This file is indexed.

/usr/include/ngram/ngram-model.h is in libngram-dev 1.3.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// NGram model class.

#ifndef NGRAM_NGRAM_MODEL_H_
#define NGRAM_NGRAM_MODEL_H_

#include <deque>
#include <set>
#include <vector>

#include <fst/arcsort.h>
#include <fst/compose.h>
#include <fst/fst.h>
#include <fst/matcher.h>
#include <fst/vector-fst.h>
#include <ngram/hist-arc.h>
#include <ngram/util.h>

namespace ngram {

using std::set;
using std::vector;
using std::deque;

using fst::kAcceptor;
using fst::kIDeterministic;
using fst::kILabelSorted;
using fst::kNoLabel;
using fst::kNoStateId;

using fst::Fst;
using fst::StdFst;
using fst::VectorFst;
using fst::StdMutableFst;

using fst::StdArc;
using fst::LogArc;
using fst::HistogramArc;
using fst::Matcher;
using fst::MATCH_INPUT;
using fst::MATCH_NONE;
using fst::ArcIterator;

using fst::StdILabelCompare;

// Default normalization constant (e.g., for checks)
const double kNormEps = 0.001;
const double kFloatEps = 0.000001;
const double kInfBackoff = 99.00;

// Calculate - log( exp(a - b) + 1 ) for use in high precision NegLogSum
static double NegLogDeltaValue(double a, double b, double *c) {
  double x = exp(a - b), delta = -log(x + 1);
  if (x < kNormEps) {  // for small x, use Mercator Series to calculate
    delta = -x;
    for (int j = 2; j <= 4; ++j) delta += pow(-x, j) / j;
  }
  if (c) delta -= (*c);  // Sum correction from Kahan formula (if using)
  return delta;
}

// Precision method for summing reals and saving negative logs
// -log( exp(-a) + exp(-b) ) = a - log( exp(a - b) + 1 )
// Uses Mercator series and Kahan formula for additional numerical stability
static double NegLogSum(double a, double b, double *c) {
  if (a == StdArc::Weight::Zero().Value()) return b;
  if (b == StdArc::Weight::Zero().Value()) return a;
  if (a > b) return NegLogSum(b, a, c);
  double delta = NegLogDeltaValue(a, b, c), val = a + delta;
  if (c) (*c) = (val - a) - delta;  // update sum correction for Kahan formula
  return val;
}

// Summing reals and saving negative logs, no Kahan formula (backwards compat)
static double NegLogSum(double a, double b) { return NegLogSum(a, b, 0); }

// negative log of difference: -log(exp^{-a} - exp^{-b})
//   FRAGILE: assumes exp^{-a} >= exp^{-b}
static double NegLogDiff(double a, double b) {
  if (b == StdArc::Weight::Zero().Value()) return a;
  if (a >= b) {
    if (a - b < kNormEps)  // equal within fp error
      return StdArc::Weight::Zero().Value();
    LOG(FATAL) << "NegLogDiff: undefined " << a << " " << b;
  }
  return b - log(exp(b - a) - 1);
}

template <class Arc>
class NGramModel {
 public:
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;

  // Construct an NGramModel object, consisting of the FST and some
  // information about the states under the assumption that the FST is
  // a model. The 'backoff_label' is what is followed when there is no
  // word match at a given order. The 'norm_eps' is the epsilon used
  // in checking weight normalization.  If 'state_ngrams' is true,
  // this class explicitly finds, checks the consistency of and stores
  // the ngram that must be read to reach each state (normally false
  // to save some time and space).
  explicit NGramModel(const Fst<Arc> &infst, Label backoff_label = 0,
                      double norm_eps = kNormEps, bool state_ngrams = false)
      : fst_(infst),
        backoff_label_(backoff_label),
        norm_eps_(norm_eps),
        have_state_ngrams_(state_ngrams),
        error_(false) {
    InitModel();
  }
  virtual ~NGramModel() = default;

  // Number of states in the LM fst
  StateId NumStates() const { return nstates_; }

  // Size of ngram model is the sum of the number of states and number of arcs
  int64 GetSize() const {
    int64 size = 0;
    for (StateId st = 0; st < nstates_; ++st)
      size += fst_.NumArcs(st) + 1;  // number of arcs + 1 state
    return size;
  }

  // Returns highest order
  int HiOrder() const { return hi_order_; }

  // Returns order of a given state
  int StateOrder(StateId state) const {
    if (state >= 0 && state < nstates_)
      return state_orders_[state];
    else
      return -1;
  }

  // Returns n-gram that must be read to reach 'state'. '0' signifies
  // super-initial 'word'. Constructor argument 'state_ngrams' must be true.
  const vector<Label> &StateNGram(StateId state) const {
    if (!have_state_ngrams_) {
      NGRAMERROR() << "NGramModel: state ngrams not available";
      return empty_label_vector_;
    }
    return state_ngrams_[state];
  }

