This file is indexed.

/usr/include/ns3.27/ns3/random-variable-stream.h is in libns3-dev 3.27+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
 * Copyright (c) 2006 Georgia Tech Research Corporation
 * Copyright (c) 2011 Mathieu Lacage
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation;
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * Authors: Rajib Bhattacharjea<raj.b@gatech.edu>
 *          Hadi Arbabi<marbabi@cs.odu.edu>
 *          Mathieu Lacage <mathieu.lacage@gmail.com>
 *
 * Modified by Mitch Watrous <watrous@u.washington.edu>
 *
 */
#ifndef RANDOM_VARIABLE_STREAM_H
#define RANDOM_VARIABLE_STREAM_H

#include "type-id.h"
#include "object.h"
#include "attribute-helper.h"
#include <stdint.h>

/**
 * \file
 * \ingroup randomvariable
 * ns3::RandomVariableStream declaration, and related classes.
 */

namespace ns3 {

/**
 * \ingroup core
 * \defgroup randomvariable Random Variables
 *
 * \brief ns-3 random numbers are provided via instances of
 * ns3::RandomVariableStream.
 *
 * - By default, ns-3 simulations use a fixed seed; if there is any
 *   randomness in the simulation, each run of the program will yield
 *   identical results unless the seed and/or run number is changed.
 * - In ns-3.3 and earlier, ns-3 simulations used a random seed by default;
 *   this marks a change in policy starting with ns-3.4.
 * - In ns-3.14 and earlier, ns-3 simulations used a different wrapper
 *   class called ns3::RandomVariable.  This implementation is documented
 *   above under Legacy Random Variables. As of ns-3.15, this class has 
 *   been replaced by ns3::RandomVariableStream; the underlying 
 *   pseudo-random number generator has not changed.
 * - To obtain randomness across multiple simulation runs, you must
 *   either set the seed differently or set the run number differently.
 *   To set a seed, call ns3::RngSeedManager::SetSeed() at the beginning
 *   of the program; to set a run number with the same seed, call 
 *   ns3::RngSeedManager::SetRun() at the beginning of the program.
 * - Each RandomVariableStream used in ns-3 has a virtual random number 
 *   generator associated with it; all random variables use either 
 *   a fixed or random seed based on the use of the global seed. 
 * - If you intend to perform multiple runs of the same scenario, 
 *   with different random numbers, please be sure to read the manual 
 *   section on how to perform independent replications.
 */
  
class RngStream;

/**
 * \ingroup randomvariable
 * \brief The basic uniform Random Number Generator (RNG).
 *
 * \note The underlying random number generation method used
 * by ns-3 is the RngStream code by Pierre L'Ecuyer at
 * the University of Montreal.
 *
 * ns-3 has a rich set of random number generators that allow stream
 * numbers to be set deterministically if desired.  Class
 * RandomVariableStream defines the base class functionality required
 * for all such random number generators.
 *
 * By default, the underlying generator is seeded all the time with
 * the same seed value and run number coming from the ns3::GlobalValue
 * \ref GlobalValueRngSeed "RngSeed" and \ref GlobalValueRngRun
 * "RngRun".  Also by default, the stream number value for the
 * underlying RngStream is automatically allocated.
 *
 * Instances can be configured to return "antithetic" values.
 * See the documentation for the specific distributions to see
 * how this modifies the returned values.
 */
class RandomVariableStream : public Object
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);
  /**
   * \brief Default constructor.
   */
  RandomVariableStream ();
  /**
   * \brief Destructor.
   */
  virtual ~RandomVariableStream();

  /**
   * \brief Specifies the stream number for the RngStream.
   * \param [in] stream The stream number for the RngStream.
   * -1 means "allocate a stream number automatically".
   */
  void SetStream (int64_t stream);

  /**
   * \brief Returns the stream number for the RngStream.
   * \return The stream number for the RngStream.
   * -1 means this stream was allocated automatically.
   */
  int64_t GetStream(void) const;

  /**
   * \brief Specify whether antithetic values should be generated.
   * \param [in] isAntithetic If \c true antithetic value will be generated.
   */
  void SetAntithetic(bool isAntithetic);

  /**
   * \brief Check if antithetic values will be generated.
   * \return \c true if antithetic values will be generated.
   */
  bool IsAntithetic(void) const;

  /**
   * \brief Get the next random value as a double drawn from the distribution.
   * \return A floating point random value.
   */
  virtual double GetValue (void) = 0;

  /**
   * \brief Get the next random value as an integer drawn from the distribution.
   * \return  An integer random value.
   */
  virtual uint32_t GetInteger (void) = 0;

protected:
  /**
   * \brief Get the pointer to the underlying RngStream.
   * \return The underlying RngStream
   */
  RngStream *Peek(void) const;

private:
  /**
   * Copy constructor.  These objects are not copyable.
   *
   * \param [in] o The RandomVariableStream to copy in construction.
   * \internal
   * Theoretically, it is possible to give them good copy semantics
   * but not enough time to iron out the details.
   */
  RandomVariableStream (const RandomVariableStream &o);
  /**
   * Assignment operator.  These objects can't be copied by assignment.
   *
   * \param [in] o The RandomVariableStream to copy.
   * \return lvalue RandomVariableStream.
   *
   * \internal
   * Theoretically, it is possible to give them good copy semantics
   * but not enough time to iron out the details.
   */
  RandomVariableStream &operator = (const RandomVariableStream &o);

  /** Pointer to the underlying RngStream. */
  RngStream *m_rng;

  /** Indicates if antithetic values should be generated by this RNG stream. */
  bool m_isAntithetic;

  /** The stream number for the RngStream. */
  int64_t m_stream;

