This file is indexed.

/usr/include/ngram/ngram-count.h is in libngram-dev 1.3.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// NGram counting class.

#ifndef NGRAM_NGRAM_COUNT_H_
#define NGRAM_NGRAM_COUNT_H_

#include <string>
#include <type_traits>
#include <unordered_map>
#include <vector>

#include <fst/log.h>
#include <fst/extensions/far/far.h>
#include <fst/fstlib.h>
#include <ngram/hist-arc.h>
#include <ngram/ngram-count-of-counts.h>
#include <ngram/ngram-model.h>
#include <ngram/util.h>

namespace ngram {

// NGramCounter class.
template <class Weight, class Label = int32>
class NGramCounter {
 public:
  // Construct an NGramCounter object counting n-grams of order less
  // or equal to 'order'. When 'epsilon_as_backoff' is 'true', the epsilon
  // transition in the input Fst are treated as failure backoff transitions
  // and would trigger the length of the current context to be decreased
  // by one ("pop front").
  explicit NGramCounter(size_t order, bool epsilon_as_backoff = false,
                        float delta = 1e-9F)
      : order_(order),
        pair_arc_maps_(order),
        epsilon_as_backoff_(epsilon_as_backoff),
        delta_(delta),
        error_(false) {
    if (order == 0) {
      NGRAMERROR() << "order must be greater than 0";
      SetError();
      return;
    }
    backoff_ = states_.size();
    states_.push_back(CountState(-1, 1, Weight::Zero(), -1));
    if (order == 1) {
      initial_ = backoff_;
    } else {
      initial_ = states_.size();
      states_.push_back(CountState(backoff_, 2, Weight::Zero(), -1));
    }
  }

  // Extract counts from the input acyclic Fst.  Return 'true' when
  // the counting from the Fst was successful and false otherwise.
  template <class Arc>
  bool Count(const fst::Fst<Arc> &fst) {
    if (Error()) return false;
    if (fst.Properties(fst::kString, false)) {
      return CountFromStringFst(fst);
    } else if (fst.Properties(fst::kTopSorted, true)) {
      return CountFromTopSortedFst(fst);
    } else {
      fst::VectorFst<Arc> vfst(fst);
      return Count(&vfst);
    }
  }

  // Extract counts from input mutable acyclic Fst, top sort the input
  // fst in place when needed.  Return 'true' when the counting from
  // the Fst was successful and false otherwise.
  template <class Arc>
  bool Count(fst::MutableFst<Arc> *fst) {
    if (Error()) {
      return false;
    }
    if (fst->Properties(fst::kString, true)) {
      return CountFromStringFst(*fst);
    }
    bool acyclic = TopSort(fst);
    if (!acyclic) {
      // TODO(allauzen): support key in error message.
      LOG(ERROR) << "NGramCounter::Count: input not an acyclic fst";
      return false;
    }
    return CountFromTopSortedFst(*fst);
  }

  // Get an FST representation of the ngram counts.
  template <class Arc>
  void GetFst(fst::MutableFst<Arc> *fst) {
    fst->DeleteStates();
    if (Error()) return;
    for (size_t s = 0; s < states_.size(); ++s) {
      fst->AddState();
      fst->SetFinal(s, states_[s].final_count.Value());
      if (states_[s].backoff_state != -1)
        fst->AddArc(s, Arc(0, 0, Arc::Weight::Zero(),
                           states_[s].backoff_state));
    }
    for (size_t a = 0; a < arcs_.size(); ++a) {
      const CountArc &arc = arcs_[a];
      fst->AddArc(arc.origin, Arc(arc.label, arc.label, arc.count.Value(),
                                  arc.destination));
    }
    fst->SetStart(initial_);
    StateCounts(fst);
  }

