This file is indexed.

/usr/include/ncVar.h is in libnetcdf-c++4-dev 4.3.0+ds-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
#include <exception>
#include <string>
#include <typeinfo>
#include <map>
#include <vector>
#include "netcdf.h"
#include "ncVarAtt.h"
#include "ncGroup.h"
#include "ncByte.h"
#include "ncUbyte.h"
#include "ncChar.h"
#include "ncShort.h"
#include "ncUshort.h"
#include "ncInt.h"
#include "ncUint.h"
#include "ncInt64.h"
#include "ncUint64.h"
#include "ncFloat.h"
#include "ncDouble.h"
#include "ncString.h"

#ifndef NcVarClass
#define NcVarClass

namespace netCDF
{
  //  class NcGroup;  // forward declaration.
  class NcDim;    // forward declaration.
  //  class NcVarAtt; // forward declaration.
  class NcType;   // forward declaration.

  /*! Class represents a netCDF variable. */
  class NcVar
  {
  public:

    /*! Used for chunking specifications (see NcVar::setChunking,  NcVar::getChunkingParameters). */
    enum ChunkMode
      {
	/*!
	  Chunked storage is used for this variable.
	*/
        nc_CHUNKED    = NC_CHUNKED,
        /*! Contiguous storage is used for this variable. Variables with one or more unlimited
          dimensions cannot use contiguous storage. If contiguous storage is turned on, the
          chunkSizes parameter is ignored.
        */
        nc_CONTIGUOUS = NC_CONTIGUOUS
      };

    /*!
      Used to specifying the endianess of the data, (see NcVar::setEndianness, NcVar::getEndianness). By default this is NC_ENDIAN_NATIVE.
    */
    enum EndianMode
      {
	nc_ENDIAN_NATIVE = NC_ENDIAN_NATIVE, //!< Native endian.
	nc_ENDIAN_LITTLE = NC_ENDIAN_LITTLE, //!< Little endian.
	nc_ENDIAN_BIG    = NC_ENDIAN_BIG     //!< Big endian.
      };

    /*! Used for checksum specification (see NcVar::setChecksum, NcVar::getChecksum). */
    enum ChecksumMode
    {
      nc_NOCHECKSUM = NC_NOCHECKSUM, //!< No checksum (the default).
      nc_FLETCHER32 = NC_FLETCHER32  //!< Selects the Fletcher32 checksum filter.
      };

    /*! destructor */
    ~NcVar(){};

    /*! Constructor generates a \ref isNull "null object". */
    NcVar ();

    /*! Constructor for a variable .

      The variable must already exist in the netCDF file. New netCDF variables can be added using NcGroup::addNcVar();
      \param grp    Parent NcGroup object.
      \param varId  Id of the is NcVar object.
    */
    NcVar (const NcGroup& grp, const int& varId);

    /*! assignment operator  */
    NcVar& operator =(const NcVar& rhs);

    /*! equivalence operator */
    bool operator==(const NcVar& rhs) const;

    /*!  != operator */
    bool operator!=(const NcVar& rhs) const;

    /*! The copy constructor. */
    NcVar(const NcVar& ncVar);

    /*! Name of this NcVar object.*/
    std::string getName() const;

    /*! Gets parent group. */
    NcGroup  getParentGroup() const;

    /*! Returns the variable type. */
    NcType getType() const;


    /*! Rename the variable. */
    void rename( const std::string& newname ) const;


    /*! Get the variable id. */
    int  getId() const;

    /*! Returns true if this object variable is not defined. */
    bool isNull() const  {return nullObject;}

    /*! comparator operator  */
    friend bool operator<(const NcVar& lhs,const NcVar& rhs);

    /*! comparator operator  */
    friend bool operator>(const NcVar& lhs,const NcVar& rhs);

    /////////////////

    // Information about Dimensions

    /////////////////

    /*! The the number of dimensions. */
    int getDimCount() const ;

    /*! Gets the i'th NcDim object. */
    NcDim getDim(int i) const;

    /*! Gets the set of NcDim objects. */
    std::vector<NcDim> getDims() const;

    /////////////////

    // Information about Attributes

    /////////////////

    /*! Gets the number of attributes. */
    int getAttCount() const;