  // Unigram state
  StateId UnigramState() const { return unigram_; }

  // Returns the unigram cost of requested symbol if found (inf otherwise)
  double GetSymbolUnigramCost(Label symbol) const {
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);
    StateId st = unigram_;
    if (st < 0) st = fst_.Start();
    matcher.SetState(st);
    if (matcher.Find(symbol)) {
      Arc arc = matcher.Value();
      return ScalarValue(arc.weight);
    } else {
      return ScalarValue(Arc::Weight::Zero());
    }
  }

  // Label of backoff transitions
  Label BackoffLabel() const { return backoff_label_; }

  // Find the backoff state for a given state st, and provide bocost if req'd
  StateId GetBackoff(StateId st, Weight *bocost) const {
    StateId backoff = -1;
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);
    matcher.SetState(st);
    if (matcher.Find(backoff_label_)) {
      for (; !matcher.Done(); matcher.Next()) {
        Arc arc = matcher.Value();
        if (arc.ilabel == kNoLabel) continue;  // non-consuming symbol
        backoff = arc.nextstate;
        if (bocost != 0) bocost[0] = arc.weight;
      }
    }
    return backoff;
  }

  // Verifies LM topology is sane.
  bool CheckTopology() const {
    ascending_ngrams_ = 0;
    // Checks state topology
    for (StateId st = 0; st < nstates_; ++st)
      if (!CheckTopologyState(st)) return false;
    // All but start and unigram state should have a unique ascending ngram arc
    if (unigram_ != -1 && ascending_ngrams_ != nstates_ - 2) {
      VLOG(1) << "Incomplete # of ascending n-grams: " << ascending_ngrams_;
      return false;
    }
    return true;
  }

  // Iterates through all states and validate that they are fully normalized
  bool CheckNormalization() const {
    if (Error()) return false;
    for (StateId st = 0; st < nstates_; ++st)
      if (!CheckNormalizationState(st)) return false;
    return true;
  }

  // Calculate backoff cost from neglog sums of hi and low order arcs
  double CalculateBackoffCost(double hi_neglog_sum, double low_neglog_sum,
                              bool infinite_backoff = 0) const {
    double nlog_backoff_num, nlog_backoff_denom;  // backoff cost and factors
    bool return_inf = CalculateBackoffFactors(
        hi_neglog_sum, low_neglog_sum, &nlog_backoff_num, &nlog_backoff_denom,
        infinite_backoff);
    if (return_inf) return kInfBackoff;  // backoff cost is 'infinite'
    return nlog_backoff_num - nlog_backoff_denom;
  }

  // Calculates the numerator and denominator for assigning backoff cost
  bool CalculateBackoffFactors(double hi_neglog_sum, double low_neglog_sum,
                               double *nlog_backoff_num,
                               double *nlog_backoff_denom,
                               bool infinite_backoff = 0) const {
    double effective_zero = kNormEps * kFloatEps, effective_nlog_zero = 99.0;
    if (infinite_backoff && hi_neglog_sum <= kFloatEps)  // unsmoothed and p=1
      return true;
    if (hi_neglog_sum < effective_zero) hi_neglog_sum = effective_zero;
    if (low_neglog_sum < effective_zero) low_neglog_sum = effective_zero;
    if (low_neglog_sum <= 0 || hi_neglog_sum <= 0) return true;
    if (hi_neglog_sum > effective_nlog_zero) {
      (*nlog_backoff_num) = 0.0;
    } else {
      (*nlog_backoff_num) = NegLogDiff(0.0, hi_neglog_sum);
    }
    if (low_neglog_sum > effective_nlog_zero) {
      (*nlog_backoff_denom) = 0.0;
    } else {
      (*nlog_backoff_denom) = NegLogDiff(0.0, low_neglog_sum);
    }
    return false;
  }

  // Fst const reference
  const Fst<Arc> &GetFst() const { return fst_; }

  // Called at construction. If the model topology is mutated, this should
  // be re-called prior to any member function that depends on it.
  void InitModel() {
    // unigram state is set to -1 for unigram models (in which case start
    // state is the unigram state, no need to store here)
    if (fst_.Start() == kNoLabel) {
      NGRAMERROR() << "NGramModel: Empty automaton";
      SetError();
      return;
    }
    uint64 need_props = kAcceptor | kIDeterministic | kILabelSorted;
    uint64 have_props = fst_.Properties(need_props, true);
    if (!(have_props & kAcceptor)) {
      NGRAMERROR() << "NGramModel: input not an acceptor";
      SetError();
      return;
    }
    if (!(have_props & kIDeterministic)) {
      NGRAMERROR() << "NGramModel: input not deterministic";
      SetError();
      return;
    }
    if (!(have_props & kILabelSorted)) {
      NGRAMERROR() << "NGramModel: input not label sorted";
      SetError();
      return;
    }

    if (!fst::CompatSymbols(fst_.InputSymbols(), fst_.OutputSymbols())) {
      NGRAMERROR() << "NGramModel: input and output symbol tables do not match";
      SetError();
      return;
    }

    nstates_ = CountStates(fst_);
    unigram_ = GetBackoff(fst_.Start(), 0);  // set the unigram state
    ComputeStateOrders();
    if (!CheckTopology()) {
      NGRAMERROR() << "NGramModel: bad ngram model topology";
      SetError();
      return;
    }
  }

