This file is indexed.

/usr/include/ngram/ngram-input.h is in libngram-dev 1.3.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// NGram model class for reading in a model or text for building a model.

#ifndef NGRAM_NGRAM_INPUT_H_
#define NGRAM_NGRAM_INPUT_H_

#include <fstream>
#include <istream>
#include <ostream>
#include <sstream>

#include <fst/arcsort.h>
#include <fst/fst.h>
#include <fst/matcher.h>
#include <fst/mutable-fst.h>
#include <fst/vector-fst.h>
#include <ngram/ngram-count.h>
#include <ngram/ngram-model.h>
#include <ngram/ngram-mutable-model.h>
#include <ngram/util.h>

namespace ngram {

using ngram::NGramMutableModel;
using fst::LogWeightTpl;
using fst::StdVectorFst;
using fst::SymbolTable;
using std::vector;

class NGramInput {
 public:
  typedef StdArc Arc;
  typedef Arc::StateId StateId;
  typedef Arc::Label Label;
  typedef Arc::Weight Weight;

  // Construct an NGramInput object, consisting of a symbol table, an FST,
  // and associated input and output streams.
  NGramInput(const string &ifile, const string &ofile, const string &symbols,
             const string &epsilon_symbol, const string &OOV_symbol,
             const string &start_symbol, const string &end_symbol)
      : oov_symbol_(OOV_symbol),
        start_symbol_(start_symbol),
        end_symbol_(end_symbol),
        error_(false) {
    InitializeIStream(ifile, nullptr);
    InitializeOStream(ofile, nullptr);
    InitializeSymbols(symbols, epsilon_symbol);
  }

  NGramInput(std::istream *istrm, std::ostream *ostrm, const string &symbols,
             const string &epsilon_symbol, const string &OOV_symbol,
             const string &start_symbol, const string &end_symbol)
      : oov_symbol_(OOV_symbol),
        start_symbol_(start_symbol),
        end_symbol_(end_symbol),
        error_(false) {
    InitializeIStream("", istrm);
    InitializeOStream("", ostrm);
    InitializeSymbols(symbols, epsilon_symbol);
  }

  // Read text input of three types: ngram counts, ARPA model or text corpus
  // output either model fsts, a corpus far or a symbol table.
  bool ReadInput(bool ARPA, bool symbols, bool output = true,
                 bool renormalize_arpa = false) {
    if (Error()) return false;
    if (ARPA) {  // ARPA format model in, fst model out
      return CompileARPAModel(output, renormalize_arpa);
    } else if (symbols) {
      return CompileSymbolTable(output);
    } else {  // sorted list of ngrams + counts in, fst out
      return CompileNGramCounts(output);
    }
    return false;
  }

  const MutableFst<Arc> *GetFst() const { return fst_.get(); }

  // Returns true if input setup is in a bad state.
  bool Error() const { return error_; }

 protected:
  void SetError() { error_ = true; }

 private:
  void InitializeSymbols(const string &symbols, const string &epsilon_symbol) {
    if (Error()) return;
    if (symbols == "") {  // Symbol table not provided
      syms_.reset(new SymbolTable("NGramSymbols"));  // initialize symbol table
      syms_->AddSymbol(epsilon_symbol);              // make epsilon 0
      add_symbols_ = 1;
    } else {
      syms_.reset(SymbolTable::ReadText(symbols));
      if (!syms_) {
        NGRAMERROR() << "NGramInput: Could not read symbol table file: "
                     << symbols;
        SetError();
        return;
      }
      add_symbols_ = 0;
    }
  }

  void InitializeIStream(const string &ifile, std::istream *in_stream) {
    if (Error()) return;
    if (ifile.empty() && in_stream == nullptr) {
      istrm_ = &std::cin;
    } else if (in_stream != nullptr) {
      istrm_ = in_stream;
    } else {
      ifstrm_.open(ifile);
      if (!ifstrm_) {
        LOG(ERROR) << "NGramInput: Can't open " << ifile << " for reading";
        SetError();
        return;
      }
      istrm_ = &ifstrm_;
    }
  }

  void InitializeOStream(const string &ofile, std::ostream *out_stream) {
    if (Error()) return;
    if (ofile.empty() && out_stream == nullptr) {
      ostrm_ = &std::cout;
    } else if (out_stream != nullptr) {
      ostrm_ = out_stream;
    } else {
      ofstrm_.open(ofile);
      if (!ofstrm_) {
        LOG(ERROR) << "NGramInput: Can't open " << ofile << " for writing";
        SetError();
        return;
      }
      ostrm_ = &ofstrm_;
    }
  }

