This file is indexed.

/usr/include/ngram/ngram-count-of-counts.h is in libngram-dev 1.3.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// Class for computing/accessing count-of-count bins for e.g., Katz and
// absolute discounting.

#ifndef NGRAM_NGRAM_COUNT_OF_COUNTS_H_
#define NGRAM_NGRAM_COUNT_OF_COUNTS_H_

#include <vector>

#include <fst/mutable-fst.h>
#include <ngram/ngram-context.h>
#include <ngram/ngram-model.h>
#include <ngram/util.h>

namespace ngram {

using fst::StdMutableFst;
using fst::StdFst;
using std::ostringstream;
using fst::SymbolTable;

template <class Arc>
class NGramCountOfCounts {
 public:
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;

  static const int kMaxBins = 32;  // maximum # of bins allowed

  explicit NGramCountOfCounts(int bins = -1)
      : bins_(bins <= 0 || bins > kMaxBins ? kMaxBins : bins) {
    if (bins > kMaxBins)
      NGRAMERROR() << "NGramCountOfCounts: Number of bins too large: " << bins;
  }

  NGramCountOfCounts(string context_pattern, int order, int bins = -1)
      : bins_(bins <= 0 || bins > kMaxBins ? kMaxBins : bins),
        context_(context_pattern, order) {
    if (bins > kMaxBins)
      NGRAMERROR() << "NGramCountOfCounts: Number of bins too large: " << bins;
  }

  NGramCountOfCounts(const std::vector<Label> &context_begin,
                     const std::vector<Label> &context_end, int order,
                     int bins = -1)
      : bins_(bins <= 0 || bins > kMaxBins ? kMaxBins : bins),
        context_(context_begin, context_end, order) {
    if (bins > kMaxBins)
      NGRAMERROR() << "NGramCountOfCounts: Number of bins too large: " << bins;
  }

  void CalculateCounts(const NGramModel<Arc> &model) {
    if (!histogram_.empty()) return;
    histogram_.resize(model.HiOrder());
    for (int order = 0; order < model.HiOrder(); ++order)  // for each order
      histogram_[order].resize(bins_ + 1, 0.0);            // space for bins + 1

    for (StateId st = 0; st < model.NumStates(); ++st) {  // get histograms
      if (!context_.NullContext()) {                      // restricted context
        const std::vector<Label> &ngram = model.StateNGram(st);
        if (!context_.HasContext(ngram, false)) continue;
      }
      int order = model.StateOrder(st) - 1;  // order starts from 0 here, not 1
      for (ArcIterator<Fst<Arc>> aiter(model.GetFst(), st); !aiter.Done();
           aiter.Next()) {
        Arc arc = aiter.Value();
        if (arc.ilabel != model.BackoffLabel())  // no count from backoff
          IncrementBinCount(order, arc.weight, model);
      }
      IncrementBinCount(order, model.GetFst().Final(st), model);
    }
  }

  // Returns the number of bins
  int GetBins() const { return bins_; }

  // Put ngram in bin = count - 1 for 0 < count <= bins
  // include big counts when discounting, but not when building histograms
  // For counts > bins + 2, set weight = -log(bin + 2), gives same result.
  // This avoids issues with converting count to int for very large counts.
  int GetCountBin(double weight, int bins, bool includebig) const {
    double val = -log(double(bins + 2));
    if (weight > val) val = weight;
    int wt = round(exp(-val)) - 1;             // rounding count to integer
    if (wt < 0 || (!includebig && wt > bins))  // if bin should not be assigned
      wt = -1;
    else if (wt > bins)  // include big counts in highest bin discounting
      wt = bins;
    return wt;
  }

  // NB: unigram is order 0 here, etc.
  double Count(int order, int bin) const { return histogram_[order][bin]; }

