This file is indexed.

/usr/include/ngram/ngram-randgen.h is in libngram-dev 1.3.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// Classes to generate random sentences from an LM or more generally
// paths through any FST where epsilons are treated as failure transitions.

#ifndef NGRAM_NGRAM_RANDGEN_H_
#define NGRAM_NGRAM_RANDGEN_H_

#include <sys/types.h>
#include <unistd.h>
#include <vector>

// Faster multinomial sampling possible if Gnu Scientific Library available.
#ifdef HAVE_GSL
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#endif  // HAVE_GSL

#include <fst/fst.h>
#include <fst/randgen.h>
#include <ngram/util.h>

namespace ngram {

using fst::Fst;
using fst::ArcIterator;
using fst::LogWeight;
using fst::Log64Weight;

// Same as FastLogProbArcSelector but treats *all* epsilons as
// failure transitions that have a backoff weight. The LM must
// be fully normalized.
template <class A>
class NGramArcSelector {
 public:
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;

  explicit NGramArcSelector(int seed = time(0) + getpid()) : seed_(seed) {
    srand(seed);
  }

  // Samples one transition.
  size_t operator()(const Fst<A> &fst, StateId s, double total_prob,
                    fst::CacheLogAccumulator<A> *accumulator) const {
    double r = rand() / (RAND_MAX + 1.0);
    // In effect, subtract out excess mass from the cumulative distribution.
    // Requires the backoff epsilon be the initial transition.
    double z = r + total_prob - 1.0;
    if (z <= 0.0) return 0;
    ArcIterator<Fst<A> > aiter(fst, s);
    return accumulator->LowerBound(-log(z), &aiter);
  }

  int Seed() const { return seed_; }

 private:
  int seed_;
  fst::WeightConvert<Weight, LogWeight> to_log_weight_;
};

}  // namespace ngram

namespace fst {

// Specialization for NGramArcSelector.
template <class A>
class ArcSampler<A, ngram::NGramArcSelector<A> > {
 public:
  typedef ngram::NGramArcSelector<A> S;
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;
  typedef typename A::Label Label;
  typedef CacheLogAccumulator<A> C;

  ArcSampler(const Fst<A> &fst, const S &arc_selector, int max_length = INT_MAX)
      : fst_(fst),
        arc_selector_(arc_selector),
        max_length_(max_length),
        matcher_(fst_, MATCH_INPUT) {
    // Ensure the input FST has any epsilons as the initial transitions.
    if (!fst_.Properties(kILabelSorted, true))
      NGRAMERROR() << "ArcSampler:  is not input-label sorted";
    accumulator_.reset(new C());
    accumulator_->Init(fst);
#ifdef HAVE_GSL
    rng_ = gsl_rng_alloc(gsl_rng_taus);
    gsl_rng_set(rng_, arc_selector.Seed());
#endif  // HAVE_GSL
  }

  ArcSampler(const ArcSampler<A, S> &sampler, const Fst<A> *fst = 0)
      : fst_(fst ? *fst : sampler.fst_),
        arc_selector_(sampler.arc_selector_),
        max_length_(sampler.max_length_),
        matcher_(fst_, MATCH_INPUT) {
    if (fst) {
      accumulator_.reset(new C());
      accumulator_->Init(*fst);
    } else {  // shallow copy
      accumulator_.reset(new C(*sampler.accumulator_));
    }
  }

  ~ArcSampler() {
#ifdef HAVE_GSL
    gsl_rng_free(rng_);
#endif  // HAVE_GSL
  }

  bool Sample(const RandState<A> &rstate) {
    sample_map_.clear();
    forbidden_labels_.clear();

    if ((fst_.NumArcs(rstate.state_id) == 0 &&
         fst_.Final(rstate.state_id) == Weight::Zero()) ||
        rstate.length == max_length_) {
      Reset();
      return false;
    }

    double total_prob = TotalProb(rstate.state_id);

#ifdef HAVE_GSL
    if (fst_.NumArcs(rstate.state_id) + 1 < rstate.nsamples) {
      Weight numer_weight, denom_weight;
      BackoffWeight(rstate.state_id, total_prob, &numer_weight, &denom_weight);
      MultinomialSample(rstate, numer_weight);
      Reset();
      return true;
    }
#endif  // HAVE_GSL

    ArcIterator<Fst<A> > aiter(fst_, rstate.state_id);

    for (size_t i = 0; i < rstate.nsamples; ++i) {
      size_t pos = 0;
      Label label = kNoLabel;
      do {
        pos = arc_selector_(fst_, rstate.state_id, total_prob,
                            accumulator_.get());
        if (pos < fst_.NumArcs(rstate.state_id)) {
          aiter.Seek(pos);
          label = aiter.Value().ilabel;
        } else {
          label = kNoLabel;
        }
      } while (ForbiddenLabel(label, rstate));
      ++sample_map_[pos];
    }
    Reset();
    return true;
  }

  bool Done() const { return sample_iter_ == sample_map_.end(); }
  void Next() { ++sample_iter_; }
  std::pair<size_t, size_t> Value() const { return *sample_iter_; }
  void Reset() { sample_iter_ = sample_map_.begin(); }
  bool Error() const { return false; }

 private:
  double TotalProb(StateId s) {
    // Get cumulative weight at the state.
    ArcIterator<Fst<A> > aiter(fst_, s);
    accumulator_->SetState(s);
    Weight total_weight =
        accumulator_->Sum(fst_.Final(s), &aiter, 0, fst_.NumArcs(s));
    return exp(-to_log_weight_(total_weight).Value());
  }

  void BackoffWeight(StateId s, double total_prob, Weight *numer_weight,
                     Weight *denom_weight);