    /*! Gets attribute by name */
    NcVarAtt getAtt(const std::string& name) const;

    /*! Gets the set of attributes. */
    std::map<std::string,NcVarAtt> getAtts() const;




    /////////////////////////


    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, size_t len, const char** dataValues) const ;

    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const std::string& dataValues) const ;

    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned char* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const signed char* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, short datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, int datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, long datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, float datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, double datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned short datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned int datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, unsigned long long datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, long long datumValue) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const short* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const int* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const long* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const float* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const double* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned short* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned int* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const unsigned long long* dataValues) const ;
    /*! \overload
     */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const long long* dataValues) const ;
    /*!
      Creates a new variable attribute or if already exisiting replaces it.
      If you are writing a _Fill_Value_ attribute, and will tell the HDF5 layer to use
      the specified fill value for that variable.
      \par
      Although it's possible to create attributes of all types, text and double attributes are adequate for most purposes.
      \param name        Name of attribute.
      \param type        The attribute type.
      \param len         The length of the attribute (number of Nctype repeats).
      \param dataValues  Data Values to put into the new attribute.
      If the type of data values differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
      \return            The NcVarAtt object for this new netCDF attribute.
    */
    NcVarAtt putAtt(const std::string& name, const NcType& type, size_t len, const void* dataValues) const ;



    ////////////////////

    // Chunking details

    ////////////////////

    /*! Sets chunking parameters.
      \param chunkMode   Enumeration type. Allowable parameters are: "nc_CONTIGUOUS", "nc_CHUNKED"
      \param chunksizes  Shape of chunking, used if ChunkMode=nc_CHUNKED.
    */
    void setChunking(ChunkMode chunkMode, std::vector<size_t>& chunksizes) const;

    /*! Gets the chunking parameters
      \param chunkMode   On return contains either: "nc_CONTIGUOUS" or "nc_CHUNKED"
      \param chunksizes  On return contains shape of chunking, used if ChunkMode=nc_CHUNKED.
    */
    void getChunkingParameters(ChunkMode& chunkMode, std::vector<size_t>& chunkSizes) const;



    ////////////////////

    // Fill details

    ////////////////////

    // Sets the fill parameters
    /*!
      \overload
    */
    void setFill(bool fillMode,void* fillValue=NULL) const;

    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      The function can be used for any type, including user-defined types.
      \param fillMode   Setting to true, turns on fill mode.
      \param fillValue  Pointer to fill value.
      Must be the same type as the variable. Ignored if fillMode=.false.
    */
    void setFill(bool fillMode,const void* fillValue=NULL) const;

    /*! Sets the fill parameters
      \param fillMode   Setting to true, turns on fill mode.
      \param fillValue  Fill value for the variable.
      Must be the same type as the variable. Ignored if fillMode=.false.
    */
    template<class T>
      void setFill(bool fillMode, T fillValue) const
      {
	ncCheck(nc_def_var_fill(groupId,myId,static_cast<int> (!fillMode),&fillValue),__FILE__,__LINE__);
      }




    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      The function can be used for any type, including user-defined types.
      \param fillMode   On return set to true  if fill mode is enabled.
      \param fillValue  On return containts a pointer to fill value.
      Must be the same type as the variable. Ignored if fillMode=.false.
    */
    void getFillModeParameters(bool& fillMode, void* fillValue=NULL) const;


    /*! Gets the fill parameters
      \param On return set to true  if fill mode is enabled.
      \param On return  is set to the fill value.
    */
    template <class T> void getFillModeParameters(bool& fillMode,T& fillValue) const{
       int fillModeInt;
      ncCheck(nc_inq_var_fill(groupId,myId,&fillModeInt,&fillValue),__FILE__,__LINE__);
      fillMode= static_cast<bool> (fillModeInt == 0);
    }




    ////////////////////

    // Compression details

    ////////////////////


    /*! Sets the compression parameters
      \param enableShuffleFilter Set to true to turn on shuffle filter.
      \param enableDeflateFilter Set to true to turn on deflate filter.
      \param deflateLevel        The deflate level, must be 0 and 9.
    */
    void setCompression(bool enableShuffleFilter, bool enableDeflateFilter, int deflateLevel) const;