};  // class RandomVariableStream

  
/**
 * \ingroup randomvariable
 * \brief The uniform distribution Random Number Generator (RNG).
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed uniform distribution.  It also supports the generation of
 * single random numbers from various uniform distributions.
 *
 * The output range is \f$[min, max)\f$ for floating point values,
 * (\c max <i>excluded</i>), and \f$[min, max]\f$ (\c max <i>included</i>)
 * for integral values.
 *
 * \par Example
 *
 * Here is an example of how to use this class:
 * \code
 *   double min = 0.0;
 *   double max = 10.0;
 *  
 *   Ptr<UniformRandomVariable> x = CreateObject<UniformRandomVariable> ();
 *   x->SetAttribute ("Min", DoubleValue (min));
 *   x->SetAttribute ("Max", DoubleValue (max));
 * 
 *   // The values returned by a uniformly distributed random
 *   // variable should always be within the range
 *   //
 *   //     [min, max)  .
 *   //
 *   double value = x->GetValue ();
 * \endcode
 *
 * \par Antithetic Values.
 *
 * Normally this RNG returns values \f$x\f$ in the interval \f$[min,max)\f$.
 * If an instance of this RNG is configured to return antithetic values,
 * the actual value returned is calculated as follows:
 *
 *   - Compute the initial random value \f$x\f$ as normal.
 *   - Compute the distance from the maximum, \f$y = max - x\f$
 *   - Return \f$x' = min + y = min + (max - x)\f$:
 */
class UniformRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a uniform distribution RNG with the default range.
   */
  UniformRandomVariable ();

  /**
   * \brief Get the lower bound on randoms returned by GetValue(void).
   * \return The lower bound on values from GetValue(void).
   */
  double GetMin (void) const;

  /**
   * \brief Get the upper bound on values returned by GetValue(void).
   * \return The upper bound on values from GetValue(void).
   */
  double GetMax (void) const;

  /**
   * \brief Get the next random value, as a double in the specified range
   * \f$[min, max)\f$.
   *
   * \note The upper limit is excluded from the output range.
   *
   * \param [in] min Low end of the range (included).
   * \param [in] max High end of the range (excluded).
   * \return A floating point random value.
   */
  double GetValue (double min, double max);

  /**
   * \brief Get the next random value, as an unsigned integer in the
   * specified range \f$[min, max]/f$.
   *
   * \note The upper limit is included in the output range.
   *
   * \param [in] min Low end of the range.
   * \param [in] max High end of the range.
   * \return A random unsigned integer value.
   */
  uint32_t GetInteger (uint32_t min, uint32_t max);

  // Inherited from RandomVariableStream
  /**
   * \brief Get the next random value as a double drawn from the distribution.
   * \return A floating point random value.
   * \note The upper limit is excluded from the output range.
  */
  virtual double GetValue (void);
  /**
   * \brief Get the next random value as an integer drawn from the distribution.
   * \return  An integer random value.
   * \note The upper limit is included in the output range.
   */
  virtual uint32_t GetInteger (void);
  
private:
  /** The lower bound on values that can be returned by this RNG stream. */
  double m_min;

  /** The upper bound on values that can be returned by this RNG stream. */
  double m_max;

};  // class UniformRandomVariable

  
/**
 * \ingroup randomvariable
 * \brief The Random Number Generator (RNG) that returns a constant.
 *
 * This RNG returns the same value for every sample.
 *
 * \par Antithetic Values.
 *
 * This RNG ignores the antithetic setting.
 */
class ConstantRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a constant RNG with the default constant value.
   */
  ConstantRandomVariable ();

  /**
   * \brief Get the constant value returned by this RNG stream.
   * \return The constant value.
   */
  double GetConstant (void) const;

  /**
   * \brief Get the next random value, as a double equal to the argument.
   * \param [in] constant The value to return.
   * \return The floating point argument.
   */
  double GetValue (double constant);
  /**
   * \brief Get the next random value, as an integer equal to the argument.
   * \param [in] constant The value to return.
   * \return The integer argument.
   */
  uint32_t GetInteger (uint32_t constant);

  // Inherited from RandomVariableStream
  /* \note This RNG always returns the same value. */
  virtual double GetValue (void);
  /* \note This RNG always returns the same value. */
  virtual uint32_t GetInteger (void);

private:
  /** The constant value returned by this RNG stream. */
  double m_constant;

};  // class ConstantRandomVariable

  
/**
 * \ingroup randomvariable
 * \brief The Random Number Generator (RNG) that returns a pattern of
 * sequential values.
 *
 * This RNG has four configuration attributes:
 *
 *  - An increment, \c Increment.
 *  - A consecutive repeat numer, \c Consecutive.
 *  - The minimum value, \c Min.
 *  - The maximum value, \c Max.
 *
 * The RNG starts at the \c Min value.  Each return value is
 * repeated \c Consecutive times, before advancing by the \c Increment.
 * When the \c Increment would cause the value to equal or exceed
 * \c Max it is reset to \c Min first.
 *
 * For example, if an instance is configured with:
 *
 *   Attribute   | Value
 *   :---------- | -----:
 *   Min         |    2
 *   Max         |   13
 *   Increment   |    4
 *   Consecutive |    3
 *
 * The sequence will repeat this pattern:  2 2 2 6 6 6 10 10 10.
 *
 * Notice that \c Max will be a strict upper bound on the values:
 * all values in the sequence will be less than \c Max.
 *
 * \par Antithetic Values.
 *
 * This RNG ignores the antithetic setting.
 */
class SequentialRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a sequential RNG with the default values
   * for the sequence parameters.
   */
  SequentialRandomVariable ();

  /**
   * \brief Get the first value of the sequence.
   * \return The first value of the sequence.
   */
  double GetMin (void) const;

  /**
   * \brief Get the limit of the sequence, which is (at least)
   * one more than the last value of the sequence.
   * \return The limit of the sequence.
   */
  double GetMax (void) const;

  /**
   * \brief Get the increment for the sequence.
   * \return The increment between distinct values for the sequence.
   */
  Ptr<RandomVariableStream> GetIncrement (void) const;

  /**
   * \brief Get the number of times each distinct value of the sequence
   * is repeated before incrementing to the next value.
   * \return The number of times each value is repeated.
   */
  uint32_t GetConsecutive (void) const;

  // Inherited from RandomVariableStream
  virtual double GetValue (void);
  virtual uint32_t GetInteger (void);

private:
  /** The first value of the sequence. */
  double m_min;

