/usr/include/ngram/ngram-shrink.h is in libngram-dev 1.3.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 | // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2016 Brian Roark and Google, Inc.
// NGram model class for shrinking or pruning the model.
#ifndef NGRAM_NGRAM_SHRINK_H_
#define NGRAM_NGRAM_SHRINK_H_
#include <sstream>
#include <unordered_map>
#include <ngram/ngram-mutable-model.h>
#include <ngram/util.h>
namespace ngram {
using std::stringstream;
template <class Arc>
class NGramShrink : public NGramMutableModel<Arc> {
public:
typedef typename Arc::StateId StateId;
typedef typename Arc::Label Label;
typedef typename Arc::Weight Weight;
using NGramModel<Arc>::Error;
using NGramMutableModel<Arc>::HiOrder;
using NGramMutableModel<Arc>::CheckNormalization;
using NGramMutableModel<Arc>::GetMutableFst;
using NGramMutableModel<Arc>::EstimateTotalUnigramCount;
using NGramMutableModel<Arc>::InitModel;
using NGramMutableModel<Arc>::RecalcBackoff;
using NGramMutableModel<Arc>::CalculateStateProbs;
using NGramMutableModel<Arc>::GetFst;
using NGramMutableModel<Arc>::GetExpandedFst;
using NGramMutableModel<Arc>::BackoffLabel;
using NGramMutableModel<Arc>::UnigramState;
using NGramMutableModel<Arc>::StateOrder;
using NGramMutableModel<Arc>::GetBackoff;
using NGramMutableModel<Arc>::CalcBONegLogSums;
using NGramMutableModel<Arc>::CalculateBackoffFactors;
using NGramMutableModel<Arc>::ScalarValue;
using NGramMutableModel<Arc>::FindMutableArc;
// Constructs an NGramShrink object, including an NGramModel and parameters.
explicit NGramShrink(MutableFst<Arc> *infst, int shrink_opt = 0,
double tot_uni = -1.0, Label backoff_label = 0,
double norm_eps = kNormEps,
bool check_consistency = false, bool norm = true);
// Shrinks n-gram model, based on initialized parameters.
bool ShrinkNGramModel(bool require_norm);
// Calculates shrinking scores for all ngrams, without actually pruning (yet).
void CalculateShrinkScores(bool require_norm);
// Provides label vectors and/or vector of their shrink scores.
void GetNGramsAndOrScores(std::vector<std::vector<Label>> *ngrams,
std::vector<double> *scores, bool collect_unigrams);
virtual ~NGramShrink() {}
protected:
// Data representation for an arc being considered for pruning.
struct ShrinkArcStats {
double log_prob; // Log probability of word given history.
double log_backoff_prob; // Log probability of word given backoff history.
double shrink_score; // Calculated score for shrinking.
Label label; // Arc label.
StateId backoff_dest; // Destination state of backoff arc.
bool needed; // Is the current arc needed within the automaton?
bool pruned; // Has the current arc been pruned already by shrinking?
ShrinkArcStats(double lp, double lbp, Label lab, StateId dest, bool needed)
: log_prob(lp),
log_backoff_prob(lbp),
shrink_score(0.0),
label(lab),
backoff_dest(dest),
needed(needed),
pruned(false) {}
};
// Data representation for a state with arcs being considered for pruning.
struct ShrinkStateStats {
double log_prob; // Log probability of history represented by state.
StateId state; // State ID of current state.
StateId backoff_state; // State ID of backoff state.
StateId prefix_state; // State ID of prior state on ascending path.
Label incoming_label; // Label of arc leading to state on ascending path.
bool state_dead; // Store whether state is to be removed from model.
// # of arcs that back off thru incoming arc. This is only for incoming
// arcs that increase in state order and thus are uniquely determined
// by their destination state.
