/usr/include/ngram/ngram-make.h is in libngram-dev 1.3.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// NGram model class for making a model from raw counts or histograms.
#ifndef NGRAM_NGRAM_MAKE_H_
#define NGRAM_NGRAM_MAKE_H_
#include <vector>
#include <fst/script/fst-class.h>
#include <ngram/ngram-mutable-model.h>
#include <ngram/util.h>
namespace ngram {
template <class Arc>
class NGramMake : public NGramMutableModel<Arc> {
public:
typedef typename Arc::StateId StateId;
typedef typename Arc::Label Label;
typedef typename Arc::Weight Weight;
using NGramModel<Arc>::Error;
using NGramMutableModel<Arc>::GetFst;
using NGramMutableModel<Arc>::GetMutableFst;
using NGramMutableModel<Arc>::GetExpandedFst;
using NGramMutableModel<Arc>::BackoffLabel;
using NGramMutableModel<Arc>::InitModel;
using NGramMutableModel<Arc>::CheckNormalization;
using NGramMutableModel<Arc>::HiOrder;
using NGramMutableModel<Arc>::RecalcBackoff;
using NGramMutableModel<Arc>::GetBackoff;
using NGramMutableModel<Arc>::StateOrder;
using NGramMutableModel<Arc>::FillBackoffArcWeights;
using NGramMutableModel<Arc>::ScaleStateWeight;
using NGramMutableModel<Arc>::ScalarValue;
using NGramMutableModel<Arc>::SetScalarValue;
using NGramMutableModel<Arc>::NGramMutableModel;
using NGramMutableModel<Arc>::FactorValue;
// Construct NGramMake object, consisting of the FST and some
// information about the states under the assumption that the FST is a model.
// Ownership of the FST is retained by the caller.
NGramMake(MutableFst<Arc> *infst, bool backoff, Label backoff_label = 0,
double norm_eps = kNormEps, bool check_consistency = false,
bool infinite_backoff = false)
: NGramMutableModel<Arc>(infst, backoff_label, norm_eps,
check_consistency, infinite_backoff),
backoff_(backoff) {}
virtual ~NGramMake() {}
protected:
// Normalizes n-gram counts and smoothes to create an n-gram model.
// Returns true on success and false on failure.
bool MakeNGramModel() {
if (Error()) return false;
for (StateId st = 0; st < GetExpandedFst().NumStates(); ++st) {
has_all_ngrams_.push_back(false);
}
for (int order = 1; order <= HiOrder(); ++order) {
for (StateId st = 0; st < GetExpandedFst().NumStates(); ++st) {
if (StateOrder(st) == order) {
// Smoothes all states in the model, in ascending state-order order.
SmoothState(st);
if (Error()) {
NGRAMERROR() << "NGramMake: Error in smoothing state " << st;
return false;
}
}
}
}
InitModel(); // Recalculate state info
if (Error()) {
NGRAMERROR() << "NGramMake: Error in recalculating state info";
return false;
} else {
RecalcBackoff(); // Recalculate the backoff costs
if (!CheckNormalization()) { // Ensures model is fully normalized
NGRAMERROR() << "NGramMake: Final model not fully normalized";
return false;
}
}
return true;
}
// Return negative log discounted count for provided negative log count
// Need to override if some discounting is done during smoothing
// Default can be used by non-discounting methods, e.g., Witten-Bell
virtual double GetDiscount(Weight nlog_count, int order) {
return ScalarValue(nlog_count);
}
// Additional count mass at state if nothing reserved via smoothing method
// Override if method requires less or more; usmoothed should be zero
// Default can be used by most methods
virtual double EpsilonMassIfNoneReserved() const { return 1.0; }
// Return high order count mass (sum of discounted counts)
// Need to override if high order mass is not defined by discounts
// Default can be used by discounting methods, e.g., Katz or Absolute Disc.
virtual double CalculateHiOrderMass(const std::vector<double> &discounts,
double nlog_count) const {
double discount_norm = discounts[0]; // discounted count of </s>
double KahanVal = 0; // Value for Kahan summation
for (int i = 1; i < discounts.size(); ++i) { // Sum discount counts
discount_norm = NegLogSum(discount_norm, discounts[i], &KahanVal);
}
return discount_norm;
}
// Return normalization constant given the count and state
// Need to override if normalization constant is not just the count
// Default can be used if the normalizing constant is just count
virtual double CalculateTotalMass(double nlog_count, StateId st) {
return nlog_count;
}
private:
// Normalize and smooth states, using parameterized smoothing method
void SmoothState(StateId st) {
std::vector<double> discounts; // collect discounted counts for later use.