  // Using whitespace as delimiter, reads token from string.
  bool GetWhiteSpaceToken(string::iterator *strit, string *str, string *token) {
    while (isspace(*(*strit)))  // skip the whitespace preceding the token
      (*strit)++;
    if ((*strit) == str->end())  // no further tokens to be found in string
      return false;
    while ((*strit) < str->end() && !isspace(*(*strit))) {
      (*token) += (*(*strit));
      (*strit)++;
    }
    return true;
  }

  // Gets symbol label from table, add it and ensure no duplicates if requested.
  Label GetLabel(const string &word, bool add, bool dups) {
    Label symlabel = syms_->Find(word);  // find it in the symbol table
    if (!add_symbols_) {                 // fixed symbol table provided
      if (symlabel == fst::kNoLabel) {
        symlabel = syms_->Find(oov_symbol_);
        if (symlabel == fst::kNoLabel) {
          NGRAMERROR() << "NGramInput: OOV Symbol not found "
                       << "in given symbol table: " << oov_symbol_;
          SetError();
        }
      }
    } else if (add) {
      if (symlabel == fst::kNoLabel) {
        symlabel = syms_->AddSymbol(word);
      } else if (!dups) {  // shouldn't find duplicate
        NGRAMERROR() << "NGramInput: Symbol already found in list: " << word;
        SetError();
      }
    } else if (symlabel== fst::kNoLabel) {
      NGRAMERROR() << "NGramInput: Symbol not found in list: " << word;
      SetError();
    }
    return symlabel;
  }

  // GetLabel() if not <s> or </s>, otherwise set appropriate bool values
  Label GetNGramLabel(const string &ngram_word, bool add, bool dups,
                      bool *stsym, bool *endsym) {
    (*stsym) = (*endsym) = 0;
    if (ngram_word == start_symbol_) {
      (*stsym) = 1;
      return -1;
    } else if (ngram_word == end_symbol_) {
      (*endsym) = 1;
      return -2;
    } else {
      return GetLabel(ngram_word, add, dups);
    }
  }

  // Uses string iterator to construct token, then gets the label for it.
  Label ExtractNGramLabel(string::iterator *strit, string *str, bool add,
                          bool dups, bool *stsym, bool *endsym) {
    string token;
    if (!GetWhiteSpaceToken(strit, str, &token)) {
      NGRAMERROR() << "NGramInput: No token found when expected";
      SetError();
      return -1;
    }
    return GetNGramLabel(token, add, dups, stsym, endsym);
  }

  // Gets backoff state and backoff cost for state (following <epsilon> arc).
  StateId GetBackoffAndCost(StateId st, double *cost) {
    StateId backoff = -1;
    Label backoff_label = 0;  // <epsilon> is assumed to be label 0 here
    Matcher<StdFst> matcher(*fst_, MATCH_INPUT);
    matcher.SetState(st);
    if (matcher.Find(backoff_label)) {
      for (; !matcher.Done(); matcher.Next()) {
        const StdArc &arc = matcher.Value();
        if (arc.ilabel == backoff_label) {
          backoff = arc.nextstate;
          if (cost) (*cost) = arc.weight.Value();
        }
      }
    }
    return backoff;
  }

  // Just returns backoff state.
  StateId GetBackoff(StateId st) { return GetBackoffAndCost(st, nullptr); }

  // Ensure matching with appropriate ARPA header strings
  bool ARPAHeaderStringMatch(const string &tomatch) {
    string str;
    if (!getline((*istrm_), str)) {
      NGRAMERROR() << "Input stream read error";
      SetError();
      return false;
    }
    if (str != tomatch) {
      str += "   Line should read: ";
      str += tomatch;
      NGRAMERROR() << "NGramInput: ARPA header mismatch!  Line reads: " << str;
      SetError();
      return false;
    }
    return true;
  }