// NB: destination state uniquely determines arc label in this case.
size_t incoming_backed_off;
// # of final states that backoff to state.
size_t incoming_st_back_off;
ShrinkStateStats()
: log_prob(0),
state(kNoStateId),
backoff_state(kNoStateId),
prefix_state(kNoStateId),
incoming_label(kNoLabel),
state_dead(false),
incoming_backed_off(0),
incoming_st_back_off(0) {}
};
// Provides the score provided to arc for particular shrinking method. One
// must override this in any derived class for anything but count pruning.
// Default calculates count for normalized model; raw count for unnormalized.
virtual double ShrinkScore(const ShrinkStateStats &state,
const ShrinkArcStats &arc) const {
if (!normalized_) {
return arc.log_prob; // unnormalized log count
} else if (arc.log_prob == -ScalarValue(Arc::Weight::Zero()) ||
state.log_prob == -ScalarValue(Arc::Weight::Zero()) ||
total_unigram_count_ <= 0.0) {
return -ScalarValue(Arc::Weight::Zero());
}
return arc.log_prob + state.log_prob + log(total_unigram_count_);
}
// Provides the threshold for comparing to the scores to decide to prune.
// Required from derived classes.
virtual double GetTheta(StateId state) const = 0;
// Returns the theta value that guarantees at most target_number_of_ngrams.
double ThetaForMaxNGrams(int target_number_of_ngrams);
// Calculates the new backoff weight if arc removed.
double CalcNewLogBackoff(const ShrinkArcStats &arc) const {
return NegLogSum(nlog_backoff_denom_, -arc.log_backoff_prob) -
NegLogSum(nlog_backoff_num_, -arc.log_prob);
}
// Provides access to total unigram count.
double GetTotalUnigramCount() const { return total_unigram_count_; }
// Provides access to negative log numerator of the backoff.
double GetNLogBackoffNum() const { return nlog_backoff_num_; }
// Provides access to negative log denominator of the backoff.
double GetNLogBackoffDenom() const { return nlog_backoff_denom_; }
private:
void FillStateProbs();
struct StateLabelHash {
size_t operator()(const std::pair<StateId, Label> &p) const {
return p.first + p.second * 7853;
}
};
// Fills n-gram label vector in correct order via recursive function.
void AddStateNGramLabels(StateId st, std::vector<Label> *ngram_labels);
// Finds an entry in the map with shrink score or produces fatal error.
double FindOrDieShrinkScore(StateId st, Label label);
// Transition from 'st' to 'dest' labeled with 'label'.
size_t &BackedOffTo(StateId st, Label label, StateId dest) {
if (StateOrder(st) < StateOrder(dest)) { // Arc unique
return shrink_state_[dest].incoming_backed_off; // to dest., store there.
} else { // o.w. hash it.
return backed_off_to_[std::make_pair(st, label)]; // Inserts if needed.
}
}
// Efficiently checks if non-zero BackedOffTo() (no side-effects).
bool IsBackedOffTo(StateId st, Label label, StateId dest) const {
if (StateOrder(st) < StateOrder(dest))
return shrink_state_[dest].incoming_backed_off > 0;
else {
auto it = backed_off_to_.find(std::make_pair(st, label));
if (it == backed_off_to_.end())
return false;
else
return it->second > 0;
}
}
// Fills in relevant statistics for arc pruning at the state level.
void FillShrinkStateInfo();
// Adds probabilities to backoff numerator and denominator.
void AddToBackoffNumDenom(double num_upd_val, double denom_upd_val) {
nlog_backoff_num_ = NegLogSum(nlog_backoff_num_, num_upd_val);
nlog_backoff_denom_ = NegLogSum(nlog_backoff_denom_, denom_upd_val);
}
// Subtracts probabilities from backoff numerator and denominator.