  // Returns strings of ngram counts, in reverse context order, e.g., for the
  // ngram "feed the angry duck", returns "<{angry,the,feed}, <duck,count>>".
  template <class Arc>
  void GetReverseContextNGrams(
      std::vector<std::pair<std::vector<int>, std::pair<Label, double>>>
          *ngram_counts) {
    if (Error()) return;
    std::vector<int> incoming_words(states_.size(), -1);
    std::vector<int> previous_states(states_.size(), -1);
    incoming_words[NGramStartState()] = 0;
    for (size_t a = 0; a < arcs_.size(); ++a) {
      const CountArc &arc = arcs_[a];
      if (states_[arc.origin].order < states_[arc.destination].order) {
        previous_states[arc.destination] = arc.origin;
        incoming_words[arc.destination] = arc.label;
      }
    }
    std::vector<std::vector<int>> reverse_context(states_.size());
    for (size_t s = 0; s < states_.size(); ++s) {
      int ps = s;
      while (ps >= 0) {
        if (incoming_words[ps] >= 0)
          reverse_context[s].push_back(incoming_words[ps]);
        ps = previous_states[ps];
      }
      if (states_[s].final_count.Value() != Weight::Zero().Value()) {
        ngram_counts->push_back(
            std::make_pair(reverse_context[s],
                           std::make_pair(0, states_[s].final_count.Value())));
      }
    }
    for (size_t a = 0; a < arcs_.size(); ++a) {
      const CountArc &arc = arcs_[a];
      ngram_counts->push_back(
          std::make_pair(reverse_context[arc.origin],
                         std::make_pair(arc.label, arc.count.Value())));
    }
  }

  // Given a state ID and a label, returns the ID of the corresponding
  // arc, creating the arc if it does not exist already.
  ssize_t FindArc(ssize_t state_id, Label label) {
    const CountState &count_state = states_[state_id];
    // First determines if there already exists a corresponding arc.
    if (count_state.first_arc != -1) {
      if (arcs_[count_state.first_arc].label == label)
        return count_state.first_arc;
      const PairArcMap &arc_map = pair_arc_maps_[count_state.order - 1];
      auto iter = arc_map.find(std::make_pair(label, state_id));
      if (iter != arc_map.end()) return iter->second;
    }
    // Otherwise, this arc needs to be created.
    return AddArc(state_id, label);
  }

  // Gets the start state of the counts (<s>).
  ssize_t NGramStartState() { return initial_; }

  // Gets the unigram state of the counts.
  ssize_t NGramUnigramState() { return backoff_; }

  // Gets the backoff state for a given state.
  ssize_t NGramBackoffState(ssize_t state_id) {
    return states_[state_id].backoff_state;
  }

  // Gets the next state from a found arc.
  ssize_t NGramNextState(ssize_t arc_id) {
    if (arc_id < 0 || arc_id >= arcs_.size()) return -1;
    return arcs_[arc_id].destination;
  }

  // Sets the weight for an n-gram ending with the stop symbol </s>.
  bool SetFinalNGramWeight(ssize_t state_id, Weight weight) {
    if (state_id < 0 || state_id >= states_.size()) return false;
    states_[state_id].final_count = weight;
    return true;
  }

  // Sets the weight for a found n-gram.
  bool SetNGramWeight(ssize_t arc_id, Weight weight) {
    if (arc_id < 0 || arc_id >= arcs_.size()) return false;
    arcs_[arc_id].count = weight;
    return true;
  }

  // Size of ngram model is the sum of the number of states and number of arcs.
  ssize_t GetSize() const { return states_.size() + arcs_.size(); }

  // Returns true if counter setup is in a bad state.
  bool Error() const { return error_; }

 protected:
  void SetError() { error_ = true; }

 private:
  // Data representation for a state.
  struct CountState {
    ssize_t backoff_state;  // ID of the backoff state for the current state.
    size_t order;           // N-gram order of the state (of the outgoing arcs).
    Weight final_count;     // Count for n-gram corresponding to superfinal arc.
    ssize_t first_arc;      // ID of the first outgoing arc at that state.