    /*! Gets the compression parameters
      \param enableShuffleFilter  On return set to true if the shuffle filter is enabled.
      \param enableDeflateFilter  On return set to true if the deflate filter is enabled.
      \param deflateLevel         On return set to the deflate level.
    */
    void getCompressionParameters(bool& shuffleFilterEnabled, bool& deflateFilterEnabled, int& deflateLevel) const;



    ////////////////////

    // Endianness details

    ////////////////////


    /*! Sets the endianness of the variable.
      \param Endianness enumeration type. Allowable parameters are: "nc_ENDIAN_NATIVE" (the default), "nc_ENDIAN_LITTLE", "nc_ENDIAN_BIG"
    */
    void setEndianness(EndianMode endianMode) const;

    /*! Gets the endianness of the variable.
      \return Endianness enumeration type. Allowable parameters are: "nc_ENDIAN_NATIVE" (the default), "nc_ENDIAN_LITTLE", "nc_ENDIAN_BIG"
    */
    EndianMode getEndianness() const;



    ////////////////////

    // Checksum details

    ////////////////////


    /*! Sets the checksum parameters of a variable.
      \param ChecksumMode Enumeration type. Allowable parameters are: "nc_NOCHECKSUM", "nc_FLETCHER32".
    */
    void setChecksum(ChecksumMode checksumMode) const;

    /*! Gets the checksum parameters of the variable.
      \return ChecksumMode Enumeration type. Allowable parameters are: "nc_NOCHECKSUM", "nc_FLETCHER32".
    */
    ChecksumMode getChecksum() const;



    ////////////////////

    //  data  reading

    ////////////////////



    // Reads the entire data into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(void* dataValues) const;
    /*! \overload
     */
    void getVar(char** dataValues) const;
    /*! \overload
     */
    void getVar(char* dataValues) const;
    /*! \overload
     */
    void getVar(unsigned char* dataValues) const;
    /*! \overload
     */
    void getVar(signed char* dataValues) const;
    /*! \overload
     */
    void getVar(short* dataValues) const;
    /*! \overload
     */
    void getVar(int* dataValues) const;
    /*! \overload
     */
    void getVar(long* dataValues) const;
    /*! \overload
     */
    void getVar(float* dataValues) const;
    /*! \overload
     */
    void getVar(double* dataValues) const;
    /*! \overload
     */
    void getVar(unsigned short* dataValues) const;
    /*! \overload
     */
    void getVar(unsigned int* dataValues) const;
    /*! \overload
     */
    void getVar(unsigned long long* dataValues) const;
    /*!
      Reads the entire data from an netCDF variable.
      This is the simplest interface to use for reading the value of a scalar variable
      or when all the values of a multidimensional variable can be read at once. The values
      are read into consecutive locations with the last dimension varying fastest.

      Take care when using the simplest forms of this interface with record variables when you
      don't specify how many records are to be read. If you try to read all the values of a
      record variable into an array but there are more records in the file than you assume,
      more data will be read than you expect, which may cause a segmentation violation.

      \param dataValues Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(long long* dataValues) const;


    //////////////////////

    // Reads a single datum value from a variable of an open netCDF dataset.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(const std::vector<size_t>& index, void* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, char** datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, char* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, unsigned char* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, signed char* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, short* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, int* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, long* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, float* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, double* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, unsigned short* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, unsigned int* datumValue) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& index, unsigned long long* datumValue) const;
    /*! Reads a single datum value from a variable of an open netCDF dataset.
      The value is converted from the external data type of the variable, if necessary.

      \param index       Vector specifying the index of the data value to be read.
      The indices are relative to 0, so for example, the first data value of a two-dimensional
      variable would have index (0,0). The elements of index must correspond to the variable's dimensions.
      Hence, if the variable is a record variable, the first index is the record number.

      \param datumValue Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(const std::vector<size_t>& index, long long* datumValue) const;

    //////////////////////

    // Reads an array of values from a netCDF variable of an open netCDF dataset.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, void* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, char** dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, signed char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, long* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, float* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, double* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, unsigned long long* dataValues) const;
    /*!
      Reads an array of values from a netCDF variable of an open netCDF dataset.
      The array is specified by giving a corner and a vector of edge lengths.
      The values are read into consecutive locations with the last dimension varying fastest.