double nlog_count_sum = CollectDiscounts(st, &discounts), nlog_stored_sum;
Weight nlog_stored_sum_weight;
if (GetBackoff(st, &nlog_stored_sum_weight) < 0) {
has_all_ngrams_[st] = true;
ScaleStateWeight(st, -nlog_count_sum); // no backoff arc, unsmoothed
} else {
nlog_stored_sum = ScalarValue(nlog_stored_sum_weight);
// Calculate total count mass and higher order count mass to normalize
double total_mass = CalculateTotalMass(nlog_stored_sum, st);
double hi_order_mass = CalculateHiOrderMass(discounts, nlog_stored_sum);
has_all_ngrams_[st] = HasAllArcsInBackoff(st);
if (has_all_ngrams_[st] && total_mass < hi_order_mass) {
discounts[0] =
NegLogSum(discounts[0], NegLogDiff(total_mass, hi_order_mass));
hi_order_mass = total_mass;
}
double low_order_mass;
if (total_mass >= hi_order_mass && // if approx equal
fabs(total_mass - hi_order_mass) < kFloatEps)
total_mass = hi_order_mass; // then make equal, for later testing
if (has_all_ngrams_[st] ||
(total_mass == hi_order_mass && EpsilonMassIfNoneReserved() <= 0)) {
low_order_mass = kInfBackoff;
} else {
if (total_mass == hi_order_mass) { // if no mass reserved, add eps
total_mass = -log(exp(-total_mass) + EpsilonMassIfNoneReserved());
}
low_order_mass = NegLogDiff(total_mass, hi_order_mass);
}
NormalizeStateArcs(st, total_mass, low_order_mass - total_mass,
discounts);
}
}
// Calculate smoothed value for arc out of a state
Weight SmoothVal(double discount_cnt, double norm, double neglog_bo_prob,
double backoff_weight) {
double value = discount_cnt - norm;
if (!backoff_) {
double mixvalue = neglog_bo_prob + backoff_weight;
value = NegLogSum(value, mixvalue);
}
Weight w = Weight::Zero();
SetScalarValue(&w, value);
return w;
}
// Checks to see if all n-grams already represented at state
bool HasAllArcsInBackoff(StateId st) {
StateId bo = GetBackoff(st, 0);
if (!has_all_ngrams_[bo]) return false; // backoff state doesn't have all
size_t starcs = GetFst().NumArcs(st), boarcs = GetFst().NumArcs(bo);
if (boarcs > starcs) return false; // arcs at backoff not in current state
if (ScalarValue(GetFst().Final(bo)) !=
ScalarValue(Arc::Weight::Zero())) // count </s> symbol
boarcs++;
if (GetBackoff(bo, 0) >= 0) boarcs--; // don't count backoff arc
if (ScalarValue(GetFst().Final(st)) !=
ScalarValue(Arc::Weight::Zero())) // count </s> symbol
starcs++;
starcs--; // don't count backoff arc
if (boarcs == starcs) return true;
return false;
}
// Calculate smoothed values for all arcs leaving a state
void NormalizeStateArcs(StateId st, double norm, double neglog_bo_prob,
const std::vector<double> &discounts) {
StateId bo = GetBackoff(st, 0);
if (ScalarValue(GetFst().Final(st)) != ScalarValue(Arc::Weight::Zero())) {
GetMutableFst()->SetFinal(st,
SmoothVal(discounts[0], norm, neglog_bo_prob,
ScalarValue(GetFst().Final(bo)) +
FactorValue(GetFst().Final(st))));
}
std::vector<double> bo_arc_weight;
// fill backoff weight vector
if (!FillBackoffArcWeights(st, bo, &bo_arc_weight)) {
NGRAMERROR() << "NGramMake: could not fill backoff arc weights";
return;
}
int arc_counter = 0; // index into backoff weights
int discount_index = 1; // index into discounts (off by one, for </s>)
for (MutableArcIterator<MutableFst<Arc>> aiter(GetMutableFst(), st);
!aiter.Done(); aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel != BackoffLabel()) { // backoff weights calculated later
arc.weight = SmoothVal(discounts[discount_index++], norm,
neglog_bo_prob, bo_arc_weight[arc_counter++]);
aiter.SetValue(arc);
}
}
}
// Collects discounted counts into vector, and returns -log(sum(counts))
// If no discounting, vector collects undiscounted counts
double CollectDiscounts(StateId st, std::vector<double> *discounts) {
double nlog_count_sum = ScalarValue(GetFst().Final(st));
double KahanVal = 0.0;
int order = StateOrder(st) - 1; // for retrieving discount parameters
discounts->push_back(GetDiscount(GetFst().Final(st), order));
for (ArcIterator<ExpandedFst<Arc>> aiter(GetExpandedFst(), st);
!aiter.Done(); aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel != BackoffLabel()) { // skip backoff arc
nlog_count_sum =
NegLogSum(nlog_count_sum, ScalarValue(arc.weight), &KahanVal);
discounts->push_back(GetDiscount(arc.weight, order));
}
}
return nlog_count_sum;
}
std::vector<bool> has_all_ngrams_;
bool backoff_; // whether to make the model as backoff or mixture model
};
// Makes models from NGram count FSTs with StdArc counts.
bool NGramMakeModel(fst::StdMutableFst *fst, const string &method,
const fst::StdFst *ccfst = nullptr,
bool backoff = false, bool interpolate = false,
int64 bins = -1, double witten_bell_k = 1,
double discount_D = -1.0, int64 backoff_label = 0,
double norm_eps = kNormEps, bool check_consistency = false);
// The same, but uses scripting FSTs.
bool NGramMakeModel(fst::script::MutableFstClass *fst, const string &method,
const fst::script::FstClass *ccfst = nullptr,
bool backoff = false, bool interpolate = false,
int64 bins = -1, double witten_bell_k = 1,
double discount_D = -1.0, int64 backoff_label = 0,
double norm_eps = kNormEps, bool check_consistency = false);
// Makes models from NGram count FSTs with HistogramArc counts.
bool NGramMakeHistModel(fst::MutableFst<ngram::HistogramArc> *hist_fst,
fst::StdMutableFst *fst, const string &method,
const fst::StdFst *ccfst = nullptr,
bool interpolate = false, int64 bins = -1,
int64 backoff_label = 0, double norm_eps = kNormEps,
bool check_consistency = false);
// TODO(kbg): Figure out how to make this compatible with scripting interface.
} // namespace ngram
#endif // NGRAM_NGRAM_MAKE_H_
|