  // Accessor function for the norm_eps_ parameter
  double NormEps() const { return norm_eps_; }

  // Calculates number of n-grams at state
  int NumNGrams(StateId st) {
    int num_ngrams = fst_.NumArcs(st);  // arcs are n-grams
    if (GetBackoff(st, 0) >= 0)         // except one arc, backoff arc
      num_ngrams--;
    if (ScalarValue(fst_.Final(st)) !=
        ScalarValue(Arc::Weight::Zero()))  // </s> n-gram
      num_ngrams++;
    return num_ngrams;
  }

  // Returns the cost assigned by model to an n-gram.  '0' signifies
  // super-initial and super-final 'words'.  If the n-gram begins with
  // '0', the computation begins at the start state and the initial
  // weight is applied; otherwise the computation begins at the unigram
  // state.  If the n-gram ends with '0' (distinct from from an initial
  // '0'), the final weight is applied.
  Weight GetNGramCost(const vector<Label> &ngram) const {
    if (ngram.size() == 0) return Weight::One();

    StateId st = ngram.front() == 0 || unigram_ < 0 ? fst_.Start() : unigram_;

    // p(<s>) = p(</s>)
    Weight cost = ngram.front() == 0 && unigram_ >= 0 ? fst_.Final(unigram_)
                                                      : Weight::One();

    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);

    for (int n = 0; n < ngram.size(); ++n) {
      Label label = ngram[n];
      if (label == 0) {
        if (n == 0) continue;           // super-initial word
        if (n != ngram.size() - 1) {
          NGRAMERROR() << "end-of-string is not the super-final word";
          return Weight::Zero();
        }
        cost = Times(cost, fst_.Final(st));
      } else {
        while (true) {
          matcher.SetState(st);
          if (matcher.Find(label)) {
            Arc arc = matcher.Value();
            st = arc.nextstate;
            cost = Times(cost, arc.weight);
            break;
          } else {
            Weight bocost;
            st = GetBackoff(st, &bocost);
            if (st < 0) {
              return Weight::Zero();
            }
            cost = Times(cost, bocost);
          }
        }
      }
    }

    return cost;
  }

  // Mimic a phi matcher: follow backoff links until final state found
  Weight FinalCostInModel(StateId mst, int *order) const {
    Weight cost = Arc::Weight::One();
    while (fst_.Final(mst) == Arc::Weight::Zero()) {
      Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);
      matcher.SetState(mst);
      if (matcher.Find(backoff_label_)) {
        for (; !matcher.Done(); matcher.Next()) {
          Arc arc = matcher.Value();
          if (arc.ilabel == backoff_label_) {
            mst = arc.nextstate;             // make current state backoff state
            cost = Times(cost, arc.weight);  // add in backoff cost
          }
        }
      } else {
        NGRAMERROR() << "NGramModel: No final cost in model: " << mst;
        return Arc::Weight::Zero();
      }
    }
    (*order) = state_orders_[mst];
    // TODO(vitalyk): take care of value call
    cost = Times(cost, fst_.Final(mst));
    return cost;
  }

  // Calculate marginal state probs.  By default, uses the product of
  // the order-ascending ngram transition probabilities. If 'stationary'
  // is true, instead computes the stationary distribution of the Markov
  // chain.
  void CalculateStateProbs(vector<double> *probs,
                           bool stationary = false) const {
    if (stationary) {
      StationaryStateProbs(probs, .999999, norm_eps_);
    } else {
      NGramStateProbs(probs);
    }
    if (FLAGS_v > 1) {
      for (size_t st = 0; st < probs->size(); ++st)
        std::cerr << "st: " << st << " log_prob: " << log((*probs)[st])
                  << std::endl;
    }
  }

  // Change data for a state that would normally be computed
  // by InitModel; this allows incremental updates
  void UpdateState(StateId st, int order, bool unigram_state,
                   const vector<Label> *ngram = 0) {
    if (have_state_ngrams_ && !ngram) {
      NGRAMERROR() << "NGramModel::UpdateState: no ngram provides";
      SetError();
      return;
    }
    if (state_orders_.size() < st) {
      NGRAMERROR() << "NGramModel::UpdateState: bad state: " << st;
      SetError();
      return;
    }
    if (order > hi_order_) hi_order_ = order;

    if (state_orders_.size() == st) {  // add state info
      state_orders_.push_back(order);
      if (ngram) state_ngrams_.push_back(*ngram);
      ++nstates_;
    } else {  // modifies state info
      state_orders_[st] = order;
      if (ngram) state_ngrams_.push_back(*ngram);
    }

    if (unigram_state) unigram_ = nstates_;
  }

  // Returns a scalar value associated with a weight
  static double ScalarValue(Weight w);

  // Returns a weight that represents unit count for this model
  static Weight UnitCount();

  // Returns a factor used to scale backoff mass in interpolated models
  static double FactorValue(Weight w);

  // Returns the final for state st
  Weight GetFinalWeight(StateId st) const { return fst_.Final(st); }