void UpdateBackoffNumDenom(double num_upd_val, double denom_upd_val,
double *neg_log_correct_num,
double *neg_log_correct_denom) {
nlog_backoff_num_ =
NegLogSum(nlog_backoff_num_, num_upd_val, neg_log_correct_num);
nlog_backoff_denom_ =
NegLogSum(nlog_backoff_denom_, denom_upd_val, neg_log_correct_denom);
}
// Updates maximum score for a given label leaving a given state, and returns
// the maximum.
double UpdateScoreHash(StateId st, Label label, double shrink_score);
// Retrieves shrink score, calculating if requested.
double GetShrinkScore(const ShrinkArcStats &arc, StateId st, Label label,
bool calc_score);
// Calculates and store statistics for scoring arc in pruning.
int AddArcStat(std::vector<ShrinkArcStats> *shrink_arcs, StateId st,
const Arc *arc, const Arc *barc, bool calc_score);
// Fills in relevant statistics for arc pruning for a particular state.
size_t FillShrinkArcInfo(std::vector<ShrinkArcStats> *shrink_arcs, StateId st,
bool calc_score);
// Calculates scores of all arcs leaving all states in model.
void ScoreAllArcs();
// Non-greedy comparison to threshold, such as used for count pruning.
size_t ArcsToPrune(std::vector<ShrinkArcStats> *shrink_arcs,
StateId st) const;
// Evaluates arcs and select arcs to prune in greedy fashion.
size_t GreedyArcsToPrune(std::vector<ShrinkArcStats> *shrink_arcs,
StateId st);
// Evaluates arcs and select arcs to prune.
size_t ChooseArcsToPrune(std::vector<ShrinkArcStats> *shrink_arcs,
StateId st) {
if (shrink_opt_ < 2)
return ArcsToPrune(shrink_arcs, st);
else
return GreedyArcsToPrune(shrink_arcs, st);
}
// For transitions selected to be pruned, point them to an unconnected state
size_t PointPrunedArcs(const std::vector<ShrinkArcStats> &shrink_arcs,
StateId st);
// Evaluate transitions from state and prune in greedy fashion
void PruneState(StateId st);
// Evaluate states from highest order to lowest order for shrinking.
void PruneModel() {
for (int order = HiOrder(); order > 1; --order) {
for (StateId st = 0; st < ns_; ++st) {
if (StateOrder(st) == order) // current order
PruneState(st);
}
}
}
// Find unpruned arcs pointing to unconnected states and point them elsewhere
void PointArcsAwayFromDead();
// Map backoff arcs of dead states to dead_state_ (except for start state)
void PointDeadBackoffArcs();
bool normalized_; // Whether the NGram model is initially normalized
bool norm_; // Whether to normalize the result (if input normalized)
int shrink_opt_; // Opt. level: Range 0 (fastest) to 2 (most accurate)
double total_unigram_count_; // Total unigram counts
double nlog_backoff_num_; // numerator of backoff weight
double nlog_backoff_denom_; // denominator of backoff weight
StateId ns_; // Original number of states in the model
StateId dead_state_; // Sink state dest. for pruned arcs (not connected)
std::vector<ShrinkStateStats> shrink_state_;
std::unordered_map<std::pair<StateId, Label>, double, StateLabelHash>
max_shrink_score_;
std::unordered_map<std::pair<StateId, Label>, size_t, StateLabelHash>
backed_off_to_;
};
// Construct an NGramShrink object, including an NGramMutableModel
// and parameters.
template <class Arc>
NGramShrink<Arc>::NGramShrink(MutableFst<Arc> *infst, int shrink_opt,
double tot_uni, Label backoff_label,
double norm_eps, bool check_consistency,
bool norm)
: NGramMutableModel<Arc>(infst, backoff_label, norm_eps, check_consistency),
normalized_(CheckNormalization()),
norm_(norm),
shrink_opt_(shrink_opt),
total_unigram_count_(tot_uni),
ns_(infst->NumStates()),
dead_state_(GetMutableFst()->AddState()) {
// set switch if inf backoff costs
NGramMutableModel<Arc>::SetAllowInfiniteBO();
for (StateId st = 0; st < ns_; ++st)
shrink_state_.push_back(ShrinkStateStats());
}
// Calculates scores of all arcs leaving all states in model.