  // Extract string token and convert into value of type A
  template <class A>
  bool GetStringVal(string::iterator *strit, string *str, A *val,
                    string *keeptoken) {
    string token;
    if (GetWhiteSpaceToken(strit, str, &token)) {
      std::stringstream ngram_ss(token);
      ngram_ss >> (*val);
      if (keeptoken) (*keeptoken) = token;  // to store token string if needed
      return 1;
    } else {
      return 0;
    }
  }

  // When reading in string numerical tokens, ensures correct inf values
  void CheckInfVal(string *token, double *val) {
    if ((*token) == "-inf" || (*token) == "-Infinity") (*val) = log(0);
    if ((*token) == "inf" || (*token) == "Infinity") (*val) = -log(0);
  }

  // Read the header at the top of the ARPA model file, collect n-gram orders
  int ReadARPATopHeader(vector<int> *orders) {
    string str;
    // scan the file until a \data\ record is found
    while (getline((*istrm_), str)) {
      if (str == "\\data\\") break;
    }
    if (!getline((*istrm_), str)) {
      NGRAMERROR() << "Input stream read error, or no \\data\\ record found";
      SetError();
      return 0;
    }
    int order = 0;
    while (str != "") {
      string::iterator strit = str.begin();
      while (strit < str.end() && (*strit) != '=') strit++;
      if (strit == str.end()) {
        NGRAMERROR()
            << "NGramInput: ARPA header mismatch!  No '=' in ngram count.";
        SetError();
        return 0;
      }
      strit++;
      int ngram_cnt;  // must have n-gram count, fails if not found
      if (!GetStringVal(&strit, &str, &ngram_cnt, nullptr)) {
        NGRAMERROR() << "NGramInput: ARPA header mismatch!  No ngram count.";
        SetError();
        return 0;
      }
      orders->push_back(ngram_cnt);
      if (ngram_cnt > 0) order++;  // Some reported n-gram orders may be empty
      if (!getline((*istrm_), str)) {
        NGRAMERROR() << "Input stream read error";
        SetError();
        return 0;
      }
    }
    return order;
  }

  // Get the destination state of arc with requested label.  Assumed to exist.
  StateId GetLabelNextState(StateId st, Label label) {
    Matcher<StdFst> matcher(*fst_, MATCH_INPUT);
    matcher.SetState(st);
    if (matcher.Find(label)) {
      StdArc barc = matcher.Value();
      return barc.nextstate;
    } else {
      NGRAMERROR() << "NGramInput: Lower order prefix n-gram not found: ";
      SetError();
      return -1;
    }
  }

  // Get the destination state of arc with requested label.  Assumed to exist.
  StateId GetLabelNextStateNoFail(StateId st, Label label) {
    Matcher<StdFst> matcher(*fst_, MATCH_INPUT);
    matcher.SetState(st);
    if (matcher.Find(label)) {
      StdArc barc = matcher.Value();
      return barc.nextstate;
    } else {
      return -1;
    }
  }

  // GetLabelNextState() when arc exists; other results for <s> and </s>
  ssize_t NextStateFromLabel(
      ssize_t st, Label label, bool stsym, bool endsym,
      NGramCounter<LogWeightTpl<double>> *ngram_counter) {
    if (Error()) return 0;
    if (stsym) {  // start symbol: <s>
      return ngram_counter->NGramStartState();
    } else if (endsym) {  // end symbol </s>
      NGRAMERROR() << "NGramInput: stop symbol occurred in n-gram prefix";
      SetError();
      return 0;
    } else {
      ssize_t arc_id = ngram_counter->FindArc(st, label);
      return ngram_counter->NGramNextState(arc_id);
    }
  }

  // Extract the token, find the label and the appropriate destination state
  ssize_t GetNextState(string::iterator *strit, string *str, ssize_t st,
                       NGramCounter<LogWeightTpl<double> > *ngram_counter) {
    if (Error()) return 0;
    bool stsym = false;
    bool endsym = false;
    auto label = ExtractNGramLabel(strit, str, /* add = */ false,
                                   /* dups = */ false, &stsym, &endsym);
    return NextStateFromLabel(st, label, stsym, endsym, ngram_counter);
  }

  // Read the header for each of the n-gram orders in the ARPA format file
  void ReadARPAOrderHeader(int order) {
    std::stringstream ss;
    ss << order + 1;
    string tomatch = "\\";
    tomatch += ss.str();
    tomatch += "-grams:";
    ARPAHeaderStringMatch(tomatch);
  }