  // Returns the backoff cost for state st
  Weight GetBackoffCost(StateId st) const {
    Weight bocost;
    StateId bo = GetBackoff(st, &bocost);
    if (bo < 0)  // if no backoff arc found
      bocost = Arc::Weight::Zero();
    return bocost;
  }

  // Returns true if model in a bad state/not a proper LM.
  bool Error() const { return error_; }

 protected:
  void SetError() { error_ = true; }

  // Fills a vector with the counts of each state, based on prefix count
  void FillStateCounts(vector<double> *state_counts) {
    for (int i = 0; i < nstates_; i++)
      state_counts->push_back(ScalarValue(Arc::Weight::Zero()));
    WalkStatesForCount(state_counts);
  }

  // Collect backoff arc weights in a vector
  bool FillBackoffArcWeights(StateId st, StateId bo,
                             vector<double> *bo_arc_weight) const {
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);  // for querying backoff
    matcher.SetState(bo);
    for (ArcIterator<Fst<Arc>> aiter(fst_, st); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel == backoff_label_) continue;
      if (matcher.Find(arc.ilabel)) {
        Arc barc = matcher.Value();
        // Note that we allow to scale the backoff weight by
        // a value that depends on the weight of the ngram.
        // For instance, the fractional count model mixes in a fraction
        // of lower order mass proportional to the frequency of event
        // that ngram occurs zero times. So for this model we scale
        // backoff weights by these frequences.
        // For all the other models this scaling factor defaults to 0.0
        // (unity in log semiring).
        bo_arc_weight->push_back(ScalarValue(barc.weight) +
                                 FactorValue(arc.weight));
      } else {
        NGRAMERROR() << "NGramModel: lower order arc missing: " << st;
        return false;
      }
    }
    return true;
  }

  // Uses iterator in place of matcher for arc iterators; allows
  // getting Position(). NB: begins search from current position.
  bool FindArc(ArcIterator<Fst<Arc>> *biter, Label label) const {
    while (!biter->Done()) {  // scan through arcs
      Arc barc = biter->Value();
      if (barc.ilabel == label)
        return true;                 // if label matches, true
      else if (barc.ilabel < label)  // if less than value, go to next
        biter->Next();
      else
        return false;  // otherwise no match
    }
    return false;  // no match found
  }

  // Finds the arc weight associated with a label at a state
  Weight FindArcWeight(StateId st, Label label) const {
    Weight cost = Arc::Weight::Zero();
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);
    matcher.SetState(st);
    if (matcher.Find(label)) {
      Arc arc = matcher.Value();
      cost = arc.weight;
    }
    return cost;
  }

  // Mimic a phi matcher: follow backoff arcs until label found or no backoff
  bool FindNGramInModel(StateId *mst, int *order, Label label,
                        double *cost) const {
    if (label < 0) return false;
    StateId currstate = (*mst);
    (*cost) = 0;
    (*mst) = -1;
    while ((*mst) < 0) {
      Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);
      matcher.SetState(currstate);
      if (matcher.Find(label)) {  // arc found out of current state
        Arc arc = matcher.Value();
        (*order) = state_orders_[currstate];
        (*mst) = arc.nextstate;  // assign destination as new model state
        (*cost) += ScalarValue(arc.weight);       // add cost to total
      } else if (matcher.Find(backoff_label_)) {  // follow backoff arc
        currstate = -1;
        for (; !matcher.Done(); matcher.Next()) {
          Arc arc = matcher.Value();
          if (arc.ilabel == backoff_label_) {
            currstate = arc.nextstate;  // make current state backoff state
            (*cost) += ScalarValue(arc.weight);  // add in backoff cost
          }
        }
        if (currstate < 0) return false;
      } else {
        return false;  // Found label in symbol list, but not in model
      }
    }
    return true;
  }

  // Sum final + arc probs out of state and for same transitions out of backoff
  bool CalcBONegLogSums(StateId st, double *hi_neglog_sum,
                        double *low_neglog_sum, bool infinite_backoff = false,
                        bool unigram = false) const {
    StateId bo = GetBackoff(st, 0);
    if (bo < 0 && !unigram) return false;   // only calc for states that backoff
    (*low_neglog_sum) = (*hi_neglog_sum) =  // final costs initialize the sum
        ScalarValue(fst_.Final(st));
    // if st is final
    if (bo >= 0 && (*hi_neglog_sum) != ScalarValue(Arc::Weight::Zero()))
      // re-initialize lower sum
      (*low_neglog_sum) = ScalarValue(fst_.Final(bo));
    CalcArcNegLogSums(st, bo, hi_neglog_sum, low_neglog_sum, infinite_backoff);
    return true;
  }

  // Prints state ngram to a stream
  bool PrintStateNGram(StateId st, std::ostream &ostrm = std::cerr) const {
    ostrm << "state: " << st << " order: " << state_orders_[st] << " ngram: ";
    for (int i = 0; i < state_ngrams_[st].size(); ++i)
      ostrm << state_ngrams_[st][i] << " ";
    ostrm << "\n";
    return true;
  }

  // Modifies n-gram weights according to printing parameters
  static double WeightRep(double wt, bool neglogs, bool intcnts) {
    if (!neglogs || intcnts) wt = exp(-wt);
    if (intcnts) wt = round(wt);
    return wt;
  }