template <class Arc>
void NGramShrink<Arc>::ScoreAllArcs() {
for (int order = HiOrder(); order > 1; --order) {
for (StateId st = 0; st < ns_; ++st) {
if (StateOrder(st) == order) { // current order
std::vector<ShrinkArcStats> shrink_arcs;
FillShrinkArcInfo(&shrink_arcs, st, true);
if (Error()) return;
}
}
}
}
// Calculates shrink scores for all ngrams in a model, stores in a hash.
template <class Arc>
void NGramShrink<Arc>::CalculateShrinkScores(bool require_norm) {
if (max_shrink_score_.size() > 0) return; // Scores already calculated.
if (normalized_) { // only required for normalized models
FillStateProbs(); // calculate p(h)
if (total_unigram_count_ <= 0) // auto derive unigram count if req'd
total_unigram_count_ = EstimateTotalUnigramCount();
} else if (require_norm) {
NGRAMERROR() << "NGramShrink: Model not normalized;"
<< " Model must be normalized for this shrinking method";
NGramModel<Arc>::SetError();
return;
}
FillShrinkStateInfo(); // collects state information
if (Error()) {
NGRAMERROR() << "NGramShrink: Error in collecting state information";
return;
}
ScoreAllArcs();
}
// Shrink n-gram model, based on initialized parameters
template <class Arc>
bool NGramShrink<Arc>::ShrinkNGramModel(bool require_norm) {
CalculateShrinkScores(require_norm); // Calculates scores for all ngrams.
if (Error()) {
NGRAMERROR() << "NGramShrink: Error in calculating shrink scores";
return false;
}
PruneModel(); // prunes arcs and points to unconnected state
if (Error()) {
NGRAMERROR() << "NGramShrink: Error in pruning model";
return false;
}
PointArcsAwayFromDead(); // points unpruned arcs to connected states
if (Error()) {
NGRAMERROR() << "NGramShrink: Error in redirecting arcs";
return false;
}
Connect(GetMutableFst()); // removes pruned arcs and dead states
InitModel(); // re-calcs state info
if (Error()) {
NGRAMERROR() << "NGramShrink: Error in recalculating state info";
return false;
} else if (normalized_ && norm_) { // only needed for normalized models
RecalcBackoff(); // re-calcs backoff weights
if (!CheckNormalization()) { // model should be normalized
NGRAMERROR() << "NGramShrink: Pruned model not fully normalized";
return false;
}
}
return true;
}
template <class Arc>
void NGramShrink<Arc>::FillStateProbs() {
std::vector<double> probs;
CalculateStateProbs(&probs);
for (StateId st = 0; st < ns_; ++st)
shrink_state_[st].log_prob = log(probs[st]);
}
// Fill in relevant statistics for arc pruning at the state level
template <class Arc>
void NGramShrink<Arc>::FillShrinkStateInfo() {
for (StateId st = 0; st < ns_; ++st) {
shrink_state_[st].state = st;
StateId bos = shrink_state_[st].backoff_state = GetBackoff(st, 0);
Matcher<Fst<Arc>> matcher(GetFst(), MATCH_INPUT);
if (bos >= 0) {
if (GetFst().Final(st) != Arc::Weight::Zero())
++shrink_state_[bos].incoming_st_back_off; // </s> backoff counter
matcher.SetState(bos);
shrink_state_[st].state_dead = GetFst().Final(st) == Arc::Weight::Zero();
}
for (ArcIterator<ExpandedFst<Arc>> aiter(GetExpandedFst(), st);
!aiter.Done(); aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel == BackoffLabel()) continue;
// if ascending, record prefix state and incoming label.