    CountState(ssize_t s, size_t o, Weight c, ssize_t a)
        : backoff_state(s), order(o), final_count(c), first_arc(a) {}
  };

  // Data represention for an arc.
  struct CountArc {
    ssize_t origin;       // ID of the origin state for this arc.
    ssize_t destination;  // ID of the destination state for this arc.
    Label label;          // Label.
    Weight count;         // Count of the n-gram corresponding to this arc.
    ssize_t backoff_arc;  // ID of backoff arc.

    CountArc(ssize_t o, size_t d, Label l, Weight c, ssize_t b)
        : origin(o), destination(d), label(l), count(c), backoff_arc(b) {}
  };

  // A pair (Label, State ID) or (State ID, State ID)
  using Pair = std::pair<ssize_t, ssize_t>;

  struct PairHash {
    size_t operator()(const Pair &p) const {
      return (static_cast<size_t>(p.first) * 55697) ^
             (static_cast<size_t>(p.second) * 54631);
      // TODO(allauzen): run benchmark using Compose's hash function
      // return static_cast<size_t>(p.first + p.second * 7853);
    }
  };

  // TODO(allauzen): run benchmark using map instead of unordered map
  using PairArcMap = std::unordered_map<Pair, size_t, PairHash>;

  // Creates the arc corresponding to label 'label' out of the state
  // with ID 'state_id'.
  size_t AddArc(ssize_t state_id, Label label) {
    CountState count_state = states_[state_id];
    ssize_t arc_id = arcs_.size();

    // Updates the hash entry for the new arc.
    if (count_state.first_arc == -1) {
      states_[state_id].first_arc = arc_id;
    } else {
      pair_arc_maps_[count_state.order - 1].insert(
          std::make_pair(std::make_pair(label, state_id), arc_id));
    }

    // Pre-fills arc with values valid when order_ == 1 and returns
    // if nothing else needs to be done.
    arcs_.push_back(CountArc(state_id, initial_, label, Weight::Zero(), -1));
    if (order_ == 1) return arc_id;

    // First compute the backoff arc
    ssize_t backoff_arc = count_state.backoff_state == -1
                              ? -1
                              : FindArc(count_state.backoff_state, label);

    // Second compute the destination state.
    ssize_t destination;
    if (count_state.order == order_) {
      // The destination state is the destination of the backoff arc.
      destination = arcs_[backoff_arc].destination;
    } else {
      // The destination state needs to be created.
      destination = states_.size();
      CountState next_count_state(
          backoff_arc == -1 ? backoff_ : arcs_[backoff_arc].destination,
          count_state.order + 1, Weight::Zero(), -1);
      states_.push_back(next_count_state);
    }
    // Updates destination and backoff_arc with the newly computed values.
    arcs_[arc_id].destination = destination;
    arcs_[arc_id].backoff_arc = backoff_arc;
    return arc_id;
  }

  // Increase the count of n-gram corresponding to the arc labeled 'label'
  // out of state of ID 'state_id' by 'count'.
  ssize_t UpdateCount(ssize_t state_id, Label label, Weight count) {
    ssize_t arc_id = FindArc(state_id, label);
    ssize_t nextstate_id = arcs_[arc_id].destination;
    while (arc_id != -1) {
      arcs_[arc_id].count = Plus(arcs_[arc_id].count, count);
      arc_id = arcs_[arc_id].backoff_arc;
    }
    return nextstate_id;
  }

  // Increase the count of n-gram corresponding to the super-final arc
  // out of state of ID 'state_id' by 'count'.
  void UpdateFinalCount(ssize_t state_id, Weight count) {
    while (state_id != -1) {
      states_[state_id].final_count =
          Plus(states_[state_id].final_count, count);
      state_id = states_[state_id].backoff_state;
    }
  }