  // Estimate total unigram count based on probabilities in unigram state
  // The difference between two smallest probs should be 1/N, return reciprocal
  double EstimateTotalUnigramCount() const {
    StateId st = UnigramState();
    bool first = true;
    double max = LogArc::Weight::Zero().Value(), nextmax = max;
    if (st < 0) st = GetFst().Start();  // if model unigram, use Start()
    for (ArcIterator<Fst<Arc>> aiter(GetFst(), st); !aiter.Done();
         aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel == BackoffLabel()) continue;
      if (first || ScalarValue(arc.weight) > max) {
        // maximum negative log prob case
        nextmax = max;  // keep both max and nextmax (to calculate diff)
        max = ScalarValue(arc.weight);
        first = false;
      } else if (ScalarValue(arc.weight) < max &&
                 ScalarValue(arc.weight) > nextmax) {
        nextmax = ScalarValue(arc.weight);
      }
    }
    if (nextmax == LogArc::Weight::Zero().Value()) return exp(max);
    return exp(NegLogDiff(nextmax, max));
  }

 private:
  // Iterate through arcs, accumulate neglog probs from arcs and their backoffs
  bool CalcArcNegLogSums(StateId st, StateId bo, double *hi_sum,
                         double *low_sum, bool infinite_backoff = 0) const {
    // correction values for Kahan summation
    double KahanVal1 = 0, KahanVal2 = 0;
    double init_low = (*low_sum);
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);  // for querying backoff
    if (bo >= 0) matcher.SetState(bo);
    for (ArcIterator<Fst<Arc>> aiter(fst_, st); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel == backoff_label_) continue;
      if (bo < 0 || matcher.Find(arc.ilabel)) {
        if (bo >= 0) {
          Arc barc = matcher.Value();
          (*low_sum) =  // sum of lower order probs of the same labels
              NegLogSum((*low_sum), ScalarValue(barc.weight), &KahanVal2);
        }
        (*hi_sum) =  // sum of higher order probs
            NegLogSum((*hi_sum), ScalarValue(arc.weight), &KahanVal1);
      } else {
        NGRAMERROR() << "NGramModel: No arc label match in backoff state: "
                     << st;
        return false;
      }
    }
    if (bo >= 0 && infinite_backoff && (*low_sum) == 0.0)  // ok for unsmoothed
      return true;
    if (bo >= 0 && (*low_sum) <= 0.0) {
      VLOG(1) << "lower order sum less than zero: " << st << " " << (*low_sum);
      double start_low = ScalarValue(Arc::Weight::Zero());
      if (init_low == start_low) start_low = ScalarValue(fst_.Final(bo));
      (*low_sum) = CalcBruteLowSum(st, bo, start_low);
      VLOG(1) << "new lower order sum: " << st << " " << (*low_sum);
    }
    return true;
  }

  // Iterate through arcs, accumulate neglog probs from arcs and their backoffs
  // Used in case the more efficient method fails to produce a sane value
  double CalcBruteLowSum(StateId st, StateId bo, double start_low) const {
    double low_sum = start_low, KahanVal = 0;
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);  // for querying backoff
    matcher.SetState(bo);
    ArcIterator<Fst<Arc>> biter(fst_, bo);
    Arc barc;
    for (ArcIterator<Fst<Arc>> aiter(fst_, st); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel == backoff_label_) continue;
      barc = biter.Value();
      while (!biter.Done() && barc.ilabel < arc.ilabel) {  // linear scan
        if (barc.ilabel != backoff_label_)
          low_sum =  // sum of lower order probs of different labels
              NegLogSum(low_sum, ScalarValue(barc.weight), &KahanVal);
        biter.Next();
        barc = biter.Value();
      }
      if (!biter.Done() && barc.ilabel == arc.ilabel) {
        biter.Next();
        barc = biter.Value();
      }
    }
    while (!biter.Done()) {  // linear scan
      if (barc.ilabel != backoff_label_)
        low_sum =  // sum of lower order probs of different labels
            NegLogSum(low_sum, ScalarValue(barc.weight), &KahanVal);
      biter.Next();
      barc = biter.Value();
    }
    return NegLogDiff(0.0, low_sum);
  }

  // Traverse n-gram fst and record each state's n-gram order, return highest
  void ComputeStateOrders() {
    state_orders_.clear();
    state_orders_.resize(nstates_, -1);

    if (have_state_ngrams_) {
      state_ngrams_.clear();
      state_ngrams_.resize(nstates_);
    }

    hi_order_ = 1;  // calculate highest order in the model
    deque<StateId> state_queue;
    if (unigram_ != kNoStateId) {
      state_orders_[unigram_] = 1;
      state_queue.push_back(unigram_);
      state_orders_[fst_.Start()] = hi_order_ = 2;
      state_queue.push_back(fst_.Start());
      if (have_state_ngrams_)
        state_ngrams_[fst_.Start()].push_back(0);  // initial context
    } else {
      state_orders_[fst_.Start()] = 1;
      state_queue.push_back(fst_.Start());
    }

    while (!state_queue.empty()) {
      StateId state = state_queue.front();
      state_queue.pop_front();
      for (ArcIterator<Fst<Arc>> aiter(fst_, state); !aiter.Done();
           aiter.Next()) {
        const Arc &arc = aiter.Value();
        if (state_orders_[arc.nextstate] == -1) {
          state_orders_[arc.nextstate] = state_orders_[state] + 1;
          if (have_state_ngrams_) {
            state_ngrams_[arc.nextstate] = state_ngrams_[state];
            state_ngrams_[arc.nextstate].push_back(arc.ilabel);
          }
          if (state_orders_[state] >= hi_order_)
            hi_order_ = state_orders_[state] + 1;
          state_queue.push_back(arc.nextstate);
        }
      }
    }
  }