      \param start
      Vector specifying the index in the variable where the first of the data values will be read.
      The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
      The length of start must be the same as the number of dimensions of the specified variable.
      The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
      the first index would correspond to the starting record number for reading the data values.

      \param count
      Vector specifying the edge lengths along each dimension of the block of data values to be read.
      To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
      dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
      Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
      Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.

      \param dataValues Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count, long long* dataValues) const;

    //////////////////////

    // Reads a subsampled (strided) array section of values from a netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, void* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, char** dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, unsigned char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, signed char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, long* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, float* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, double* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, unsigned short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, unsigned int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, unsigned long long* dataValues) const;
    /*!
      Reads a subsampled (strided) array section of values from a netCDF variable.
      The subsampled array section is specified by giving a corner, a vector of edge lengths, and a stride vector.
      The values are read with the last dimension of the netCDF variable varying fastest.

      \param start
      Vector specifying the index in the variable where the first of the data values will be read.
      The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
      The length of start must be the same as the number of dimensions of the specified variable.
      The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
      the first index would correspond to the starting record number for reading the data values.

      \param count
      Vector specifying the edge lengths along each dimension of the block of data values to be read.
      To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
      dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
      Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
      Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.

      \param stride
      Vector specifying the interval between selected indices. The elements of the stride vector correspond, in order,
      to the variable's dimensions. A value of 1 accesses adjacent values of the netCDF variable in the corresponding
      dimension; a value of 2 accesses every other value of the netCDF variable in the corresponding dimension; and so
      on. A NULL stride argument is treated as (1, 1, ... , 1).

      \param dataValues Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, long long* dataValues) const;


    //////////////////////

    // Reads a mapped array section of values from a netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, void* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, char** dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, signed char* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, long* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, float* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, double* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned short* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned int* dataValues) const;
    /*! \overload
     */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, unsigned long long* dataValues) const;
    /*!
      Reads a mapped array section of values from a netCDF variable.
      The mapped array section is specified by giving a corner, a vector of edge lengths, a stride vector, and an
      index mapping vector. The index mapping vector is a vector of integers that specifies the mapping between the
      dimensions of a netCDF variable and the in-memory structure of the internal data array. No assumptions are
      made about the ordering or length of the dimensions of the data array.

      \param start
      Vector specifying the index in the variable where the first of the data values will be read.
      The indices are relative to 0, so for example, the first data value of a variable would have index (0, 0, ... , 0).
      The length of start must be the same as the number of dimensions of the specified variable.
      The elements of start correspond, in order, to the variable's dimensions. Hence, if the variable is a record variable,
      the first index would correspond to the starting record number for reading the data values.

      \param count
      Vector specifying the edge lengths along each dimension of the block of data values to be read.
      To read a single value, for example, specify count as (1, 1, ... , 1). The length of count is the number of
      dimensions of the specified variable. The elements of count correspond, in order, to the variable's dimensions.
      Hence, if the variable is a record variable, the first element of count corresponds to a count of the number of records to read.
      Note: setting any element of the count array to zero causes the function to exit without error, and without doing anything.

      \param stride
      Vector specifying the interval between selected indices. The elements of the stride vector correspond, in order,
      to the variable's dimensions. A value of 1 accesses adjacent values of the netCDF variable in the corresponding
      dimension; a value of 2 accesses every other value of the netCDF variable in the corresponding dimension; and so
      on. A NULL stride argument is treated as (1, 1, ... , 1).

      \param imap
      Vector of integers that specifies the mapping between the dimensions of a netCDF variable and the in-memory
      structure of the internal data array. imap[0] gives the distance between elements of the internal array corresponding
      to the most slowly varying dimension of the netCDF variable. imap[n-1] (where n is the rank of the netCDF variable)
      gives the distance between elements of the internal array corresponding to the most rapidly varying dimension of the
      netCDF variable. Intervening imap elements correspond to other dimensions of the netCDF variable in the obvious way.
      Distances between elements are specified in type-independent units of elements (the distance between internal elements
      that occupy adjacent memory locations is 1 and not the element's byte-length as in netCDF 2).

