This file is indexed.

/usr/include/ngram/ngram-mutable-model.h is in libngram-dev 1.3.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// NGram mutable model class.

#ifndef NGRAM_NGRAM_MUTABLE_MODEL_H_
#define NGRAM_NGRAM_MUTABLE_MODEL_H_

#include <algorithm>
#include <deque>
#include <vector>

#include <fst/arcsort.h>
#include <fst/mutable-fst.h>
#include <fst/statesort.h>
#include <fst/vector-fst.h>
#include <ngram/ngram-model.h>
#include <ngram/util.h>

namespace ngram {

using fst::MutableFst;
using fst::ExpandedFst;
using fst::MutableArcIterator;

using std::deque;

using fst::VectorFst;
using fst::ILabelCompare;

using fst::kAcceptor;
using fst::kIDeterministic;
using fst::kILabelSorted;

template <class Arc>
class NGramMutableModel : public NGramModel<Arc> {
 public:
  typedef typename Arc::StateId StateId;
  typedef typename Arc::Label Label;
  typedef typename Arc::Weight Weight;

  using NGramModel<Arc>::GetBackoff;
  using NGramModel<Arc>::NumNGrams;
  using NGramModel<Arc>::GetFst;
  using NGramModel<Arc>::BackoffLabel;
  using NGramModel<Arc>::NumStates;
  using NGramModel<Arc>::UnigramState;
  using NGramModel<Arc>::CalcBONegLogSums;
  using NGramModel<Arc>::CalculateBackoffCost;
  using NGramModel<Arc>::ScalarValue;

  // Constructs an NGramMutableModel object, derived from NGramModel,
  // that adds mutable methods such as backoff normalization.
  // Ownership of the FST is retained by the caller.
  explicit NGramMutableModel(MutableFst<Arc> *infst, Label backoff_label = 0,
                             double norm_eps = kNormEps,
                             bool state_ngrams = false,
                             bool infinite_backoff = false)
      : NGramModel<Arc>(*infst, backoff_label, norm_eps, state_ngrams),
        infinite_backoff_(infinite_backoff),
        mutable_fst_(infst) {}

  // ExpandedFst const reference
  const ExpandedFst<Arc> &GetExpandedFst() const { return *mutable_fst_; }

  // Mutable Fst pointer
  MutableFst<Arc> *GetMutableFst() { return mutable_fst_; }

  // For given state, recalculates backoff cost, assigns to backoff arc
  void RecalcBackoff(StateId st) {
    double hi_neglog_sum, low_neglog_sum;
    if (CalcBONegLogSums(st, &hi_neglog_sum, &low_neglog_sum,
                         infinite_backoff_)) {
      UpdateBackoffCost(st, hi_neglog_sum, low_neglog_sum);
    }
  }

  // For all states, recalculates backoff cost, assigns to backoff arc
  // (if exists)
  void RecalcBackoff() {
    for (StateId st = 0; st < mutable_fst_->NumStates(); ++st) {
      if (NGramModel<Arc>::Error()) return;
      RecalcBackoff(st);
    }
  }

  // Scales weights in the whole model
  void ScaleWeights(double scale) {
    for (StateId st = 0; st < mutable_fst_->NumStates(); ++st)
      ScaleStateWeight(st, scale);
  }

  // Looks for infinite backoff cost in model, sets flag to allow if found
  void SetAllowInfiniteBO() {
    for (StateId s = 0; s < NumStates(); ++s) {
      Weight bocost;
      StateId bo = GetBackoff(s, &bocost);
      if (bo >= 0 && ScalarValue(bocost) >= kInfBackoff) {
        infinite_backoff_ = true;  // found an 'infinite' backoff, so true
        return;
      }
    }
  }

  // Sorts states in ngram-context lexicographic order.
  void SortStates() {
    std::vector<StateId> order(NumStates()), inv_order(NumStates());
    for (StateId s = 0; s < NumStates(); ++s) order[s] = s;
    std::sort(order.begin(), order.end(), StateCompare(*this));
    for (StateId s = 0; s < NumStates(); ++s) inv_order[order[s]] = s;
    StateSort(mutable_fst_, inv_order);
  }

  // Set a scalar value of a given weight to a specified value
  void SetScalarValue(Weight *w, double scalar);

  // Scale given weight by a given scalar
  Weight ScaleWeight(Weight w, double scale);

 protected:
  Weight GetBackoffFinalCost(StateId st) const {
    if (mutable_fst_->Final(st) != Arc::Weight::Zero()) {
      return mutable_fst_->Final(st);
    }
    Weight fcost;
    StateId bo = GetBackoff(st, &fcost);
    fcost = Times(fcost, GetBackoffFinalCost(bo));
    if (fcost != Arc::Weight::Zero()) {
      mutable_fst_->SetFinal(st, fcost);
    }
    return fcost;
  }

  // Uses iterator in place of matcher for mutable arc iterators,
  // avoids full copy and allows getting Position(). NB: begins
  // search from current position.
  bool FindMutableArc(MutableArcIterator<MutableFst<Arc>> *biter,
                      Label label) const {
    while (!biter->Done()) {  // scan through arcs
      Arc barc = biter->Value();
      if (barc.ilabel == label)
        return true;                 // if label matches, true
      else if (barc.ilabel < label)  // if less than value, go to next
        biter->Next();
      else
        return false;  // otherwise no match
    }
    return false;  // no match found
  }