  /** Strict upper bound on the sequence. */
  double m_max;

  /** Increment between distinct values. */
  Ptr<RandomVariableStream> m_increment;

  /** The number of times each distinct value is repeated. */
  uint32_t m_consecutive;

  /** The current sequence value. */
  double m_current;

  /** The number of times the current distinct value has been repeated. */
  uint32_t m_currentConsecutive;

  /** Indicates if the current sequence value has been properly initialized. */
  bool m_isCurrentSet;

};  // class SequentialRandomVariable

  
/**
 * \ingroup randomvariable
 * \brief The exponential distribution Random Number Generator (RNG).
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed exponential distribution.  It also supports the generation of
 * single random numbers from various exponential distributions.
 *
 * The probability density function of an exponential variable
 * is defined as:
 *   \f[
 *       P(x) dx = \alpha  e^{-\alpha x} dx, \quad x \in [0, +\infty)
 *   \f]
 * over the interval \f$[0, +\infty)\f$, where \f$ \alpha = \frac{1}{Mean} \f$
 * and \c Mean is a configurable attribute.
 *
 * The normal RNG value \f$x\f$ is calculated by
 *
 *   \f[
 *       x = - 1/\alpha \log(u)
 *   \f]
 *
 * where \f$u\f$ is a uniform random variable on \f$[0,1)\f$.
 *
 * \par Bounded Distribution
 *
 * Since exponential distributions can theoretically return unbounded
 * values, it is sometimes useful to specify a fixed upper limit.  The
 * bounded version is defined over the interval \f$[0,b]\f$ as:
 *
 *   \f[
 *       P(x; b) dx = \alpha e^{-\alpha x} dx \quad x \in [0,b]
 *   \f]
 *
 * where the \c Bound \f$b\f$ is a configurable attribute.
 *
 * Note that in this case the true mean of the distribution is smaller
 * than the nominal mean value:
 *
 *   \f[
 *       <X: P(x; b)> = 1/\alpha - b/(e^{\alpha \, b} -1)
 *   \f]
 *
 * \par Example
 *
 * Here is an example of how to use this class:
 * \code
 *   double mean = 3.14;
 *   double bound = 0.0;
 *  
 *   Ptr<ExponentialRandomVariable> x = CreateObject<ExponentialRandomVariable> ();
 *   x->SetAttribute ("Mean", DoubleValue (mean));
 *   x->SetAttribute ("Bound", DoubleValue (bound));
 * 
 *   // The expected value for the mean of the values returned by an
 *   // exponentially distributed random variable is equal to mean.
 *   double value = x->GetValue ();
 * \endcode
 *
 * \par Antithetic Values.
 *
 * The antithetic value is calculated from
 *
 *   \f[
 *       x' = - mean * \log(1 - u), 
 *   \f]
 *
 * where again \f$u\f$ is a uniform random variable on \f$[0,1)\f$.
 */
class ExponentialRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates an exponential distribution RNG with the default
   * values for the mean and upper bound.
   */
  ExponentialRandomVariable ();

  /**
   * \brief Get the configured mean value of this RNG.
   *
   * \note This will not be the actual mean if the distribution is
   * truncated by a bound.
   * \return The configured mean value.
   */
  double GetMean (void) const;

  /**
   * \brief Get the configured upper bound of this RNG.
   * \return The upper bound.
   */
  double GetBound (void) const;

  /**
   * \brief Get the next random value, as a double from
   * the exponential distribution with the specified mean and upper bound.
   * \param [in] mean Mean value of the unbounded exponential distribution.
   * \param [in] bound Upper bound on values returned.
   * \return A floating point random value.
   */
  double GetValue (double mean, double bound);

  /**
   * \brief Get the next random value, as an unsigned integer from
   * the exponential distribution with the specified mean and upper bound.
   * \param [in] mean Mean value of the unbounded exponential distribution.
   * \param [in] bound Upper bound on values returned.
   * \return A random unsigned integer value.
   */
  uint32_t GetInteger (uint32_t mean, uint32_t bound);

  // Inherited from RandomVariableStream
  virtual double GetValue (void);
  virtual uint32_t GetInteger (void);

private:
  /** The mean value of the unbounded exponential distribution. */
  double m_mean;

  /** The upper bound on values that can be returned by this RNG stream. */
  double m_bound;

};  // class ExponentialRandomVariable

  
/**
 * \ingroup randomvariable
 * \brief The Pareto distribution Random Number Generator (RNG).
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed Pareto distribution.  It also supports the generation of
 * single random numbers from various Pareto distributions.
 *
 * The probability density function of a Pareto variable is defined
 * over the range [\f$x_m\f$,\f$+\infty\f$) as: \f$ k \frac{x_m^k}{x^{k+1}}\f$
 * where \f$x_m > 0\f$ is called the scale parameter and \f$ k > 0\f$
 * is called the Pareto index or shape.
 *
 * The parameter \f$ x_m \f$ can be inferred from the mean and the parameter \f$ k \f$
 * with the equation \f$ x_m = mean \frac{k-1}{k},  k > 1\f$.
 *
 * Since Pareto distributions can theoretically return unbounded values,
 * it is sometimes useful to specify a fixed upper limit.  Note however
 * when the upper limit is specified, the true mean of the distribution
 * is slightly smaller than the mean value specified.
 *
 * Here is an example of how to use this class:
 * \code
 *   double scale = 5.0;
 *   double shape = 2.0;
 * 
 *   Ptr<ParetoRandomVariable> x = CreateObject<ParetoRandomVariable> ();
 *   x->SetAttribute ("Scale", DoubleValue (scale));
 *   x->SetAttribute ("Shape", DoubleValue (shape));
 * 
 *   // The expected value for the mean of the values returned by a
 *   // Pareto distributed random variable is
 *   //
 *   //                   shape * scale
 *   //     E[value]  =  ---------------  ,
 *   //                     shape - 1
 *
 *   double value = x->GetValue ();
 * \endcode
 */
class ParetoRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a Pareto distribution RNG with the default
   * values for the mean, the shape, and upper bound.
   */
  ParetoRandomVariable ();

