labels, data))
++next_label;
}
}else
pixels.push(p);
++i;
++l;
}
while (!pixels.empty()) {
auto pixel = pixels.top();
pixels.pop();
// this label was set because we grew an initial region
if (labels(pixel.pos)) {
continue;
}
unsigned int first_label = 0;
bool is_boundary = false;
// check if neighborhood is already labeled
for (auto i = m_neighborhood.begin(); i != m_neighborhood.end() && !is_boundary; ++i) {
Position new_pos( pixel.pos + *i);
if (new_pos < sizeND) {
auto l = labels(new_pos);
if ( l && l != boundary_label) {
if (!first_label)
first_label = l;
else
if (first_label != l)
is_boundary = m_with_borders;
}
}
}
if (first_label) {
if (!is_boundary)
labels(pixel.pos) = first_label;
else
labels(pixel.pos) = boundary_label;
cvdebug() << " set " << pixel.pos << " with " << data(pixel.pos) << " to "<< labels(pixel.pos) <<"\n";
continue;
}
// new label to assign
// if a new label is assigned, we have to grow the region of equal gradient values
// to assure we catch the whole bassin
labels(pixel.pos) = next_label;
if (!grow(pixel, labels, data))
++next_label;
}
// convert to smalles possible intensity range and convert the boundary label to highest
// intensity value
CImage *r = NULL;
cvmsg() << "Got " << next_label << " distinct bassins\n";
if (next_label < 255) {
Image<unsigned char> *result = new Image<unsigned char>(data.get_size(), data);
std::transform(labels.begin(), labels.end(), result->begin(),
[](unsigned int p)-> unsigned char { return (p != boundary_label) ? static_cast<unsigned char>(p) : 255; });
r = result;
}else if (next_label < std::numeric_limits<unsigned short>::max()) {
Image<unsigned short> *result = new Image<unsigned short>(data.get_size(), data);
std::transform(labels.begin(), labels.end(), result->begin(),
[](unsigned int p)-> unsigned short { return (p != boundary_label) ? static_cast<unsigned short>(p) :
std::numeric_limits<unsigned short>::max(); });
r = result;
}else {
Image<unsigned int> * result = new Image<unsigned int>(data.get_size(), data);
copy(labels.begin(), labels.end(), result->begin());
r = result;
}
return PImage(r);
}
template <int dim>
typename TWatershed<dim>::result_type TWatershed<dim>::do_filter(const CImage& image) const
{
return m_togradnorm ? mia::filter(*this, *m_togradnorm->filter(image)):
mia::filter(*this, image);
}
template <int dim>
TWatershedFilterPlugin<dim>::TWatershedFilterPlugin():
watershed_traits<dim>::Handler::Interface("ws"),
m_with_borders(false),
m_thresh(0.0),
m_eval_grad(false)
{
this->add_parameter("n", make_param(m_neighborhood, "sphere:r=1", false, "Neighborhood for watershead region growing"));
this->add_parameter("mark", new mia::CBoolParameter(m_with_borders, false, "Mark the segmented watersheds with a special gray scale value"));
this->add_parameter("thresh", make_coi_param(m_thresh, 0, 1.0, false, "Relative gradient norm threshold. The actual value "
"threshold value is thresh * (max_grad - min_grad) + min_grad. Bassins "
"separated by gradients with a lower norm will be joined"));
this->add_parameter("evalgrad", new mia::CBoolParameter(m_eval_grad, false, "Set to 1 if the input image does "
"not represent a gradient norm image"));
}
template <int dim>
typename watershed_traits<dim>::Handler::Product *
TWatershedFilterPlugin<dim>::do_create() const
{
return new TWatershed<dim>(m_neighborhood, m_with_borders, m_thresh, m_eval_grad);
}
template <int dim>
const std::string TWatershedFilterPlugin<dim>::do_get_descr()const
{
return "basic watershead segmentation.";
}
NS_MIA_END
#endif
|