if (StateOrder(st) < StateOrder(arc.nextstate)) {
shrink_state_[arc.nextstate].prefix_state = st;
shrink_state_[arc.nextstate].incoming_label = arc.ilabel;
}
if (bos < 0) continue; // that is all the work at the unigram state.
shrink_state_[st].state_dead = false;
if (matcher.Find(arc.ilabel)) { // increment backoff counter
Arc barc = matcher.Value();
++BackedOffTo(bos, barc.ilabel, barc.nextstate);
} else {
NGRAMERROR() << "NGramShrink: No arc label match in backoff state";
NGramModel<Arc>::SetError();
return;
}
}
}
}
// Fills ngram label vector in correct order via recursive function.
template <class Arc>
void NGramShrink<Arc>::AddStateNGramLabels(StateId st,
vector<Label> *ngram_labels) {
if (shrink_state_[st].prefix_state != kNoStateId) {
AddStateNGramLabels(shrink_state_[st].prefix_state, ngram_labels);
ngram_labels->push_back(shrink_state_[st].incoming_label);
} else if (st == GetFst().Start() && UnigramState() >= 0) {
ngram_labels->push_back(0);
}
}
// Finds an entry in the hash table with shrink score or fatal error.
template <class Arc>
double NGramShrink<Arc>::FindOrDieShrinkScore(StateId st, Label label) {
auto map_iterator = max_shrink_score_.find(std::make_pair(st, label));
if (map_iterator == max_shrink_score_.end()) {
NGRAMERROR() << "NGramShrink: score has not been calculated yet.";
NGramModel<Arc>::SetError();
return 0.0;
}
return map_iterator->second;
}
// Provides ngram label vectors and/or vector of their shrink scores.
template <class Arc>
void NGramShrink<Arc>::GetNGramsAndOrScores(vector<vector<Label>> *ngrams,
std::vector<double> *scores,
bool collect_unigrams) {
if (ngrams == nullptr && scores == nullptr) return;
for (StateId st = 0; st < ns_; ++st) {
std::vector<Label> state_ngram;
AddStateNGramLabels(st, &state_ngram); // Labels of words leading to state.
if (state_ngram.size() == 0 && !collect_unigrams) continue;
std::vector<Label> to_update;
for (ArcIterator<ExpandedFst<Arc>> aiter(GetExpandedFst(), st);
!aiter.Done(); aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel == BackoffLabel()) continue;
to_update.push_back(arc.ilabel);
}
// End-of-string ngram
if (ScalarValue(GetFst().Final(st)) != ScalarValue(Arc::Weight::Zero()))
to_update.push_back(kNoLabel);
for (size_t idx = 0; idx < to_update.size(); ++idx) {
if (ngrams != nullptr) {
std::vector<Label> ngram_labels = state_ngram;
ngram_labels.push_back(to_update[idx]);
ngrams->push_back(ngram_labels);
}
if (scores != nullptr) {
if (state_ngram.size() < 1) { // No shrink scores for unigrams.
scores->push_back(0.0);
} else {
scores->push_back(FindOrDieShrinkScore(st, to_update[idx]));
if (Error()) return;
}
}
}
}
}
// Updates maximum score for a given label leaving a given state. Returns max.
template <class Arc>
double NGramShrink<Arc>::UpdateScoreHash(StateId st, Label label,
double shrink_score) {
auto map_iterator = max_shrink_score_.find(std::make_pair(st, label));
if (map_iterator != max_shrink_score_.end() &&
shrink_score <= map_iterator->second) { // Previous higher score exists.
shrink_score = map_iterator->second; // Sets score to previous maximum.
} else {
max_shrink_score_[std::make_pair(st, label)] =
shrink_score; // Records new max.