  // Puts the sum of counts of non-backoff arcs leaving s on the backoff arc.
  template <class Arc>
  void StateCounts(fst::MutableFst<Arc> *fst) {
    for (size_t s = 0; s < states_.size(); ++s) {
      Weight state_count = states_[s].final_count;
      if (states_[s].backoff_state != -1) {
        fst::MutableArcIterator<fst::MutableFst<Arc>> aiter(fst, s);
        ssize_t bo_pos = -1;
        for (; !aiter.Done(); aiter.Next()) {
          const auto &arc = aiter.Value();
          if (arc.ilabel != 0) {
            state_count = Plus(state_count, arc.weight.Value());
          } else {
            bo_pos = aiter.Position();
          }
        }
        if (bo_pos < 0) {
          NGRAMERROR() << "backoff arc not found";
          SetError();
          return;
        }
        aiter.Seek(bo_pos);
        auto arc = aiter.Value();
        arc.weight = state_count.Value();
        aiter.SetValue(arc);
      }
    }
  }

  template <class Arc>
  bool CountFromTopSortedFst(const Fst<Arc> &fst);

  template <class Arc>
  bool CountFromStringFst(const Fst<Arc> &fst);

  struct PairCompare {
    bool operator()(const Pair &p1, const Pair &p2) {
      return p1.first == p2.first ? p1.second > p2.second : p1.first > p2.first;
    }
  };

  size_t order_;                    // Maximal order of n-gram being counted
  std::vector<CountState> states_;  // Vector mapping state IDs to CountStates
  std::vector<CountArc> arcs_;      // Vector mapping arc IDs to CountArcs
  ssize_t initial_;                 // ID of start state
  ssize_t backoff_;                 // ID of unigram/backoff state
  std::vector<PairArcMap> pair_arc_maps_;  // Maps pairs to arc IDs.
  bool epsilon_as_backoff_;  // Treat epsilons as backoff trans. in input Fsts
  float delta_;              // Delta value used by shortest-distance
  bool error_;

  NGramCounter(const NGramCounter &) = delete;
  NGramCounter &operator=(const NGramCounter &) = delete;
};

template <class Weight, class Label>
template <class Arc>
bool NGramCounter<Weight, Label>::CountFromStringFst(const Fst<Arc> &fst) {
  if (!fst.Properties(fst::kString, false)) {
    NGRAMERROR() << "Input FST is not a string";
    return false;
  }
  ssize_t count_state = initial_;
  auto fst_state = fst.Start();
  Weight weight = fst.Properties(fst::kUnweighted, false)
                      ? Weight::One()
                      : Weight(ShortestDistance(fst).Value());
  while (fst.Final(fst_state) == Arc::Weight::Zero()) {
    fst::ArcIterator<fst::Fst<Arc>> aiter(fst, fst_state);
    const auto &arc = aiter.Value();
    if (arc.ilabel) {
      count_state = UpdateCount(count_state, arc.ilabel, weight);
    } else if (epsilon_as_backoff_) {
      ssize_t next_count_state = NGramBackoffState(count_state);
      count_state = next_count_state == -1 ? count_state : next_count_state;
    }
    fst_state = arc.nextstate;
    aiter.Next();
    if (!aiter.Done()) {
      NGRAMERROR() << "More than one arc leaving state " << fst_state;
      return false;
    }
  }
  UpdateFinalCount(count_state, weight);
  return true;
}