  // Scale weights by some factor, for normalizing and use in model merging
  void ScaleStateWeight(StateId st, double scale) {
    if (mutable_fst_->Final(st) != Arc::Weight::Zero()) {
      mutable_fst_->SetFinal(st, ScaleWeight(mutable_fst_->Final(st), scale));
    }
    for (MutableArcIterator<MutableFst<Arc>> aiter(mutable_fst_, st);
         !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel != BackoffLabel()) {  // only scaling non-backoff arcs
        arc.weight = ScaleWeight(arc.weight, scale);
        aiter.SetValue(arc);
      }
    }
  }

  // Sorts arcs in state in ilabel order.
  void SortArcs(StateId s) {
    ILabelCompare<Arc> comp;
    std::vector<Arc> arcs;
    for (ArcIterator<MutableFst<Arc>> aiter(*mutable_fst_, s); !aiter.Done();
         aiter.Next())
      arcs.push_back(aiter.Value());
    std::sort(arcs.begin(), arcs.end(), comp);
    mutable_fst_->DeleteArcs(s);
    for (size_t a = 0; a < arcs.size(); ++a) mutable_fst_->AddArc(s, arcs[a]);
  }

  // Replace backoff weight with -log p(backoff)
  void DeBackoffNGramModel() {
    for (StateId st = 0; st < mutable_fst_->NumStates(); ++st) {
      double hi_neglog_sum, low_neglog_sum;
      if (CalcBONegLogSums(st, &hi_neglog_sum, &low_neglog_sum)) {
        MutableArcIterator<MutableFst<Arc>> aiter(mutable_fst_, st);
        if (FindMutableArc(&aiter, BackoffLabel())) {
          Arc arc = aiter.Value();
          SetScalarValue(&arc.weight, -log(1 - exp(-hi_neglog_sum)));
          aiter.SetValue(arc);
        } else {
          NGRAMERROR() << "NGramMutableModel: No backoff arc found: " << st;
          NGramModel<Arc>::SetError();
          return;
        }
      }
    }
  }

 private:
  // Calculate and assign backoff cost from neglog
  // sums of hi and low order arcs
  void UpdateBackoffCost(StateId st, double hi_neglog_sum,
                         double low_neglog_sum) {
    double alpha =
        CalculateBackoffCost(hi_neglog_sum, low_neglog_sum, infinite_backoff_);
    AdjustCompleteStates(st, &alpha);
    MutableArcIterator<MutableFst<Arc>> aiter(mutable_fst_, st);
    if (FindMutableArc(&aiter, BackoffLabel())) {
      Arc arc = aiter.Value();
      SetScalarValue(&arc.weight, alpha);
      aiter.SetValue(arc);
    } else {
      NGRAMERROR() << "NGramMutableModel: No backoff arc found: " << st;
      NGramModel<Arc>::SetError();
    }
  }

  // Sets alpha to kInfBackoff for states with every possible n-gram
  void AdjustCompleteStates(StateId st, double *alpha) {
    int unigram_state = UnigramState();
    if (unigram_state < 0) unigram_state = GetFst().Start();
    if (NumNGrams(unigram_state) == NumNGrams(st)) (*alpha) = kInfBackoff;
  }

  // Scan arcs and remove lower order from arc weight
  void UnSumState(StateId st) {
    Weight bocost;
    StateId bo = GetBackoff(st, &bocost);
    for (MutableArcIterator<MutableFst<Arc>> aiter(mutable_fst_, st);
         !aiter.Done(); aiter.Next()) {
      Arc arc = aiter.Value();
      if (arc.ilabel == BackoffLabel()) continue;
      SetScalarValue(&arc.weight,
                     NegLogDiff(ScalarValue(arc.weight),
                                ScalarValue(FindArcWeight(bo, arc.ilabel)) +
                                    ScalarValue(bocost)));
      aiter.SetValue(arc);
    }
    if (ScalarValue(mutable_fst_->Final(st)) !=
        ScalarValue(Arc::Weight::Zero())) {
      Weight w = mutable_fst_->Final(st);
      SetScalarValue(&w, NegLogDiff(ScalarValue(mutable_fst_->Final(st)),
                                    ScalarValue(mutable_fst_->Final(bo)) +
                                        ScalarValue(bocost)));
      mutable_fst_->SetFinal(st, w);
    }
  }

  class StateCompare {
   public:
    explicit StateCompare(const NGramModel<Arc> &ngramlm) : ngramlm_(ngramlm) {}

    bool operator()(StateId s1, StateId s2) const {
      std::vector<Label> ngram1 = ngramlm_.StateNGram(s1);
      std::vector<Label> ngram2 = ngramlm_.StateNGram(s2);
      return lexicographical_compare(ngram1.begin(), ngram1.end(),
                                     ngram2.begin(), ngram2.end());
    }

   private:
    const NGramModel<Arc> &ngramlm_;
  };

  bool infinite_backoff_;
  MutableFst<Arc> *mutable_fst_;
};

template <typename Arc>
void NGramMutableModel<Arc>::SetScalarValue(
    typename NGramMutableModel<Arc>::Weight *w, double scalar) {
  *w = scalar;
}

template <>
inline void NGramMutableModel<HistogramArc>::SetScalarValue(
    NGramMutableModel<HistogramArc>::Weight *w, double scalar) {
  w->SetValue(0, scalar);
}

template <typename Arc>
typename NGramMutableModel<Arc>::Weight NGramMutableModel<Arc>::ScaleWeight(
    NGramMutableModel<Arc>::Weight w, double scalar) {
  return Times(scalar, w);
}

template <>
inline NGramMutableModel<HistogramArc>::Weight
NGramMutableModel<HistogramArc>::ScaleWeight(
    NGramMutableModel<HistogramArc>::Weight w, double scalar) {
  w.SetValue(0, Times(w.Value(0), scalar));
  return w;
}

}  // namespace ngram

#endif  // NGRAM_NGRAM_MUTABLE_MODEL_H_