}
return shrink_score;
}
// Retrieves shrink score, calculating if requested. If calculating the score,
// also updates suffix and prefix ngram maximum score.
template <class Arc>
double NGramShrink<Arc>::GetShrinkScore(const ShrinkArcStats &arc, StateId st,
Label label, bool calc_score) {
double shrink_score = 0.0;
if (calc_score) { // Calculates local score and compares with maximum.
shrink_score =
UpdateScoreHash(st, label, ShrinkScore(shrink_state_[st], arc));
// Updates suffix ngram with maximum.
UpdateScoreHash(shrink_state_[st].backoff_state, label, shrink_score);
// Updates prefix ngram with maximum.
if (shrink_state_[st].prefix_state != kNoStateId)
UpdateScoreHash(shrink_state_[st].prefix_state,
shrink_state_[st].incoming_label, shrink_score);
} else {
shrink_score = FindOrDieShrinkScore(st, label);
}
return shrink_score;
}
// Calculate and store statistics for scoring arc in pruning
template <class Arc>
int NGramShrink<Arc>::AddArcStat(vector<ShrinkArcStats> *shrink_arcs,
StateId st, const Arc *arc, const Arc *barc,
bool calc_score) {
bool needed = false;
StateId nextstate = kNoStateId;
double hi_val, lo_val;
Label label = kNoLabel;
if (arc) {
// arc is needed even if score falls below threshold if:
// arc points to higher order (needed) state or is backed off to
if ((StateOrder(st) < StateOrder(arc->nextstate) &&
!shrink_state_[arc->nextstate].state_dead) ||
IsBackedOffTo(st, arc->ilabel, arc->nextstate)) {
needed = true;
}
nextstate = barc->nextstate;
hi_val = ScalarValue(arc->weight); // higher order model value
lo_val = ScalarValue(barc->weight); // lower order model value
label = arc->ilabel;
} else { // add pruned candidate for final cost at state (no nextstate)
// final cost needed if backed off to (to avoid 'holes' in the model)
if (shrink_state_[st].incoming_st_back_off > 0) needed = true;
hi_val = ScalarValue(GetFst().Final(st));
lo_val = ScalarValue(GetFst().Final(shrink_state_[st].backoff_state));
}
int arc_index = shrink_arcs->size();
shrink_arcs->push_back(
ShrinkArcStats(-hi_val, -lo_val, label, nextstate, needed));
(*shrink_arcs)[arc_index].shrink_score =
GetShrinkScore((*shrink_arcs)[arc_index], st, label, calc_score);
return 1;
}
// Fill in relevant statistics for arc pruning for a particular state
template <class Arc>
size_t NGramShrink<Arc>::FillShrinkArcInfo(vector<ShrinkArcStats> *shrink_arcs,
StateId st, bool calc_score) {
size_t candidates = 0;
if (normalized_) {
double hi_neglog_sum, low_neglog_sum;
CalcBONegLogSums(st, &hi_neglog_sum, &low_neglog_sum);
if (Error()) return candidates;
CalculateBackoffFactors(hi_neglog_sum, low_neglog_sum, &nlog_backoff_num_,
&nlog_backoff_denom_);
}
Matcher<Fst<Arc>> matcher(GetFst(), MATCH_INPUT); // to find backoff
matcher.SetState(shrink_state_[st].backoff_state);
for (ArcIterator<ExpandedFst<Arc>> aiter(GetExpandedFst(), st); !aiter.Done();
aiter.Next()) {
Arc arc = aiter.Value();
if (arc.ilabel == BackoffLabel()) {
// placeholder
shrink_arcs->push_back(
ShrinkArcStats(0, 0, arc.ilabel, kNoStateId, true));
} else if (matcher.Find(arc.ilabel)) {
Arc barc = matcher.Value();
candidates += AddArcStat(shrink_arcs, st, &arc, &barc, calc_score);
} else {
NGRAMERROR() << "NGramShrink: No arc label match in backoff state";
NGramModel<Arc>::SetError();
return candidates;
}
}
// Final cost prune?