  /**
   * \brief Returns the mean parameter for the Pareto distribution returned by this RNG stream.
   * \return The mean parameter for the Pareto distribution returned by this RNG stream.
   */
  NS_DEPRECATED
  double GetMean (void) const;

  /**
   * \brief Returns the scale parameter for the Pareto distribution returned by this RNG stream.
   * \return The scale parameter for the Pareto distribution returned by this RNG stream.
   */
  double GetScale (void) const;

  /**
   * \brief Returns the shape parameter for the Pareto distribution returned by this RNG stream.
   * \return The shape parameter for the Pareto distribution returned by this RNG stream.
   */
  double GetShape (void) const;

  /**
   * \brief Returns the upper bound on values that can be returned by this RNG stream.
   * \return The upper bound on values that can be returned by this RNG stream.
   */
  double GetBound (void) const;

  /**
   * \brief Returns a random double from a Pareto distribution with the specified scale, shape, and upper bound.
   * \param [in] scale Mean parameter for the Pareto distribution.
   * \param [in] shape Shape parameter for the Pareto distribution.
   * \param [in] bound Upper bound on values returned.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = \frac{scale}{u^{\frac{1}{shape}}}
   *    \f]
   *
   * is a value that would be returned normally.
   *    
   * The value returned in the antithetic case, \f$x'\f$, is
   * calculated as
   *
   *    \f[
   *         x' = \frac{scale}{{(1 - u)}^{\frac{1}{shape}}} ,
   *    \f]
   *
   * which now involves the distance \f$u\f$ is from 1 in the denominator.
   */
  double GetValue (double scale, double shape, double bound);

  /**
   * \brief Returns a random unsigned integer from a Pareto distribution with the specified mean, shape, and upper bound.
   * \param [in] scale Scale parameter for the Pareto distribution.
   * \param [in] shape Shape parameter for the Pareto distribution.
   * \param [in] bound Upper bound on values returned.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = \frac{scale}{u^{\frac{1}{shape}}}
   *    \f]
   *
   * is a value that would be returned normally.
   *
   * The value returned in the antithetic case, \f$x'\f$, is
   * calculated as
   *
   *    \f[
   *         x' = \frac{scale}{{(1 - u)}^{\frac{1}{shape}}} ,
   *    \f]
   *
   * which now involves the distance \f$u\f$ is from 1 in the denominator.
   */
  uint32_t GetInteger (uint32_t scale, uint32_t shape, uint32_t bound);

  /**
   * \brief Returns a random double from a Pareto distribution with the current mean, shape, and upper bound.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = \frac{scale}{u^{\frac{1}{shape}}}
   *    \f]
   *
   * is a value that would be returned normally, where
   *     
   *    \f[
   *         scale  =  mean * (shape - 1.0) / shape  .
   *    \f]
   *    
   * The value returned in the antithetic case, \f$x'\f$, is
   * calculated as
   *
   *    \f[
   *         x' = \frac{scale}{{(1 - u)}^{\frac{1}{shape}}} ,
   *    \f]
   *
   * which now involves the distance \f$u\f$ is from 1 in the denominator.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the three-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from a Pareto distribution with the current mean, shape, and upper bound.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = \frac{scale}{u^{\frac{1}{shape}}}
   *    \f]
   *
   * is a value that would be returned normally.
   *
   * The value returned in the antithetic case, \f$x'\f$, is
   * calculated as
   *
   *    \f[
   *         x' = \frac{scale}{{(1 - u)}^{\frac{1}{shape}}} ,
   *    \f]
   *
   * which now involves the distance \f$u\f$ is from 1 in the denominator.
   */
  virtual uint32_t GetInteger (void);

private:
  /** The mean parameter for the Pareto distribution returned by this RNG stream. */
  double m_mean;

  /** The scale parameter for the Pareto distribution returned by this RNG stream. */
  double m_scale;

  /** The shape parameter for the Pareto distribution returned by this RNG stream. */
  double m_shape;

  /** The upper bound on values that can be returned by this RNG stream. */
  double m_bound;

};  // class ParetoRandomVariable

  
/**
 * \ingroup randomvariable
 * \brief The Weibull distribution Random Number Generator (RNG) that allows stream numbers to be set deterministically.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed Weibull distribution.  It also supports the generation of
 * single random numbers from various Weibull distributions.
 *
 * The probability density function is defined over the interval [0, \f$+\infty\f$]
 * as: \f$ \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-\left(\frac{x}{\lambda}\right)^k} \f$
 * where \f$ k > 0\f$ is the shape parameter and \f$ \lambda > 0\f$  is the scale parameter. The
 * specified mean is related to the scale and shape parameters by the following relation:
 * \f$ mean = \lambda\Gamma\left(1+\frac{1}{k}\right) \f$ where \f$ \Gamma \f$ is the Gamma function.
 *
 * Since Weibull distributions can theoretically return unbounded values,
 * it is sometimes useful to specify a fixed upper limit.  Note however
 * when the upper limit is specified, the true mean of the distribution
 * is slightly smaller than the mean value specified.
 *
 * Here is an example of how to use this class:
 * \code
 *   double scale = 5.0;
 *   double shape = 1.0;
 * 
 *   Ptr<WeibullRandomVariable> x = CreateObject<WeibullRandomVariable> ();
 *   x->SetAttribute ("Scale", DoubleValue (scale));
 *   x->SetAttribute ("Shape", DoubleValue (shape));
 * 
 *   // The expected value for the mean of the values returned by a
 *   // Weibull distributed random variable is
 *   //
 *   //     E[value]  =  scale * Gamma(1 + 1 / shape)  ,
 *   //               
 *   // where Gamma() is the Gamma function.  Note that 
 *   //               
 *   //     Gamma(n)  =  (n - 1)!
 *   //               
 *   // if n is a positive integer.
 *   //
 *   // For this example,
 *   //
 *   //     Gamma(1 + 1 / shape)  =  Gamma(1 + 1 / 1)
 *   //                           =  Gamma(2)
 *   //                           =  (2 - 1)!
 *   //                           =  1
 *   //
 *   // which means
 *   //
 *   //     E[value]  =  scale  .
 *   //               
 *   double value = x->GetValue ();
 * \endcode
 */
class WeibullRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a Weibull distribution RNG with the default
   * values for the scale, shape, and upper bound.
   */
  WeibullRandomVariable ();

