This file is indexed.

/usr/include/ngram/ngram-relentropy.h is in libngram-dev 1.3.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// Stolcke relative entropy style model shrinking derived class.

#ifndef NGRAM_NGRAM_RELENTROPY_H_
#define NGRAM_NGRAM_RELENTROPY_H_

#include <ngram/ngram-shrink.h>

namespace ngram {

class NGramRelEntropy : public NGramShrink<StdArc> {
 public:
  // Constructs an NGramRelEntropy object that prunes an LM using relative
  // entropy criterion.
  NGramRelEntropy(StdMutableFst *infst, double theta, int shrink_opt = 0,
                  double tot_uni = -1.0, Label backoff_label = 0,
                  double norm_eps = kNormEps, bool check_consistency = false)
      : NGramShrink<StdArc>(infst, shrink_opt, tot_uni, backoff_label, norm_eps,
                            check_consistency) {
    // Threshold provided in real domain, convert to log
    theta_ = log(theta + 1);  // e^D - 1 <= theta_ -> D <= log(theta_ + 1)
  }

  // Shrink n-gram model, based on initialized parameters
  bool ShrinkNGramModel() {
    return NGramShrink<StdArc>::ShrinkNGramModel(true);
  }

  // Returns a theta that will yield the target number of ngrams and no more.
  // In relative entropy shrinking, theta is initially in real domain, then
  // converted to log domain for pruning.  In this function we convert back
  // from log domain to real domain for the threshold.
  void CalculateTheta(int target_number_of_ngrams) {
    theta_ = ThetaForMaxNGrams(target_number_of_ngrams);
  }

 protected:
  // provide the pruning threshold
  double GetTheta(StateId state) const override { return theta_; }

  // Compute shrink score for transition based on Stolcke (KL) formula
  // D(p||p') = -p(h) { p(w|h) [ log p(w|h') + log \alpha'(h) - log p(w|h) ] +
  //            \alpha_numerator(h) [ log \alpha'(h) - log \alpha (h) ] }
  // return exp(D(p||p')) - 1
  double ShrinkScore(const ShrinkStateStats &state,
                     const ShrinkArcStats &arc) const override {
    if (arc.log_prob == -StdArc::Weight::Zero().Value() ||
        state.log_prob == -StdArc::Weight::Zero().Value()) {
      return -StdArc::Weight::Zero().Value();
    }
    double new_log_backoff = CalcNewLogBackoff(arc);
    double score = arc.log_backoff_prob + new_log_backoff - arc.log_prob;
    double secondterm =
        new_log_backoff + (GetNLogBackoffNum() - GetNLogBackoffDenom());
    secondterm *= exp(-GetNLogBackoffNum());
    score *= exp(arc.log_prob);
    score += secondterm;
    score *= -exp(state.log_prob);
    return score;
  }

 private:
  double theta_;  // Shrinking parameter
};

}  // namespace ngram

#endif  // NGRAM_NGRAM_RELENTROPY_H_