  // Ensure correct n-gram topology for a given state.
  bool CheckTopologyState(StateId st) const {
    if (unigram_ == -1) {  // unigram model
      if (fst_.Final(fst_.Start()) == Arc::Weight::Zero()) {
        VLOG(1) << "CheckTopology: bad final weight for start state";
        return false;
      } else {
        return true;
      }
    }

    StateId bos = GetBackoff(st, 0);
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);  // for querying backoff

    if (st == unigram_) {  // unigram state
      if (fst_.Final(unigram_) == Arc::Weight::Zero()) {
        VLOG(1) << "CheckTopology: bad final weight for unigram state: "
                << unigram_;
        return false;
      } else if (have_state_ngrams_ && !state_ngrams_[unigram_].empty()) {
        VLOG(1) << "CheckTopology: bad unigram state: " << unigram_;
        return false;
      }
    } else {  // non-unigram state
      if (bos == -1) {
        VLOG(1) << "CheckTopology: no backoff state: " << st;
        return false;
      }

      if (fst_.Final(st) != Arc::Weight::Zero() &&
          fst_.Final(bos) == Arc::Weight::Zero()) {
        VLOG(1) << "CheckTopology: bad final weight for backoff state: " << st;
        return false;
      }

      if (StateOrder(st) != StateOrder(bos) + 1) {
        VLOG(1) << "CheckTopology: bad backoff arc from: " << st
                << " with order: " << StateOrder(st) << " to state: " << bos
                << " with order: " << StateOrder(bos);
        return false;
      }
      matcher.SetState(bos);
    }

    for (ArcIterator<Fst<Arc>> aiter(fst_, st); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();

      if (StateOrder(st) < StateOrder(arc.nextstate)) ++ascending_ngrams_;

      if (have_state_ngrams_ && !CheckStateNGrams(st, arc)) {
        VLOG(1) << "CheckTopology: inconsistent n-gram states: " << st << " -- "
                << arc.ilabel << "/" << arc.weight << " -> " << arc.nextstate;
        return false;
      }

      if (st != unigram_) {
        if (arc.ilabel == backoff_label_) continue;
        if (!matcher.Find(arc.ilabel)) {
          VLOG(1) << "CheckTopology: unmatched arc at backoff state: "
                  << arc.ilabel << "/" << arc.weight << " for state: " << st;
          return false;
        }
      }
    }
    return true;
  }

  // Checks state ngrams for consistency
  bool CheckStateNGrams(StateId st, const Arc &arc) const {
    vector<Label> state_ngram;
    bool boa = arc.ilabel == backoff_label_;

    int j = state_orders_[st] - state_orders_[arc.nextstate] + (boa ? 0 : 1);
    if (j < 0) return false;

    for (int i = j; i < state_ngrams_[st].size(); ++i)
      state_ngram.push_back(state_ngrams_[st][i]);
    if (!boa && j <= state_ngrams_[st].size())
      state_ngram.push_back(arc.ilabel);

    return state_ngram == state_ngrams_[arc.nextstate];
  }

  // Ensure normalization for a given state to error epsilon
  // sum of state probs + exp(-backoff_cost) - sum of arc backoff probs = 1
  bool CheckNormalizationState(StateId st) const {
    double Norm, Norm1;
    Weight bocost;
    StateId bo = GetBackoff(st, &bocost);
    // final costs initialize the sum
    Norm = Norm1 = ScalarValue(fst_.Final(st));
    if (bo >= 0 && Norm != ScalarValue(Arc::Weight::Zero()))  // if st is final
      Norm1 = ScalarValue(fst_.Final(bo));  // re-initialize lower sum
    if (!CalcArcNegLogSums(st, bo, &Norm, &Norm1,
                           (ScalarValue(bocost) == kInfBackoff))) {
      return false;
    }
    return EvaluateNormalization(st, bo, ScalarValue(bocost), Norm, Norm1);
  }

  // For accumulated negative log probabilities, test for normalization
  bool EvaluateNormalization(StateId st, StateId bo, double bocost, double norm,
                             double norm1) const {
    double newnorm = norm;
    if (bo >= 0) {
      newnorm = NegLogSum(norm, bocost);
      if (newnorm < norm1 + bocost)
        newnorm = NegLogDiff(newnorm, norm1 + bocost);
      else
        newnorm = NegLogDiff(norm1 + bocost, newnorm);
    }
    // NOTE: can we automatically derive an appropriate epsilon?
    if (fabs(newnorm) > norm_eps_ &&  // not normalized
        (bo < 0 || !ReevaluateNormalization(st, bocost, norm, norm1))) {
      VLOG(1) << "State ID: " << st << "; " << fst_.NumArcs(st) << " arcs;"
              << "  -log(sum(P)) = " << newnorm << ", should be 0";
      VLOG(1) << norm << " " << norm1;
      return false;
    }
    return true;
  }