  // Add an n-gram arc as appropriate and record the state and label if req'd
  void AddNGramArc(StateId st, StateId nextstate, Label label, bool stsym,
                   bool endsym, double ngram_log_prob) {
    if (endsym)  // </s> requires no arc, just final cost
      fst_->SetFinal(st, ngram_log_prob);
    else if (!stsym)  // create arc from st to nextstate
      fst_->AddArc(st, StdArc(label, label, ngram_log_prob, nextstate));
  }

  // Read in n-grams for the particular order.
  void ReadARPAOrder(vector<int> *orders, int order, vector<double> *boweights,
                     NGramCounter<LogWeightTpl<double>> *ngram_counter) {
    string str;
    bool add_words = (order == 0);
    for (auto i = 0; i < (*orders)[order]; i++) {
      if (!getline((*istrm_), str)) {
        NGRAMERROR() << "Input stream read error";
        SetError();
        return;
      }
      string::iterator strit = str.begin();
      double nlprob;
      double boprob;
      string token;
      if (!GetStringVal(&strit, &str, &nlprob, &token)) {
        NGRAMERROR() << "NGramInput: ARPA format mismatch!  No ngram log prob.";
        SetError();
        return;
      }
      CheckInfVal(&token, &boprob);  // check for inf value
      nlprob *= -log(10);  // convert to neglog base e from log base 10
      ssize_t st = ngram_counter->NGramUnigramState();
      StateId nextstate = fst::kNoStateId;
      for (auto j = 0; j < order; j++)  // find n-gram history state
        st = GetNextState(&strit, &str, st, ngram_counter);
      if (Error()) return;
      bool stsym;   // stsym == 1 for <s>.
      bool endsym;  // endsym == 1 for </s>.
      Label label = ExtractNGramLabel(&strit, &str, add_words,
                                      /* dupls = */ false, &stsym, &endsym);
      if (Error()) return;
      if (endsym) {
        ngram_counter->SetFinalNGramWeight(st, nlprob);
      } else if (!stsym) {
        // Test for presence of all suffixes of n-gram
        auto backoff_st = ngram_counter->NGramBackoffState(st);
        while (backoff_st >= 0) {
          ngram_counter->FindArc(backoff_st, label);
          backoff_st = ngram_counter->NGramBackoffState(backoff_st);
        }
        auto arc_id = ngram_counter->FindArc(st, label);
        ngram_counter->SetNGramWeight(arc_id, nlprob);
        nextstate = ngram_counter->NGramNextState(arc_id);
      } else {
        nextstate = ngram_counter->NGramStartState();
      }
      if (GetStringVal(&strit, &str, &boprob, &token) &&
          (nextstate >= 0 || boprob != 0)) {  // found non-zero backoff cost
        if (nextstate == fst::kNoStateId) {
          NGRAMERROR() << "NGramInput: Have a backoff cost with no state ID!";
          SetError();
          return;
        }
        CheckInfVal(&token, &boprob);  // check for inf value
        boprob *= -log(10);  // convert to neglog base e from log base 10
        while (nextstate >= boweights->size())
          boweights->push_back(StdArc::Weight::Zero().Value());
        (*boweights)[nextstate] = boprob;
      }
    }
    // blank line at end of n-gram order
    if (!getline((*istrm_), str)) {
      NGRAMERROR() << "Input stream read error";
      SetError();
      return;
    }
    if (!str.empty()) {
      NGRAMERROR() << "Expected blank line at end of n-grams";
      SetError();
    }
  }

  StateId FindNewDest(StateId st) {
    StateId newdest = st;
    if (fst_->NumArcs(st) > 1 || fst_->Final(st) != StdArc::Weight::Zero())
      return newdest;
    MutableArcIterator<StdMutableFst> aiter(fst_.get(), st);
    const StdArc &arc = aiter.Value();
    if (arc.ilabel == 0) newdest = FindNewDest(arc.nextstate);
    return newdest;
  }

  void SetARPANGramDests() {
    vector<StateId> newdests;
    for (StateId st = 0; st < fst_->NumStates(); ++st)
      newdests.push_back(FindNewDest(st));
    for (auto st = 0; st < fst_->NumStates(); ++st) {
      for (MutableArcIterator<StdMutableFst> aiter(fst_.get(), st);
           !aiter.Done(); aiter.Next()) {
        StdArc arc = aiter.Value();
        if (arc.ilabel == 0) continue;
        if (newdests[arc.nextstate] != arc.nextstate) {
          arc.nextstate = newdests[arc.nextstate];
          aiter.SetValue(arc);
        }
      }
    }
  }