  /**
   * \brief Returns the scale parameter for the Weibull distribution returned by this RNG stream.
   * \return The scale parameter for the Weibull distribution returned by this RNG stream.
   */
  double GetScale (void) const;

  /**
   * \brief Returns the shape parameter for the Weibull distribution returned by this RNG stream.
   * \return The shape parameter for the Weibull distribution returned by this RNG stream.
   */
  double GetShape (void) const;

  /**
   * \brief Returns the upper bound on values that can be returned by this RNG stream.
   * \return The upper bound on values that can be returned by this RNG stream.
   */
  double GetBound (void) const;

  /**
   * \brief Returns a random double from a Weibull distribution with the specified scale, shape, and upper bound.
   * \param [in] scale Scale parameter for the Weibull distribution.
   * \param [in] shape Shape parameter for the Weibull distribution.
   * \param [in] bound Upper bound on values returned.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = scale * {(-\log(u))}^{\frac{1}{shape}}
   *    \f]
   *
   * is a value that would be returned normally, then \f$(1 - u\f$) is
   * the distance that \f$u\f$ would be from \f$1\f$.  The value
   * returned in the antithetic case, \f$x'\f$, is calculated as
   *
   *    \f[
   *         x' = scale * {(-\log(1 - u))}^{\frac{1}{shape}} ,
   *    \f]
   *
   * which now involves the log of the distance \f$u\f$ is from 1.
   */
  double GetValue (double scale, double shape, double bound);

  /**
   * \brief Returns a random unsigned integer from a Weibull distribution with the specified scale, shape, and upper bound.
   * \param [in] scale Scale parameter for the Weibull distribution.
   * \param [in] shape Shape parameter for the Weibull distribution.
   * \param [in] bound Upper bound on values returned.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = scale * {(-\log(u))}^{\frac{1}{shape}}
   *    \f]
   *
   * is a value that would be returned normally, then \f$(1 - u\f$) is
   * the distance that \f$u\f$ would be from \f$1\f$.  The value
   * returned in the antithetic case, \f$x'\f$, is calculated as
   *
   *    \f[
   *         x' = scale * {(-\log(1 - u))}^{\frac{1}{shape}} ,
   *    \f]
   *
   * which now involves the log of the distance \f$u\f$ is from 1.
   */
  uint32_t GetInteger (uint32_t scale, uint32_t shape, uint32_t bound);

  /**
   * \brief Returns a random double from a Weibull distribution with the current scale, shape, and upper bound.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = scale * {(-\log(u))}^{\frac{1}{shape}}
   *    \f]
   *
   * is a value that would be returned normally, then \f$(1 - u\f$) is
   * the distance that \f$u\f$ would be from \f$1\f$.  The value
   * returned in the antithetic case, \f$x'\f$, is calculated as
   *
   *    \f[
   *         x' = scale * {(-\log(1 - u))}^{\frac{1}{shape}} ,
   *    \f]
   *
   * which now involves the log of the distance \f$u\f$ is from 1.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the three-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from a Weibull distribution with the current scale, shape, and upper bound.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = scale * {(-\log(u))}^{\frac{1}{shape}}
   *    \f]
   *
   * is a value that would be returned normally, then \f$(1 - u\f$) is
   * the distance that \f$u\f$ would be from \f$1\f$.  The value
   * returned in the antithetic case, \f$x'\f$, is calculated as
   *
   *    \f[
   *         x' = scale * {(-\log(1 - u))}^{\frac{1}{shape}} ,
   *    \f]
   *
   * which now involves the log of the distance \f$u\f$ is from 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /** The scale parameter for the Weibull distribution returned by this RNG stream. */
  double m_scale;

  /** The shape parameter for the Weibull distribution returned by this RNG stream. */
  double m_shape;

  /** The upper bound on values that can be returned by this RNG stream. */
  double m_bound;

};  // class WeibullRandomVariable

  
/**
 * \ingroup randomvariable
 * \brief The normal (Gaussian) distribution Random Number Generator
 * (RNG) that allows stream numbers to be set deterministically.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed normal distribution.  It also supports the generation of
 * single random numbers from various normal distributions.
 *
 * The density probability function is defined over the interval (\f$-\infty\f$,\f$+\infty\f$)
 * as: \f$ \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{s\sigma^2}}\f$
 * where \f$ mean = \mu \f$ and \f$ variance = \sigma^2 \f$
 *
 * Since normal distributions can theoretically return unbounded
 * values, it is sometimes useful to specify a fixed bound.  The
 * NormalRandomVariable is bounded symmetrically about the mean by
 * this bound, i.e. its values are confined to the interval
 * [\f$mean-bound\f$,\f$mean+bound\f$].
 *
 * Here is an example of how to use this class:
 * \code
 *   double mean = 5.0;
 *   double variance = 2.0;
 *   
 *   Ptr<NormalRandomVariable> x = CreateObject<NormalRandomVariable> ();
 *   x->SetAttribute ("Mean", DoubleValue (mean));
 *   x->SetAttribute ("Variance", DoubleValue (variance));
 *   
 *   // The expected value for the mean of the values returned by a
 *   // normally distributed random variable is equal to mean.
 *   double value = x->GetValue ();
 * \endcode
 */
class NormalRandomVariable : public RandomVariableStream
{
public:
  /** Large constant to bound the range. */
  static const double INFINITE_VALUE;

  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a normal distribution RNG with the default
   * values for the mean, variance, and bound.
   */
  NormalRandomVariable ();

  /**
   * \brief Returns the mean value for the normal distribution returned by this RNG stream.
   * \return The mean value for the normal distribution returned by this RNG stream.
   */
  double GetMean (void) const;