if (ScalarValue(GetFst().Final(st)) != ScalarValue(Arc::Weight::Zero()))
candidates += AddArcStat(shrink_arcs, st, 0, 0, calc_score);
return candidates;
}
// Returns the theta value that guarantees at most target_number_of_ngrams.
template <class Arc>
double NGramShrink<Arc>::ThetaForMaxNGrams(int target_number_of_ngrams) {
NGramShrink<Arc>::CalculateShrinkScores(true);
if (Error()) {
NGRAMERROR() << "ThetaForMaxNGrams: Error in calculating shrink scores";
return 0.0;
}
std::vector<double> scores; // Only care about scores, not ngram identities.
NGramShrink<Arc>::GetNGramsAndOrScores(nullptr, &scores, false);
if (Error()) {
NGRAMERROR() << "ThetaForMaxNGrams: Error in getting ngram scores";
return 0.0;
}
if (scores.size() == 0 || UnigramState() < 0) // No ngrams to prune.
return 0.0;
std::sort(scores.begin(), scores.end());
// Unigram count is number of arcs leaving unigram + final cost.
target_number_of_ngrams -= GetFst().NumArcs(UnigramState()) + 1;
if (target_number_of_ngrams < 0) target_number_of_ngrams = 0;
// Set threshold index to largest score to be pruned.
int threshold_index = scores.size() - target_number_of_ngrams - 1;
if (threshold_index < 0)
return scores[0] - 1.0; // Sets threshold less than the lowest value.
double theta = scores[threshold_index];
while (threshold_index < scores.size() && scores[threshold_index] == theta) {
threshold_index++;
}
if (threshold_index >= scores.size()) { // Sets theta more than max.
++theta;
} else { // Sets theta midway between last to keep and first to prune.
theta += scores[threshold_index];
theta /= 2;
}
return theta;
}
// Non-greedy comparison to threshold
template <class Arc>
size_t NGramShrink<Arc>::ArcsToPrune(vector<ShrinkArcStats> *shrink_arcs,
StateId st) const {
size_t pruned_cnt = 0;
double theta = GetTheta(st);
if (theta == ScalarValue(Arc::Weight::Zero())) return pruned_cnt;
for (size_t i = 0; i < shrink_arcs->size(); ++i) {
if (!(*shrink_arcs)[i].pruned && !(*shrink_arcs)[i].needed &&
(*shrink_arcs)[i].shrink_score < theta) {
(*shrink_arcs)[i].pruned = true;
++pruned_cnt;
}
}
return pruned_cnt;
}
// Evaluate arcs and select arcs to prune in greedy fashion
template <class Arc>
size_t NGramShrink<Arc>::GreedyArcsToPrune(vector<ShrinkArcStats> *shrink_arcs,
StateId st) {
ssize_t pruned_cnt = 0, last_prune_cnt = -1;
while (last_prune_cnt < pruned_cnt) { // while arcs continue to be pruned
last_prune_cnt = pruned_cnt;
double bestscore = GetTheta(st); // score must be <= theta_ to be pruned
ssize_t bestarc = -1;
for (size_t i = 0; i < shrink_arcs->size(); ++i) {
const ShrinkArcStats &arc = (*shrink_arcs)[i];
if (!arc.needed && !arc.pruned) {
if ((*shrink_arcs)[i].shrink_score <= bestscore) {
bestscore = (*shrink_arcs)[i].shrink_score;
bestarc = i; // tie goes to later arcs
}
}
}
if (bestarc >= 0) { // found one to prune
(*shrink_arcs)[bestarc].pruned = true;
AddToBackoffNumDenom(-(*shrink_arcs)[bestarc].log_prob,
-(*shrink_arcs)[bestarc].log_backoff_prob);
++pruned_cnt;
}
}
return pruned_cnt;
}
// For transitions selected to be pruned, points them to an unconnected state
template <class Arc>
size_t NGramShrink<Arc>::PointPrunedArcs(
const vector<ShrinkArcStats> &shrink_arcs, StateId st) {
size_t acnt = 0, pruned_cnt = 0;
for (MutableArcIterator<MutableFst<Arc>> aiter(GetMutableFst(), st);
!aiter.Done(); aiter.Next()) {
Arc arc = aiter.Value();
if (shrink_arcs[acnt].pruned) {
arc.nextstate = dead_state_; // points to unconnected state
aiter.SetValue(arc);
// decrements backoff counter
--BackedOffTo(shrink_state_[st].backoff_state, arc.ilabel,
shrink_arcs[acnt].backoff_dest);
++pruned_cnt;
}
++acnt;
}
// if st is a final state and the final cost is marked to be pruned, prune
if (acnt < shrink_arcs.size() && shrink_arcs[acnt].pruned) {
--shrink_state_[GetBackoff(st, 0)].incoming_st_back_off;
GetMutableFst()->SetFinal(st, Arc::Weight::Zero());
++pruned_cnt;
}
return pruned_cnt;
}
// Evaluates transitions from state and prune in greedy fashion.