  // Put stored backoff weights on backoff arcs
  void SetARPABackoffWeights(vector<double> *boweights) {
    for (auto st = 0; st < fst_->NumStates(); ++st) {
      if (st < boweights->size()) {
        double boprob = (*boweights)[st];
        MutableArcIterator<StdMutableFst> aiter(fst_.get(), st);
        StdArc arc = aiter.Value();
        if (arc.ilabel == 0 || boprob != StdArc::Weight::Zero().Value()) {
          if (arc.ilabel != 0) {
            NGRAMERROR() << "NGramInput: Have a backoff prob but no arc";
            SetError();
            return;
          } else {
            arc.weight = boprob;
          }
          aiter.SetValue(arc);
        }
      }
    }
  }

  double GetLowerOrderProb(StateId st, Label label) {
    Matcher<StdFst> matcher(*fst_, MATCH_INPUT);
    matcher.SetState(st);
    if (matcher.Find(label)) {
      const StdArc &arc = matcher.Value();
      return arc.weight.Value();
    }
    if (!matcher.Find(0)) {
      NGRAMERROR() << "NGramInput: No backoff probability";
      SetError();
      return StdArc::Weight::Zero().Value();
    }
    for (; !matcher.Done(); matcher.Next()) {
      const StdArc &arc = matcher.Value();
      if (arc.ilabel == 0) {
        return arc.weight.Value() + GetLowerOrderProb(arc.nextstate, label);
      }
    }
    NGRAMERROR() << "NGramInput: No backoff arc found";
    SetError();
    return StdArc::Weight::Zero().Value();
  }

  // Descends backoff arcs to find backoff final cost and set
  double GetFinalBackoff(StateId st) {
    if (fst_->Final(st) != StdArc::Weight::Zero())
      return fst_->Final(st).Value();
    double bocost;
    auto bostate = GetBackoffAndCost(st, &bocost);
    if (bostate >= 0) fst_->SetFinal(st, bocost + GetFinalBackoff(bostate));
    return fst_->Final(st).Value();
  }

  void FillARPAHoles() {
    for (auto st = 0; st < fst_->NumStates(); ++st) {
      double boprob;
      StateId bostate = -1;
      for (MutableArcIterator<StdMutableFst> aiter(fst_.get(), st);
           !aiter.Done(); aiter.Next()) {
        auto arc = aiter.Value();
        if (arc.ilabel == 0) {
          boprob = arc.weight.Value();
          bostate = arc.nextstate;
        } else {
          if (arc.weight == StdArc::Weight::Zero()) {
            arc.weight = boprob + GetLowerOrderProb(bostate, arc.ilabel);
            if (Error()) return;
            aiter.SetValue(arc);
          }
        }
      }
      if (bostate >= 0 && fst_->Final(st) != StdArc::Weight::Zero() &&
          fst_->Final(bostate) == StdArc::Weight::Zero()) {
        GetFinalBackoff(bostate);
      }
    }
  }

  // Read in headers/n-grams from an ARPA model text file, dump resulting fst
  bool CompileARPAModel(bool output, bool renormalize) {
    vector<int> orders;
    ReadARPATopHeader(&orders);
    if (Error()) return false;
    vector<double> boweights;
    NGramCounter<LogWeightTpl<double> > ngram_counter(orders.size());
    for (auto i = 0; i < orders.size(); i++) {  // Read n-grams of each order
      ReadARPAOrderHeader(i);
      if (Error()) return false;
      ReadARPAOrder(&orders, i, &boweights, &ngram_counter);
      if (Error()) return false;
    }
    ARPAHeaderStringMatch("\\end\\");  // Verify that everything parsed well
    if (Error()) return false;
    fst_.reset(new StdVectorFst());
    ngram_counter.GetFst(fst_.get());
    ArcSort(fst_.get(), StdILabelCompare());
    SetARPABackoffWeights(&boweights);
    if (Error()) return false;
    FillARPAHoles();
    if (Error()) return false;
    SetARPANGramDests();
    Connect(fst_.get());
    if (renormalize) RenormalizeARPAModel();
    if (Error()) return false;
    DumpFst(true, output);
    return true;
  }