  // For accumulated negative log probabilities, a 2nd test for normalization
  // Intended for states with very high magnitude backoff cost, which makes
  // previous test unreliable
  bool ReevaluateNormalization(StateId st, double bocost, double norm,
                               double norm1) const {
    double newalpha = CalculateBackoffCost(norm, norm1);
    // NOTE: can we automatically derive an appropriate epsilon?
    VLOG(1) << "Required re-evaluation of normalization: state " << st << " "
            << norm << " " << norm1 << " " << newalpha << " " << norm_eps_;
    if (fabs(newalpha - bocost) > norm_eps_) return false;
    return true;
  }

  // Collects prefix counts for arcs out of a specific state
  void CollectPrefixCounts(vector<double> *state_counts, StateId st) const {
    for (ArcIterator<Fst<Arc>> aiter(fst_, st); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel != backoff_label_ &&  // only counting non-backoff arcs
          state_orders_[st] < state_orders_[arc.nextstate]) {  // that + order
        (*state_counts)[arc.nextstate] = ScalarValue(arc.weight);
        CollectPrefixCounts(state_counts, arc.nextstate);
      }
    }
  }

  // Walks model automaton to collect prefix counts for each state
  void WalkStatesForCount(vector<double> *state_counts) const {
    if (unigram_ != -1) {
      (*state_counts)[fst_.Start()] = ScalarValue(fst_.Final(unigram_));
      CollectPrefixCounts(state_counts, unigram_);
    }
    CollectPrefixCounts(state_counts, fst_.Start());
  }

  // checks non-negativity of weight and uses +;
  // Test to see if model came from pre-summing a mixture
  // Should have: backoff weights > 0; higher order always higher prob (summed)
  bool MixtureConsistent() const {
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);  // for querying backoff
    for (StateId st = 0; st < nstates_; ++st) {
      Weight bocost;
      StateId bo = GetBackoff(st, &bocost);
      if (bo >= 0) {     // if bigram or higher order
        if (bocost < 0)  // Backoff cost > 0 (can't happen with mixture)
          return false;
        matcher.SetState(bo);
        for (ArcIterator<Fst<Arc>> aiter(fst_, st); !aiter.Done();
             aiter.Next()) {
          Arc arc = aiter.Value();
          if (arc.ilabel == backoff_label_) {
            continue;
          }
          if (matcher.Find(arc.ilabel)) {
            Arc barc = matcher.Value();
            if (ScalarValue(arc.weight) >
                ScalarValue(barc.weight) + ScalarValue(bocost)) {
              return false;  // L P + (1-L) P' < (1-L) P' (can't happen w/mix)
            }
          } else {
            NGRAMERROR() << "NGramModel: lower order arc missing: " << st;
            SetError();
            return false;
          }
        }
        if (ScalarValue(fst_.Final(st)) != ScalarValue(Arc::Weight::Zero()) &&
            ScalarValue(fst_.Final(st)) >
                SclarValue(fst_.Final(bo)) + ScalarValue(bocost))
          return false;  // final cost doesn't sum
      }
    }
    return true;
  }

  // At a given state, calculate the marginal prob p(h) based on
  // the smoothed, order-ascending n-gram transition probabilities.
  void NGramStateProb(StateId st, vector<double> *probs) const {
    for (ArcIterator<Fst<Arc>> aiter(fst_, st); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel == backoff_label_) continue;
      if (state_orders_[arc.nextstate] > state_orders_[st]) {
        (*probs)[arc.nextstate] = (*probs)[st] * exp(-ScalarValue(arc.weight));
        NGramStateProb(arc.nextstate, probs);
      }
    }
  }

  // Calculate marginal state probs as the product of the smoothed,
  // order-ascending ngram transition probablities: p(abc) =
  // p(a)p(b|a)p(c|ba) (odd w/KN)
  void NGramStateProbs(vector<double> *probs, bool norm = false) const {
    probs->clear();
    probs->resize(nstates_, 0.0);
    if (unigram_ < 0) {
      // p(unigram state) = 1
      (*probs)[fst_.Start()] = 1.0;
    } else {
      // p(unigram state) = 1
      (*probs)[unigram_] = 1.0;
      NGramStateProb(unigram_, probs);
      // p(<s>) = p(</s>)
      (*probs)[fst_.Start()] = exp(-ScalarValue(fst_.Final(unigram_)));
    }
    NGramStateProb(fst_.Start(), probs);

    if (norm) {  // Normalize result, as a starting point for the power method
      double sum = 0.0;
      for (size_t st = 0; st < probs->size(); ++st) sum += (*probs)[st];
      for (size_t st = 0; st < probs->size(); ++st) (*probs)[st] /= sum;
    }
  }