  /**
   * \brief Returns the variance value for the normal distribution returned by this RNG stream.
   * \return The variance value for the normal distribution returned by this RNG stream.
   */
  double GetVariance (void) const;

  /**
   * \brief Returns the bound on values that can be returned by this RNG stream.
   * \return The bound on values that can be returned by this RNG stream.
   */
  double GetBound (void) const;

  /**
   * \brief Returns a random double from a normal distribution with the specified mean, variance, and bound.
   * \param [in] mean Mean value for the normal distribution.
   * \param [in] variance Variance value for the normal distribution.
   * \param [in] bound Bound on values returned.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & 2 * u1 - 1     \\
   *         v2 & = & 2 * u2 - 1     \\
   *         w & = & v1 * v1 + v2 * v2     \\
   *         y & = & \sqrt{\frac{-2 * \log(w)}{w}}     \\
   *         x1 & = & mean + v1 * y * \sqrt{variance}     \\
   *         x2 & = & mean + v2 * y * \sqrt{variance}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
   * calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & 2 * (1 - u1) - 1     \\
   *         v2' & = & 2 * (1 - u2) - 1     \\
   *         w' & = & v1' * v1' + v2' * v2'     \\
   *         y' & = & \sqrt{\frac{-2 * \log(w')}{w'}}     \\
   *         x1' & = & mean + v1' * y' * \sqrt{variance}     \\
   *         x2' & = & mean + v2' * y' * \sqrt{variance}  ,
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   */
  double GetValue (double mean, double variance, double bound = NormalRandomVariable::INFINITE_VALUE);

  /**
   * \brief Returns a random unsigned integer from a normal distribution with the specified mean, variance, and bound.
   * \param [in] mean Mean value for the normal distribution.
   * \param [in] variance Variance value for the normal distribution.
   * \param [in] bound Bound on values returned.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & 2 * u1 - 1     \\
   *         v2 & = & 2 * u2 - 1     \\
   *         w & = & v1 * v1 + v2 * v2     \\
   *         y & = & \sqrt{\frac{-2 * \log(w)}{w}}     \\
   *         x1 & = & mean + v1 * y * \sqrt{variance}     \\
   *         x2 & = & mean + v2 * y * \sqrt{variance}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
   * calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & 2 * (1 - u1) - 1     \\
   *         v2' & = & 2 * (1 - u2) - 1     \\
   *         w' & = & v1' * v1' + v2' * v2'     \\
   *         y' & = & \sqrt{\frac{-2 * \log(w')}{w'}}     \\
   *         x1' & = & mean + v1' * y' * \sqrt{variance}     \\
   *         x2' & = & mean + v2' * y' * \sqrt{variance}  ,
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   */
  uint32_t GetInteger (uint32_t mean, uint32_t variance, uint32_t bound);

  /**
   * \brief Returns a random double from a normal distribution with the current mean, variance, and bound.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & 2 * u1 - 1     \\
   *         v2 & = & 2 * u2 - 1     \\
   *         w & = & v1 * v1 + v2 * v2     \\
   *         y & = & \sqrt{\frac{-2 * \log(w)}{w}}     \\
   *         x1 & = & mean + v1 * y * \sqrt{variance}     \\
   *         x2 & = & mean + v2 * y * \sqrt{variance}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
   * calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & 2 * (1 - u1) - 1     \\
   *         v2' & = & 2 * (1 - u2) - 1     \\
   *         w' & = & v1' * v1' + v2' * v2'     \\
   *         y' & = & \sqrt{\frac{-2 * \log(w')}{w'}}     \\
   *         x1' & = & mean + v1' * y' * \sqrt{variance}     \\
   *         x2' & = & mean + v2' * y' * \sqrt{variance}  ,
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the three-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from a normal distribution with the current mean, variance, and bound.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & 2 * u1 - 1     \\
   *         v2 & = & 2 * u2 - 1     \\
   *         w & = & v1 * v1 + v2 * v2     \\
   *         y & = & \sqrt{\frac{-2 * \log(w)}{w}}     \\
   *         x1 & = & mean + v1 * y * \sqrt{variance}     \\
   *         x2 & = & mean + v2 * y * \sqrt{variance}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
   * calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & 2 * (1 - u1) - 1     \\
   *         v2' & = & 2 * (1 - u2) - 1     \\
   *         w' & = & v1' * v1' + v2' * v2'     \\
   *         y' & = & \sqrt{\frac{-2 * \log(w')}{w'}}     \\
   *         x1' & = & mean + v1' * y' * \sqrt{variance}     \\
   *         x2' & = & mean + v2' * y' * \sqrt{variance}  ,
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /** The mean value for the normal distribution returned by this RNG stream. */
  double m_mean;

  /** The variance value for the normal distribution returned by this RNG stream. */
  double m_variance;

  /** The bound on values that can be returned by this RNG stream. */
  double m_bound;

  /** True if the next value is valid. */
  bool m_nextValid;

  /** The algorithm produces two values at a time. */
  double m_next;

};  // class NormalRandomVariable

  
/**
 * \ingroup randomvariable
 * \brief The log-normal distribution Random Number Generator
 * (RNG) that allows stream numbers to be set deterministically.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed log-normal distribution.  It also supports the generation of
 * single random numbers from various log-normal distributions.
 *
 * LogNormalRandomVariable defines a random variable with a log-normal
 * distribution.  If one takes the natural logarithm of random
 * variable following the log-normal distribution, the obtained values
 * follow a normal distribution.
 *
 * The probability density function is defined over the interval [0,\f$+\infty\f$) as:
 * \f$ \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(ln(x) - \mu)^2}{2\sigma^2}}\f$
 * where \f$ mean = e^{\mu+\frac{\sigma^2}{2}} \f$ and
 * \f$ variance = (e^{\sigma^2}-1)e^{2\mu+\sigma^2}\f$
 *
 * The \f$ \mu \f$ and \f$ \sigma \f$ parameters can be calculated instead if
 * the mean and variance are known with the following equations:
 * \f$ \mu = ln(mean) - \frac{1}{2}ln\left(1+\frac{variance}{mean^2}\right)\f$, and,
 * \f$ \sigma = \sqrt{ln\left(1+\frac{variance}{mean^2}\right)}\f$
 *
 * Here is an example of how to use this class:
 * \code
 *   double mu = 5.0;
 *   double sigma = 2.0;
 *   
 *   Ptr<LogNormalRandomVariable> x = CreateObject<LogNormalRandomVariable> ();
 *   x->SetAttribute ("Mu", DoubleValue (mu));
 *   x->SetAttribute ("Sigma", DoubleValue (sigma));
 *   
 *   // The expected value for the mean of the values returned by a
 *   // log-normally distributed random variable is equal to 
 *   //
 *   //                             2
 *   //                   mu + sigma  / 2
 *   //     E[value]  =  e                 .
 *   //
 *   double value = x->GetValue ();
 * \endcode
 */
class LogNormalRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a log-normal distribution RNG with the default
   * values for mu and sigma.
   */
  LogNormalRandomVariable ();