  // Renormalizes the ARPA format model if required.
  void RenormalizeARPAModel() {
    NGramMutableModel<Arc> ngram_model(fst_.get());
    if (ngram_model.CheckNormalization() || ngram_model.Error()) return;
    StateId st = ngram_model.UnigramState();
    if (st == fst::kNoStateId) st = fst_->Start();
    double renorm_val = ngram_model.ScalarValue(fst_->Final(st));
    double KahanVal = 0.0;
    for (ArcIterator<MutableFst<Arc>> aiter(*fst_, st); !aiter.Done();
         aiter.Next()) {
      Arc arc = aiter.Value();
      renorm_val =
          NegLogSum(renorm_val, ngram_model.ScalarValue(arc.weight), &KahanVal);
    }
    if (fst_->Final(st) != Arc::Weight::Zero()) {
      fst_->SetFinal(st, ngram_model.ScaleWeight(fst_->Final(st), -renorm_val));
    }
    for (MutableArcIterator<MutableFst<Arc>> aiter(fst_.get(), st);
         !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      arc.weight = ngram_model.ScaleWeight(arc.weight, -renorm_val);
      aiter.SetValue(arc);
    }
    ngram_model.RecalcBackoff();
    if (!ngram_model.CheckNormalization()) {
      NGRAMERROR() << "ARPA model could not be renormalized";
      SetError();
    }
  }

  // Redirects hi order arcs in acyclic count format to proper next states.
  void MakeCyclicTopology(StateId st, StateId bo,
                          const vector<bool> &bo_incoming) {
    for (MutableArcIterator<StdMutableFst> aiter(fst_.get(), st); !aiter.Done();
         aiter.Next()) {
      auto arc = aiter.Value();
      auto nst = GetLabelNextState(bo, arc.ilabel);
      if (!bo_incoming[arc.nextstate] &&
          fst_->Final(arc.nextstate) == StdArc::Weight::Zero() &&
          fst_->NumArcs(arc.nextstate) == 0) {  // if nextstate not in model
        arc.nextstate = nst;  // point to state that will persist in the model
        aiter.SetValue(arc);
      } else {
        MakeCyclicTopology(arc.nextstate, nst, bo_incoming);
      }
    }
  }

  // Collects state level information prior to changing topology.
  void SetStateBackoff(StateId st, StateId bo, vector<StateId> *bo_dest,
                       vector<double> *total_cnt, vector<bool> *bo_incoming) {
    (*bo_dest)[st] = bo;  // Records the backoff state to be added later.

    // Records that state is backed off to by another state in the model.
    (*bo_incoming)[bo] = true;
    (*total_cnt)[st] = fst_->Final(st).Value();
    double correction_value = 0.0;
    for (MutableArcIterator<StdMutableFst> aiter(fst_.get(), st); !aiter.Done();
         aiter.Next()) {
      auto arc = aiter.Value();
      (*total_cnt)[st] = NegLogSum((*total_cnt)[st],
                                   arc.weight.Value(), &correction_value);
      auto nst = GetLabelNextState(bo, arc.ilabel);
      SetStateBackoff(arc.nextstate, nst, bo_dest, total_cnt, bo_incoming);
    }
  }

  // Create re-entrant model topology from acyclic count automaton
  void AddBackoffAndCycles(StateId Unigram, Label bo_label) {
    ArcSort(fst_.get(), StdILabelCompare());  // Ensures arcs fully sorted
    vector<StateId> bo_dest(fst_->NumStates(), -1);
    vector<bool> bo_incoming(fst_->NumStates(), false);
    vector<double> total_cnt(fst_->NumStates(), StdArc::Weight::Zero().Value());

    // Stores all bigram states in a vector for ascending state functions.
    std::vector<StateId> bigram_states;
    if (fst_->Start() != Unigram) bigram_states.push_back(fst_->Start());
    for (ArcIterator<StdMutableFst> aiter(*fst_, Unigram); !aiter.Done();
         aiter.Next()) {
      const StdArc &arc = aiter.Value();
      bigram_states.push_back(arc.nextstate);
    }