  // Display input histogram
  void ShowCounts(const std::vector<std::vector<double>> &hist,
                  const string &label) const {
    int hi_order = hist.size();
    std::cerr << "Count bin   ";
    std::cerr << label;
    std::cerr << " Counts (";
    for (int order = 0; order < hi_order; ++order) {
      if (order > 0) std::cerr << "/";
      std::cerr << order + 1 << "-grams";
    }
    std::cerr << ")\n";
    for (int bin = 0; bin <= bins_; ++bin) {
      if (bin < bins_)
        std::cerr << "Count = " << bin + 1 << "   ";
      else
        std::cerr << "Count > " << bin << "   ";
      for (int order = 0; order < hi_order; ++order) {
        if (order > 0) std::cerr << "/";
        std::cerr << hist[order][bin];
      }
      std::cerr << "\n";
    }
  }

  // Display internal histogram
  void ShowCounts(const string &label) const { ShowCounts(histogram_, label); }

  // Get an Fst representation of the ngram count-of-counts
  void GetFst(StdMutableFst *fst) const {
    std::unique_ptr<SymbolTable> symbols(new SymbolTable());

    fst->DeleteStates();
    StateId s = fst->AddState();
    fst->SetStart(s);
    int hi_order = histogram_.size();
    symbols->AddSymbol("<epsilon>", 0);
    double sum = kFloatEps;
    for (int order = 0; order < hi_order; ++order) {
      for (int bin = 0; bin <= bins_; ++bin) {
        // label encodes order and bin
        Label label = order * (kMaxBins + 1) + bin + 1;
        ostringstream strm;
        strm << "order=" << order << ",bin=" << bin;
        symbols->AddSymbol(strm.str(), label);
        StdArc::Weight weight = -log(histogram_[order][bin]);
        if (bin > 0 && weight == StdArc::Weight::Zero()) continue;
        fst->AddArc(s, StdArc(label, label, weight, s));
        sum += histogram_[order][bin];
      }
    }
    fst->SetFinal(s, -log(sum));
    fst->SetInputSymbols(symbols.get());
    fst->SetOutputSymbols(symbols.get());
  }

  // Sets counts from count-of-counts FST
  void SetCounts(const StdFst &fst) {
    histogram_.clear();
    if (fst.Start() == kNoStateId) return;

    for (ArcIterator<StdFst> aiter(fst, 0); !aiter.Done(); aiter.Next()) {
      StdArc arc = aiter.Value();
      // label encodes order and bin
      int bin = (arc.ilabel - 1) % (kMaxBins + 1);
      int order = (arc.ilabel - 1) / (kMaxBins + 1);
      while (order >= histogram_.size())
        histogram_.push_back(std::vector<double>(bins_ + 1, 0.0));
      if (bin <= bins_)
        histogram_[order][bin] = round(exp(-arc.weight.Value()));
    }
  }

 private:
  // Find bin for the value provided and increment the histogram for that bin
  void IncrementBinCount(int order, Weight value, const NGramModel<Arc> &model);
  //   int bin = GetCountBin(value, GetBins(), false);
  //   if (bin >= 0)
  //     histogram_[order][bin] = GetIncrement(value, histogram_[order][bin]);
  // }

  std::vector<std::vector<double>> histogram_;  // count histogram for orders
  int bins_;                          // Number of bins for discounting
  NGramContext context_;              // context specification
};

// Find bin for the value provided and increment the histogram for that bin
template <typename Arc>
void NGramCountOfCounts<Arc>::IncrementBinCount(
    int order, NGramCountOfCounts<Arc>::Weight value,
    const NGramModel<Arc> &model) {
  int bin = GetCountBin(model.ScalarValue(value), GetBins(), false);
  if (bin >= 0) ++histogram_[order][bin];
}

// Find bin for the value provided and increment the histogram for that bin
template <>
inline void NGramCountOfCounts<HistogramArc>::IncrementBinCount(
    int order, NGramCountOfCounts<HistogramArc>::Weight value,
    const NGramModel<HistogramArc> &model) {
  int n_bins = NGramCountOfCounts<HistogramArc>::GetBins() + 1;
  int cutoff = value.Length() - 1;
  int length = (cutoff > n_bins) ? n_bins : cutoff;
  for (int k = 0; k < length; k++) {
    histogram_[order][k] += exp(-value.Value(k + 1).Value());
  }
}

}  // namespace ngram

#endif  // NGRAM_NGRAM_COUNT_OF_COUNTS_H_