#ifdef HAVE_GSL
  void MultinomialSample(const RandState<A> &rstate, Weight fail_weight);
#endif  // HAVE_GSL

  bool ForbiddenLabel(Label l, const RandState<A> &rstate);

  const Fst<A> &fst_;
  const S &arc_selector_;
  int max_length_;

  // Stores (N, K) as described for Value().
  std::map<size_t, size_t> sample_map_;
  std::map<size_t, size_t>::const_iterator sample_iter_;
  std::unique_ptr<C> accumulator_;

#ifdef HAVE_GSL
  gsl_rng *rng_;              // GNU Sci Lib random number generator
  vector<double> pr_;         // multinomial parameters
  vector<unsigned int> pos_;  // sample positions
  vector<unsigned int> n_;    // sample counts
#endif                        // HAVE_GSL

  WeightConvert<Log64Weight, Weight> to_weight_;
  WeightConvert<Weight, Log64Weight> to_log_weight_;
  std::set<Label>
      forbidden_labels_;  // labels forbidden for failure transitions
  Matcher<Fst<A> > matcher_;
};

// Finds and decomposes the backoff probability into its numerator and
// denominator.
template <class A>
void ArcSampler<A, ngram::NGramArcSelector<A> >::BackoffWeight(
    StateId s, double total, Weight *numer_weight, Weight *denom_weight) {
  // Get backoff prob.
  double backoff = 0.0;
  matcher_.SetState(s);
  matcher_.Find(0);
  for (; !matcher_.Done(); matcher_.Next()) {
    const A &arc = matcher_.Value();
    if (arc.ilabel != kNoLabel) {  // not an implicit epsilon loop
      backoff = exp(-to_log_weight_(arc.weight).Value());
      break;
    }
  }

  if (backoff == 0.0) {  // no backoff transition
    *numer_weight = Weight::Zero();
    *denom_weight = Weight::Zero();
    return;
  }

  // total = 1 - numer + backoff
  double numer = 1.0 + backoff - total;
  *numer_weight = to_weight_(-log(numer));

  // backoff = numer/denom
  double denom = numer / backoff;
  *denom_weight = to_weight_(-log(denom));
}

#ifdef HAVE_GSL
template <class A>
void ArcSampler<A, ngram::NGramArcSelector<A> >::MultinomialSample(
    const RandState<A> &rstate, Weight fail_weight) {
  pr_.clear();
  pos_.clear();
  n_.clear();
  size_t pos = 0;
  for (ArcIterator<Fst<A> > aiter(fst_, rstate.state_id); !aiter.Done();
       aiter.Next(), ++pos) {
    const A &arc = aiter.Value();
    if (!ForbiddenLabel(arc.ilabel, rstate)) {
      pos_.push_back(pos);
      Weight weight = arc.ilabel == 0 ? fail_weight : arc.weight;
      pr_.push_back(exp(-to_log_weight_(weight).Value()));
    }
  }
  if (fst_.Final(rstate.state_id) != Weight::Zero() &&
      !ForbiddenLabel(kNoLabel, rstate)) {
    pos_.push_back(pos);
    pr_.push_back(exp(-to_log_weight_(fst_.Final(rstate.state_id)).Value()));
  }

  if (rstate.nsamples < UINT_MAX) {
    n_.resize(pr_.size());
    gsl_ran_multinomial(rng_, pr_.size(), rstate.nsamples, &(pr_[0]), &(n_[0]));
    for (size_t i = 0; i < n_.size(); ++i)
      if (n_[i] != 0) sample_map_[pos_[i]] = n_[i];
  } else {
    for (size_t i = 0; i < pr_.size(); ++i)
      sample_map_[pos_[i]] = ceil(pr_[i] * rstate.nsamples);
  }
}
#endif  // HAVE_GSL

template <class A>
bool ArcSampler<A, ngram::NGramArcSelector<A> >::ForbiddenLabel(
    Label l, const RandState<A> &rstate) {
  if (l == 0) return false;

  if (fst_.NumArcs(rstate.state_id) > rstate.nsamples) {
    for (const RandState<A> *rs = &rstate; rs->parent != 0; rs = rs->parent) {
      StateId parent_id = rs->parent->state_id;
      ArcIterator<Fst<A> > aiter(fst_, parent_id);
      aiter.Seek(rs->select);
      if (aiter.Value().ilabel != 0)  // not backoff transition
        return false;

      if (l == kNoLabel) {  // super-final label
        return fst_.Final(parent_id) != Weight::Zero();
      } else {
        matcher_.SetState(parent_id);
        if (matcher_.Find(l)) return true;
      }
    }
    return false;
  } else {
    if (forbidden_labels_.empty()) {
      for (const RandState<A> *rs = &rstate; rs->parent != 0; rs = rs->parent) {
        StateId parent_id = rs->parent->state_id;
        ArcIterator<Fst<A> > aiter(fst_, parent_id);
        aiter.Seek(rs->select);
        if (aiter.Value().ilabel != 0)  // not backoff transition
          break;

        for (aiter.Reset(); !aiter.Done(); aiter.Next()) {
          Label l = aiter.Value().ilabel;
          if (l != 0) forbidden_labels_.insert(l);
        }

        if (fst_.Final(parent_id) != Weight::Zero())
          forbidden_labels_.insert(kNoLabel);
      }
    }
    return forbidden_labels_.count(l) > 0;
  }
}

}  // namespace fst

#endif  // NGRAM_NGRAM_RANDGEN_H_