      \param dataValues Pointer to the location into which the data value is read. If the type of
      data value differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void getVar(const std::vector<size_t>& start, const std::vector<size_t>& count,  const std::vector<ptrdiff_t>& stride, const std::vector<ptrdiff_t>& imap, long long* dataValues) const;



    ////////////////////

    //  data writing

    ////////////////////


    // Writes the entire data into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const void* dataValues) const;
    /*! \overload
     */
    void putVar(const char** dataValues) const;
    /*!  \overload
    */
    void putVar(const char* dataValues) const;
    /*!  \overload
    */
    void putVar(const unsigned char* dataValues) const;
    /*!  \overload
    */
    void putVar(const signed char* dataValues) const;
    /*!  \overload
    */
    void putVar(const short* dataValues) const;
    /*!  \overload
    */
    void putVar(const int* dataValues) const;
    /*!  \overload
    */
    void putVar(const long* dataValues) const;
    /*!  \overload
    */
    void putVar(const float* dataValues) const;
    /*!  \overload
    */
    void putVar(const double* dataValues) const;
    /*!  \overload
    */
    void putVar(const unsigned short* dataValues) const;
    /*!  \overload
    */
    void putVar(const unsigned int* dataValues) const;
    /*!  \overload
    */
    void putVar(const unsigned long long* dataValues) const;
    /*!
      Writes the entire data into the netCDF variable.
      This is the simplest interface to use for writing a value in a scalar variable
      or whenever all the values of a multidimensional variable can all be
      written at once. The values to be written are associated with the
      netCDF variable by assuming that the last dimension of the netCDF
      variable varies fastest in the C interface.

      Take care when using the simplest forms of this interface with
      record variables when you don't specify how many records are to be
      written. If you try to write all the values of a record variable
      into a netCDF file that has no record data yet (hence has 0 records),
      nothing will be written. Similarly, if you try to write all of a record
      variable but there are more records in the file than you assume, more data
      may be written to the file than you supply, which may result in a
      segmentation violation.

      \param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
      dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void putVar(const long long* dataValues) const;



    /////////////////////////


    // Writes a single datum into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const std::vector<size_t>& index, const void* datumValue) const;
    /*! \overload
     */
    void putVar(const std::vector<size_t>& index, const char** datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const std::string& datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const unsigned char* datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const signed char* datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const short datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const int datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const long datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const float datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const double datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const unsigned short datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const unsigned int datumValue) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& index, const unsigned long long datumValue) const;
    /*!
      Writes a single datum into the netCDF variable.

      \param index      Vector specifying the index where the data values will be written. The indices are relative to 0, so for example,
      the first data value of a two-dimensional variable would have index (0,0). The elements of index must correspond to the variable's dimensions.
      Hence, if the variable uses the unlimited dimension, the first index would correspond to the unlimited dimension.

      \param datumValue The data value. If the type of data values differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void putVar(const std::vector<size_t>& index, const long long datumValue) const;


    /////////////////////////



    // Writes an array of values into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const void* dataValues) const;
    /*! \overload
     */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const char** dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const signed char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const long* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const float* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const double* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const unsigned long long* dataValues) const;
    /*!
      Writes an array of values into the netCDF variable.
      The portion of the netCDF variable to write is specified by giving a corner and a vector of edge lengths
      that refer to an array section of the netCDF variable. The values to be written are associated with
      the netCDF variable by assuming that the last dimension of the netCDF variable varies fastest.

      \param startp  Vector specifying the index where the first data values will be written.  The indices are relative to 0, so for
      example, the first data value of a variable would have index (0, 0, ... , 0). The elements of start correspond, in order, to the
      variable's dimensions. Hence, if the variable is a record variable, the first index corresponds to the starting record number for writing the data values.

      \param countp  Vector specifying the number of indices selected along each dimension.
      To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
      count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
      variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
      of the count array to zero causes the function to exit without error, and without doing anything.

      \param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
      dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable
      type, type conversion will occur. (However, no type conversion is
      carried out for variables using the user-defined data types:
      nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const long long* dataValues) const;


    ////////////////



    // Writes a set of subsampled array values into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const void* dataValues) const;
    /*! \overload
     */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const char** dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const signed char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const long* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const float* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const double* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const unsigned long long* dataValues) const;
    /*!
      Writes an array of values into the netCDF variable.
      The subsampled array section is specified by giving a corner, a vector of counts, and a stride vector.