  /**
   * \brief Returns the mu value for the log-normal distribution returned by this RNG stream.
   * \return The mu value for the log-normal distribution returned by this RNG stream.
   */
  double GetMu (void) const;

  /**
   * \brief Returns the sigma value for the log-normal distribution returned by this RNG stream.
   * \return The sigma value for the log-normal distribution returned by this RNG stream.
   */
  double GetSigma (void) const;

  /**
   * \brief Returns a random double from a log-normal distribution with the specified mu and sigma.
   * \param [in] mu Mu value for the log-normal distribution.
   * \param [in] sigma Sigma value for the log-normal distribution.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the value that would be returned normally, \f$x\f$, is calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & -1 + 2 * u1       \\
   *         v2 & = & -1 + 2 * u2       \\
   *         r2 & = & v1 * v1 + v2 * v2       \\
   *         normal & = & v1 * \sqrt{\frac{-2.0 * \log{r2}}{r2}}       \\
   *         x & = &  \exp{sigma * normal + mu}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic value returned, \f$x'\f$, is calculated as
   * follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & -1 + 2 * (1 - u1)       \\
   *         v2' & = & -1 + 2 * (1 - u2)       \\
   *         r2' & = & v1' * v1' + v2' * v2'       \\
   *         normal' & = & v1' * \sqrt{\frac{-2.0 * \log{r2'}}{r2'}}       \\
   *         x' & = &  \exp{sigma * normal' + mu}  .
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   */
  double GetValue (double mu, double sigma);

  /**
   * \brief Returns a random unsigned integer from a log-normal distribution with the specified mu and sigma.
   * \param [in] mu Mu value for the log-normal distribution.
   * \param [in] sigma Sigma value for the log-normal distribution.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the value that would be returned normally, \f$x\f$, is calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & -1 + 2 * u1       \\
   *         v2 & = & -1 + 2 * u2       \\
   *         r2 & = & v1 * v1 + v2 * v2       \\
   *         normal & = & v1 * \sqrt{\frac{-2.0 * \log{r2}}{r2}}       \\
   *         x & = &  \exp{sigma * normal + mu}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic value returned, \f$x'\f$, is calculated as
   * follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & -1 + 2 * (1 - u1)       \\
   *         v2' & = & -1 + 2 * (1 - u2)       \\
   *         r2' & = & v1' * v1' + v2' * v2'       \\
   *         normal' & = & v1' * \sqrt{\frac{-2.0 * \log{r2'}}{r2'}}       \\
   *         x' & = &  \exp{sigma * normal' + mu}  .
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   */
  uint32_t GetInteger (uint32_t mu, uint32_t sigma);

  /**
   * \brief Returns a random double from a log-normal distribution with the current mu and sigma.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the value that would be returned normally, \f$x\f$, is calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & -1 + 2 * u1       \\
   *         v2 & = & -1 + 2 * u2       \\
   *         r2 & = & v1 * v1 + v2 * v2       \\
   *         normal & = & v1 * \sqrt{\frac{-2.0 * \log{r2}}{r2}}       \\
   *         x & = &  \exp{sigma * normal + mu}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic value returned, \f$x'\f$, is calculated as
   * follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & -1 + 2 * (1 - u1)       \\
   *         v2' & = & -1 + 2 * (1 - u2)       \\
   *         r2' & = & v1' * v1' + v2' * v2'       \\
   *         normal' & = & v1' * \sqrt{\frac{-2.0 * \log{r2'}}{r2'}}       \\
   *         x' & = &  \exp{sigma * normal' + mu}  .
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the two-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from a log-normal distribution with the current mu and sigma.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the value that would be returned normally, \f$x\f$, is calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & -1 + 2 * u1       \\
   *         v2 & = & -1 + 2 * u2       \\
   *         r2 & = & v1 * v1 + v2 * v2       \\
   *         normal & = & v1 * \sqrt{\frac{-2.0 * \log{r2}}{r2}}       \\
   *         x & = &  \exp{sigma * normal + mu}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic value returned, \f$x'\f$, is calculated as
   * follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & -1 + 2 * (1 - u1)       \\
   *         v2' & = & -1 + 2 * (1 - u2)       \\
   *         r2' & = & v1' * v1' + v2' * v2'       \\
   *         normal' & = & v1' * \sqrt{\frac{-2.0 * \log{r2'}}{r2'}}       \\
   *         x' & = &  \exp{sigma * normal' + mu}  .
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /** The mu value for the log-normal distribution returned by this RNG stream. */
  double m_mu;

  /** The sigma value for the log-normal distribution returned by this RNG stream. */
  double m_sigma;