    // Ascends to all states and collects state information.
    for (auto i = 0; i < bigram_states.size(); ++i) {
      SetStateBackoff(bigram_states[i], Unigram, &bo_dest, &total_cnt,
                      &bo_incoming);
    }

    // Ascends to all states from unigram and makes topology cyclic.
    for (auto i = 0; i < bigram_states.size(); ++i)
      MakeCyclicTopology(bigram_states[i], Unigram, bo_incoming);

    // Adds backoff arcs for each state in the topology.
    for (auto st = 0; st < fst_->NumStates(); ++st) {  // add backoff arcs
      if (bo_dest[st] >= 0)  // if backoff state has been recorded
        fst_->AddArc(st,
                     StdArc(bo_label, bo_label, total_cnt[st], bo_dest[st]));
    }
    ArcSort(fst_.get(), StdILabelCompare());  // resorts for new backoff arcs
    Connect(fst_.get());  // connects to dispose of states not in the model
  }

  // Control allocation of ARPA model start state; evidence comes incrementally
  void CheckInitState(vector<string> *words, StateId *Init, StateId Unigram,
                      StateId Start) {
    if (words->size() > 2 && (*Init) == Unigram) {  // 1st evidence order > 1
      if (Start >= 0)  // if start unigram already seen, use state as initial
        (*Init) = Start;
      else  // otherwise, need to create a start state
        (*Init) = fst_->AddState();
      fst_->SetStart((*Init));  // Set it as start state
    }
  }

  // Start new word when encountering whitespace, move iterator past whitespace
  bool InitNewWord(vector<string> *words, string::iterator *strit,
                   string *str) {
    while (isspace(*(*strit)))  // skip sequence of whitespace
      (*strit)++;
    if ((*strit) != str->end()) {  // if not empty string
      words->push_back(string());  // start new empty word
      return 1;
    }
    return 0;
  }

  // Read in N-gram tokens as well as count (last token) from string
  double ReadNGramFromString(string str, vector<string> *words, StateId *Init,
                             StateId Unigram, StateId Start) {
    auto strit = str.begin();
    if (!InitNewWord(words, &strit, &str)) {  // init first word, empty
      NGRAMERROR() << "NGramInput: empty line in file: format error";
      SetError();
      return 0.0;
    }
    while (strit < str.end()) {
      if (isspace(*strit)) {
        InitNewWord(words, &strit, &str);
      } else {
        (*words)[words->size() - 1] += (*strit);  // Adds character to words.
        strit++;
      }
    }
    std::stringstream cnt_ss(
        (*words)[words->size() - 1]);  // The last token is the count.
    double ngram_count;
    cnt_ss >> ngram_count;
    CheckInitState(words, Init, Unigram, Start);  // Checks start state status.
    return -log(ngram_count);  // Counts are encoded in -log-space.
  }

  // Iterates through words in the n-gram history to find current state.
  StateId GetHistoryState(vector<string> *words, vector<Label> *last_labels,
                          vector<StateId> *last_states, StateId st) {
    for (auto i = 0; i < words->size() - 2; i++) {
      bool stsym;
      bool endsym;
      Label label = GetNGramLabel((*words)[i], false, false, &stsym, &endsym);
      if (Error()) return 0;
      if (label != (*last_labels)[i]) {  // Should be from last n-gram.
        NGRAMERROR() << "NGramInput: n-gram prefix not seen in previous n-gram";
        SetError();
        return 0;
      }
      st = (*last_states)[i];  // Retrieves previously stored state.
    }
    return st;
  }

  // When reading in final token of n-gram, determines the nextstate.
  StateId GetCntNextSt(StateId st, StateId Unigram, StateId Init,
                       StateId *Start, bool stsym, bool endsym) {
    StateId nextstate = -1;
    if (stsym) {            // Start symbol: <s>
      if (st != Unigram) {  // Should not occur.
        NGRAMERROR() << "NGramInput: start symbol occurred in n-gram suffix";
        SetError();
        return nextstate;
      }
      if (Init == Unigram)            // Don't know if model is order > 1 yet
        (*Start) = fst_->AddState();  // Create state associated with <s>
      else  // Already created 2nd order Start state, stored as Init
        (*Start) = Init;
      nextstate = (*Start);
    } else if (!endsym) {  // not a </s> symbol, hence need to create a state
      nextstate = fst_->AddState();
    }
    return nextstate;
  }