  // Exponentiates the weights
  // At a given state, calculate one step of the power method
  // for the stationary distribution of the closure of the
  // LM with re-entry probability 'alpha'.
  void StationaryStateProb(StateId st, vector<double> *init_probs,
                           vector<double> *probs, double alpha) const {
    Matcher<Fst<Arc>> matcher(fst_, MATCH_INPUT);  // for querying backoff
    Weight bocost;
    StateId bo = GetBackoff(st, &bocost);
    if (bo != -1) {
      // Treats backoff like an epsilon transition
      matcher.SetState(bo);
      (*init_probs)[bo] += (*init_probs)[st] * exp(-ScalarValue(bocost));
    }

    for (ArcIterator<Fst<Arc>> aiter(fst_, st); !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel == backoff_label_) continue;
      (*probs)[arc.nextstate] +=
          (*init_probs)[st] * exp(-ScalarValue(arc.weight));
      if (bo != -1 && matcher.Find(arc.ilabel)) {
        // Subtracts corrective weight for backed-off arc
        const Arc &barc = matcher.Value();
        (*probs)[barc.nextstate] -=
            (*init_probs)[st] *
            exp(-ScalarValue(barc.weight) - ScalarValue(bocost));
      }
    }

    if (ScalarValue(fst_.Final(st)) != ScalarValue(Weight::Zero())) {
      (*probs)[fst_.Start()] +=
          (*init_probs)[st] * exp(-ScalarValue(fst_.Final(st))) * alpha;
      if (bo != -1) {
        // Subtracts corrective weight for backed-off superfinal arc
        (*probs)[fst_.Start()] -=
            (*init_probs)[st] *
            exp(-ScalarValue(fst_.Final(bo)) - ScalarValue(bocost)) * alpha;
      }
    }
  }

  // Calculate marginal state probs as the stationary distribution
  // of the Markov chain consisting of the closure of the LM
  // with re-entry probability 'alpha'. The convergence is controlled
  // by 'converge_eps'
  void StationaryStateProbs(vector<double> *probs, double alpha,
                            double converge_eps) const {
    vector<double> init_probs, last_probs;
    // Initialize based on ngram transition probabilities
    NGramStateProbs(&init_probs, true);
    last_probs = init_probs;

    size_t changed;
    do {
      probs->clear();
      probs->resize(nstates_, 0.0);
      for (int order = hi_order_; order > 0; --order) {
        for (size_t st = 0; st < nstates_; ++st) {
          if (state_orders_[st] == order)
            StationaryStateProb(st, &init_probs, probs, alpha);
        }
      }

      changed = 0;
      for (size_t st = 0; st < nstates_; ++st) {
        if (fabs((*probs)[st] - last_probs[st]) > converge_eps * last_probs[st])
          ++changed;
        last_probs[st] = init_probs[st] = (*probs)[st];
      }
      VLOG(1) << "NGramModel::StationaryStateProbs: state probs changed: "
              << changed;
    } while (changed > 0);
  }

  const Fst<Arc> &fst_;
  StateId unigram_;           // unigram state
  Label backoff_label_;       // label of backoff transitions
  StateId nstates_;           // number of states in LM
  int hi_order_;              // highest order in the model
  double norm_eps_;           // epsilon diff allowed to ensure normalized
  vector<int> state_orders_;  // order of each state
  bool have_state_ngrams_;    // compute and store state n-gram info
  mutable size_t ascending_ngrams_;     // # of n-gram arcs that increase order
  vector<vector<Label>> state_ngrams_;  // n-gram always read to reach state
  const vector<Label> empty_label_vector_;
  bool error_;

  NGramModel(const NGramModel &) = delete;
  NGramModel &operator=(const NGramModel &) = delete;
};

template <typename T>
double NGramModel<T>::ScalarValue(NGramModel<T>::Weight w) {
  return w.Value();
}

template <>
double inline NGramModel<HistogramArc>::ScalarValue(
    NGramModel<HistogramArc>::Weight w) {
  return w.Value(0).Value();
}

template <typename Arc>
typename Arc::Weight NGramModel<Arc>::UnitCount() {
  return Arc::Weight::One();
}

template <>
inline typename HistogramArc::Weight NGramModel<HistogramArc>::UnitCount() {
  vector<StdArc::Weight> weights(kHistogramBins);
  for (int i = 0; i < kHistogramBins; i++) {
    weights[i] = StdArc::Weight::Zero();
  }
  if (kHistogramBins > 0) {
    weights[0] = StdArc::Weight::One();
  }
  if (kHistogramBins > 2) {
    weights[2] = StdArc::Weight::One();
  }
  static const fst::PowerWeight<StdArc::Weight, kHistogramBins> one(
      weights.begin(), weights.end());
  return one;
}

template <typename T>
inline double NGramModel<T>::FactorValue(NGramModel<T>::Weight w) {
  return 0.0;
}

template <>
inline double NGramModel<HistogramArc>::FactorValue(
    NGramModel<HistogramArc>::Weight w) {
  return w.Value(1).Value();
}

}  // namespace ngram

#endif  // NGRAM_NGRAM_MODEL_H_