      \param startp  Vector specifying the index where the first data values will be written.  The indices are relative to 0, so for
      example, the first data value of a variable would have index (0, 0, ... , 0). The elements of start correspond, in order, to the
      variable's dimensions. Hence, if the variable is a record variable, the first index corresponds to the starting record number for writing the data values.

      \param countp  Vector specifying the number of indices selected along each dimension.
      To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
      count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
      variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
      of the count array to zero causes the function to exit without error, and without doing anything.

      \param stridep  A vector of ptrdiff_t integers that specifies the sampling interval along each dimension of the netCDF variable.
      The elements of the stride vector correspond, in order, to the netCDF variable's dimensions (stride[0] gives the sampling interval
      along the most slowly varying dimension of the netCDF variable). Sampling intervals are specified in type-independent units of
      elements (a value of 1 selects consecutive elements of the netCDF variable along the corresponding dimension, a value of 2 selects
      every other element, etc.). A NULL stride argument is treated as (1, 1, ... , 1).

      \param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
      dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
      (However, no type conversion is  carried out for variables using the user-defined data types: nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const long long* dataValues) const;

    ////////////////

    // Writes a mapped array section of values into the netCDF variable.
    /*!
      This is an overloaded member function, provided for convenience.
      It differs from the above function in what argument(s) it accepts.
      In addition, no data conversion is carried out. This means that
      the type of the data in memory must match the type of the variable.
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const void* dataValues) const;
    /*! \overload
     */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const char** dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const signed char* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const long* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const float* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const double* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned short* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned int* dataValues) const;
    /*!  \overload
    */
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const unsigned long long* dataValues) const;
    /*!
      Writes a mapped array section of values into the netCDF variable.
      The mapped array section is specified by giving a corner, a vector of counts, a stride vector, and an index mapping vector.
      The index mapping vector is a vector of integers that specifies the mapping between the dimensions of a netCDF variable and the in-memory structure of the internal data array.
      No assumptions are made about the ordering or length of the dimensions of the data array.

      \param countp  Vector specifying the number of indices selected along each dimension.
      To write a single value, for example, specify count as (1, 1, ... , 1). The elements of
      count correspond, in order, to the variable's dimensions. Hence, if the variable is a record
      variable, the first element of count corresponds to a count of the number of records to write. Note: setting any element
      of the count array to zero causes the function to exit without error, and without doing anything.

      \param stridep  A vector of ptrdiff_t integers that specifies the sampling interval along each dimension of the netCDF variable.
      The elements of the stride vector correspond, in order, to the netCDF variable's dimensions (stride[0] gives the sampling interval
      along the most slowly varying dimension of the netCDF variable). Sampling intervals are specified in type-independent units of
      elements (a value of 1 selects consecutive elements of the netCDF variable along the corresponding dimension, a value of 2 selects
      every other element, etc.). A NULL stride argument is treated as (1, 1, ... , 1).

      \param imap Vector  specifies the mapping between the dimensions of a netCDF variable and the in-memory structure of the internal data array.
      The elements of the index mapping vector correspond, in order, to the netCDF variable's dimensions (imap[0] gives the distance between elements
      of the internal array corresponding to the most slowly varying dimension of the netCDF variable). Distances between elements are
      specified in type-independent units of elements (the distance between internal elements that occupy adjacent memory locations is
      1 and not the element's byte-length as in netCDF 2). A NULL argument means the memory-resident values have the same structure as
      the associated netCDF variable.

      \param dataValues The data values. The order in which the data will be written to the netCDF variable is with the last
      dimension of the specified variable varying fastest. If the type of data values differs from the netCDF variable type, type conversion will occur.
     (However, no type conversion is carried out for variables using the user-defined data types:  nc_Vlen, nc_Opaque, nc_Compound and nc_Enum.)
*/
    void putVar(const std::vector<size_t>& startp, const std::vector<size_t>& countp, const std::vector<ptrdiff_t>& stridep, const std::vector<ptrdiff_t>& imapp, const long long* dataValues) const;



  private:

    bool nullObject;

    int myId;

    int groupId;

  };


}



#endif