  // Updates last label and state, for retrieval with following n-grams.
  int UpdateLast(vector<string> *words, int longest_ngram,
                 vector<Label> *last_labels, vector<StateId> *last_states,
                 Label label, StateId nextst) {
    if (words->size() > longest_ngram + 1) {  // Adds a dimension to vectors.
      longest_ngram++;
      last_labels->push_back(-1);
      last_states->push_back(-1);
    }
    (*last_labels)[words->size() - 2] = label;
    (*last_states)[words->size() - 2] = nextst;
    return longest_ngram;
  }

  // Reads in a sorted n-gram count file, converting to OpenGrm format.
  bool CompileNGramCounts(bool output) {
    fst_.reset(new StdVectorFst());  // Creates new FST.
    auto init = fst_->AddState();
    auto unigram = init;
    auto start = fst::kNoStateId;
    int longram = 0;  // Keeps track of longest observed n-gram in file.
    string str;
    vector<Label> last_labels;         // Stores labels from prior n-grams.
    vector<StateId> last_states;       // Stores states from prior n-grams.
    while (getline((*istrm_), str)) {  // For each string...
      vector<string> words;
      // Reads in word tokens from string, and returns count.
      double ngram_count =  ReadNGramFromString(str, &words, &init, unigram,
                                                start);
      if (Error()) return false;
      // Finds n-gram history state from prefix words in n-gram.
      auto st = GetHistoryState(&words, &last_labels, &last_states, unigram);
      if (Error()) return false;
      bool stsym;
      bool endsym;
      // Gets label of word suffix of n-gram.
      auto label =  GetNGramLabel(words[words.size() - 2], 1, 1, &stsym,
                                  &endsym);
      if (Error()) return false;
      // Gets the next state from history state and label.
      auto nextst = GetCntNextSt(st, unigram, init, &start, stsym, endsym);
      if (Error()) return false;
      // Adds arc.
      AddNGramArc(st, nextst, label, stsym, endsym, ngram_count);
      // Updates states and labels for subsequent n-grams.
      longram = UpdateLast(&words, longram, &last_labels, &last_states, label,
                           nextst);
    }
    if (init == unigram)  // Sets init as start state for unigram model.
      fst_->SetStart(init);
    AddBackoffAndCycles(unigram, 0);  // Turns into reentrant OpenGrm format.
    DumpFst(true, output);
    return true;
  }

  // Tokenizes string and store labels in a vector for building an FST.
  double FillStringLabels(string *str, vector<Label> *labels,
                          bool string_counts) {
    string token = "";
    auto strit = str->begin();
    double count = 1.0;
    if (string_counts) {
      GetWhiteSpaceToken(&strit, str, &token);
      count = atof(token.c_str());
      token = "";
    }
    while (GetWhiteSpaceToken(&strit, str, &token)) {
      labels->push_back(GetLabel(token, true, true));  // Stores index.
      token = "";
    }
    return count;
  }

  // From text corpus to symbol table
  bool CompileSymbolTable(bool output) {
    string str;
    bool gotline = static_cast<bool>(getline((*istrm_), str));
    while (gotline) {  // for each string
      vector<Label> labels;
      FillStringLabels(&str, &labels, false);
      if (Error()) return false;
      gotline = static_cast<bool>(getline((*istrm_), str));
    }
    if (!oov_symbol_.empty()) syms_->AddSymbol(oov_symbol_);
    if (output) syms_->WriteText(*ostrm_);
    return true;
  }

  // Write resulting fst to specified stream
  void DumpFst(bool incl_symbols, bool output) {
    if (incl_symbols) {
      fst_->SetInputSymbols(syms_.get());
      fst_->SetOutputSymbols(syms_.get());
    }
    if (output) fst_->Write(*ostrm_, fst::FstWriteOptions());
  }

  std::unique_ptr<MutableFst<Arc>> fst_;
  std::unique_ptr<SymbolTable> syms_;
  bool add_symbols_;
  string oov_symbol_;
  string start_symbol_;
  string end_symbol_;
  std::ifstream ifstrm_;
  std::ofstream ofstrm_;
  std::istream *istrm_;
  std::ostream *ostrm_;
  bool error_;
};

}  // namespace ngram

#endif  // NGRAM_NGRAM_INPUT_H_