template <class Weight, class Label>
template <class Arc>
bool NGramCounter<Weight, Label>::CountFromTopSortedFst(const Fst<Arc> &fst) {
  if (!fst.Properties(fst::kTopSorted, false)) {
    NGRAMERROR() << "Input not topologically sorted";
    return false;
  }
  // Computes shortest-distances from the initial state and to the final
  // states.
  std::vector<typename Arc::Weight> fdistance;
  ShortestDistance(fst, &fdistance, true, delta_);
  std::vector<Pair> heap;
  std::unordered_map<Pair, typename Arc::Weight, PairHash> pair2weight;
  PairCompare compare;
  Pair start_pair = std::make_pair(fst.Start(), initial_);
  pair2weight[start_pair] = Arc::Weight::One();
  heap.push_back(start_pair);
  std::push_heap(heap.begin(), heap.end(), compare);
  size_t i = 0;
  while (!heap.empty()) {
    std::pop_heap(heap.begin(), heap.end(), compare);
    Pair current_pair = heap.back();
    auto fst_state = current_pair.first;
    ssize_t count_state = current_pair.second;
    auto current_weight = pair2weight[current_pair];
    pair2weight.erase(current_pair);
    heap.pop_back();
    ++i;
    for (fst::ArcIterator<fst::Fst<Arc>> aiter(fst, fst_state);
         !aiter.Done(); aiter.Next()) {
      const auto &arc = aiter.Value();
      Pair next_pair(arc.nextstate, count_state);
      if (arc.ilabel) {
        Weight count =  Times(current_weight,
                              Times(arc.weight,
                                    fdistance[arc.nextstate])).Value();
        next_pair.second = UpdateCount(count_state, arc.ilabel, count.Value());
      } else if (epsilon_as_backoff_) {
        ssize_t next_count_state = NGramBackoffState(count_state);
        next_pair.second =
            next_count_state == -1 ? count_state : next_count_state;
      }
      typename Arc::Weight next_weight = Times(current_weight, arc.weight);
      auto iter = pair2weight.find(next_pair);
      if (iter == pair2weight.end()) {  // If pair not in heap, inserts it.
        pair2weight[next_pair] = next_weight;
        heap.push_back(next_pair);
        std::push_heap(heap.begin(), heap.end(), compare);
      } else {  // Otherwise, updates the weight stored for it.
        iter->second = Plus(iter->second, next_weight);
      }
    }
    if (fst.Final(fst_state) != Arc::Weight::Zero()) {
      UpdateFinalCount(count_state,
                       Times(current_weight, fst.Final(fst_state)).Value());
    }
  }
  return true;
}

// Computes ngram counts and returns ngram format FST.
bool GetNGramCounts(fst::FarReader<fst::StdArc> *far_reader,
                    fst::StdMutableFst *fst, int order,
                    bool require_symbols = true,
                    bool epsilon_as_backoff = false, bool round_to_int = false);

bool GetNGramCounts(fst::FarReader<fst::StdArc> *far_reader,
                    std::vector<string> *ngrams, int order,
                    bool epsilon_as_backoff = false);

// Computes counts using the HistogramArc template.
bool GetNGramHistograms(fst::FarReader<fst::StdArc> *far_reader,
                        fst::VectorFst<fst::HistogramArc> *fst,
                        int order, bool epsilon_as_backoff = false,
                        int backoff_label = 0, double norm_eps = kNormEps,
                        bool check_consistency = false, bool normalize = false,
                        double alpha = 1.0, double beta = 1.0);

// Computes count-of-counts.
template <class Arc>
void GetNGramCountOfCounts(const Fst<Arc> &fst, StdMutableFst *ccfst,
                           int in_order, const string &context_pattern) {
  NGramModel<Arc> ngram(fst, 0, kNormEps, !context_pattern.empty());
  int order = ngram.HiOrder() > in_order ? ngram.HiOrder() : in_order;
  NGramCountOfCounts<Arc> count_of_counts(context_pattern, order);
  count_of_counts.CalculateCounts(ngram);
  count_of_counts.GetFst(ccfst);
}

namespace internal {

// Mapper for going to Log64 arcs from other float arc types.
template <class Arc>
struct ToLog64Mapper {
  using FromArc = Arc;
  using ToArc = fst::Log64Arc;

  ToArc operator()(const FromArc &arc) const {
    return ToArc(arc.ilabel, arc.olabel, arc.weight.Value(), arc.nextstate);
  }

  fst::MapFinalAction FinalAction() const {
    return fst::MAP_NO_SUPERFINAL;
  }

  fst::MapSymbolsAction InputSymbolsAction() const {
    return fst::MAP_COPY_SYMBOLS;
  }

  fst::MapSymbolsAction OutputSymbolsAction() const {
    return fst::MAP_COPY_SYMBOLS;
  }

  uint64 Properties(uint64 props) const { return props; }
};

}  // namespace internal

}  // namespace ngram

#endif  // NGRAM_NGRAM_COUNT_H_