template <class Arc>
void NGramShrink<Arc>::PruneState(StateId st) {
std::vector<ShrinkArcStats> shrink_arcs;
size_t candidate_prune = FillShrinkArcInfo(&shrink_arcs, st, false);
if (Error()) return;
size_t pruned_cnt = ChooseArcsToPrune(&shrink_arcs, st);
if (pruned_cnt > 0) {
size_t check_cnt = PointPrunedArcs(shrink_arcs, st);
if (pruned_cnt != check_cnt) {
NGRAMERROR() << "NGramShrink: Selected arcs and pruned arcs don't match";
NGramModel<Arc>::SetError();
return;
}
if (pruned_cnt == candidate_prune) // all candidate arcs pruned
shrink_state_[st].state_dead = true; // state becomes a dead state
}
}
// Finds unpruned arcs pointing to unconnected states and points them elsewhere.
template <class Arc>
void NGramShrink<Arc>::PointArcsAwayFromDead() {
for (StateId st = 0; st < ns_; ++st) {
if (shrink_state_[st].state_dead) continue;
for (MutableArcIterator<MutableFst<Arc>> aiter(GetMutableFst(), st);
!aiter.Done(); aiter.Next()) {
Arc arc = aiter.Value();
if (arc.nextstate != dead_state_) {
while (shrink_state_[arc.nextstate].state_dead) {
arc.nextstate = GetBackoff(arc.nextstate, 0);
aiter.SetValue(arc);
}
}
}
}
PointDeadBackoffArcs();
}
// Maps backoff arcs of dead states to dead_state_ (except for start state).
template <class Arc>
void NGramShrink<Arc>::PointDeadBackoffArcs() {
for (StateId st = 0; st < ns_; ++st) {
if (!shrink_state_[st].state_dead || st == GetFst().Start()) continue;
MutableArcIterator<MutableFst<Arc>> aiter(GetMutableFst(), st);
if (FindMutableArc(&aiter, BackoffLabel())) {
Arc arc = aiter.Value();
arc.nextstate = dead_state_;
aiter.SetValue(arc);
} else {
NGRAMERROR() << "NGramShrink: No backoff arc in dead state";
NGramModel<Arc>::SetError();
return;
}
}
}
// Makes model from NGram model FST with StdArc counts.
bool NGramShrinkModel(fst::StdMutableFst *fst, const string &method,
double tot_uni = -1.0, double theta = 0.0,
int64 target_num = -1, const string &count_pattern = "",
const string &context_pattern = "", int shrink_opt = 0,
fst::StdArc::Label backoff_label = 0,
double norm_eps = kNormEps,
bool check_consistency = false);
} // namespace ngram
#endif // NGRAM_NGRAM_SHRINK_H_
|