};  // class LogNormalRandomVariable
  

/**
 * \ingroup randomvariable
 * \brief The gamma distribution Random Number Generator (RNG) that
 * allows stream numbers to be set deterministically.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed gamma distribution.  It also supports the generation of
 * single random numbers from various gamma distributions.
 *
 * The probability density function is defined over the interval [0,\f$+\infty\f$) as:
 * \f$ x^{\alpha-1} \frac{e^{-\frac{x}{\beta}}}{\beta^\alpha \Gamma(\alpha)}\f$
 * where \f$ mean = \alpha\beta \f$ and
 * \f$ variance = \alpha \beta^2\f$
 *
 * Here is an example of how to use this class:
 * \code
 *   double alpha = 5.0;
 *   double beta = 2.0;
 *   
 *   Ptr<GammaRandomVariable> x = CreateObject<GammaRandomVariable> ();
 *   x->SetAttribute ("Alpha", DoubleValue (alpha));
 *   x->SetAttribute ("Beta", DoubleValue (beta));
 *   
 *   // The expected value for the mean of the values returned by a
 *   // gammaly distributed random variable is equal to 
 *   //
 *   //     E[value]  =  alpha * beta  .
 *   //
 *   double value = x->GetValue ();
 * \endcode
 */
class GammaRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a gamma distribution RNG with the default values
   * for alpha and beta.
   */
  GammaRandomVariable ();

  /**
   * \brief Returns the alpha value for the gamma distribution returned by this RNG stream.
   * \return The alpha value for the gamma distribution returned by this RNG stream.
   */
  double GetAlpha (void) const;

  /**
   * \brief Returns the beta value for the gamma distribution returned by this RNG stream.
   * \return The beta value for the gamma distribution returned by this RNG stream.
   */
  double GetBeta (void) const;

  /**
   * \brief Returns a random double from a gamma distribution with the specified alpha and beta.
   * \param [in] alpha Alpha value for the gamma distribution.
   * \param [in] beta Beta value for the gamma distribution.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  double GetValue (double alpha, double beta);

  /**
   * \brief Returns a random unsigned integer from a gamma distribution with the specified alpha and beta.
   * \param [in] alpha Alpha value for the gamma distribution.
   * \param [in] beta Beta value for the gamma distribution.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  uint32_t GetInteger (uint32_t alpha, uint32_t beta);

  /**
   * \brief Returns a random double from a gamma distribution with the current alpha and beta.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the two-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from a gamma distribution with the current alpha and beta.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /**
   * \brief Returns a random double from a normal distribution with the specified mean, variance, and bound.
   * \param [in] mean Mean value for the normal distribution.
   * \param [in] variance Variance value for the normal distribution.
   * \param [in] bound Bound on values returned.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u1\f$ and \f$u2\f$ are uniform variables
   * over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1 & = & 2 * u1 - 1     \\
   *         v2 & = & 2 * u2 - 1     \\
   *         w & = & v1 * v1 + v2 * v2     \\
   *         y & = & \sqrt{\frac{-2 * \log(w)}{w}}     \\
   *         x1 & = & mean + v1 * y * \sqrt{variance}     \\
   *         x2 & = & mean + v2 * y * \sqrt{variance}  .
   *    \f}
   *
   * For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
   * the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
   * The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
   * calculated as follows:
   *
   *    \f{eqnarray*}{
   *         v1' & = & 2 * (1 - u1) - 1     \\
   *         v2' & = & 2 * (1 - u2) - 1     \\
   *         w' & = & v1' * v1' + v2' * v2'     \\
   *         y' & = & \sqrt{\frac{-2 * \log(w')}{w'}}     \\
   *         x1' & = & mean + v1' * y' * \sqrt{variance}     \\
   *         x2' & = & mean + v2' * y' * \sqrt{variance}  ,
   *    \f}
   *
   * which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
   */
  double GetNormalValue (double mean, double variance, double bound);

  /** The alpha value for the gamma distribution returned by this RNG stream. */
  double m_alpha;

  /** The beta value for the gamma distribution returned by this RNG stream. */
  double m_beta;

  /** True if the next normal value is valid. */
  bool m_nextValid;

  /** The algorithm produces two normal values at a time. */
  double m_next;

};  // class GammaRandomVariable
  

/**
 * \ingroup randomvariable
 * \brief The Erlang distribution Random Number Generator (RNG) that
 * allows stream numbers to be set deterministically.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed Erlang distribution.  It also supports the generation of
 * single random numbers from various Erlang distributions.
 *
 * The Erlang distribution is a special case of the Gamma distribution where k
 * (= alpha) is a non-negative integer. Erlang distributed variables can be
 * generated using a much faster algorithm than gamma variables.
 *
 * The probability density function is defined over the interval [0,\f$+\infty\f$) as:
 * \f$ \frac{x^{k-1} e^{-\frac{x}{\lambda}}}{\lambda^k (k-1)!}\f$
 * where \f$ mean = k \lambda \f$ and
 * \f$ variance = k \lambda^2\f$
 *
 * Here is an example of how to use this class:
 * \code
 *   uint32_t k = 5;
 *   double lambda = 2.0;
 *   
 *   Ptr<ErlangRandomVariable> x = CreateObject<ErlangRandomVariable> ();
 *   x->SetAttribute ("K", IntegerValue (k));
 *   x->SetAttribute ("Lambda", DoubleValue (lambda));
 *   
 *   // The expected value for the mean of the values returned by a
 *   // Erlangly distributed random variable is equal to 
 *   //
 *   //     E[value]  =  k * lambda  .
 *   //
 *   double value = x->GetValue ();
 * \endcode
 */
class ErlangRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates an Erlang distribution RNG with the default values
   * for k and lambda.
   */
  ErlangRandomVariable ();

  /**
   * \brief Returns the k value for the Erlang distribution returned by this RNG stream.
   * \return The k value for the Erlang distribution returned by this RNG stream.
   */
  uint32_t GetK (void) const;

  /**
   * \brief Returns the lambda value for the Erlang distribution returned by this RNG stream.
   * \return The lambda value for the Erlang distribution returned by this RNG stream.
   */
  double GetLambda (void) const;

  /**
   * \brief Returns a random double from an Erlang distribution with the specified k and lambda.
   * \param [in] k K value for the Erlang distribution.
   * \param [in] lambda Lambda value for the Erlang distribution.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  double GetValue (uint32_t k, double lambda);

  /**
   * \brief Returns a random unsigned integer from an Erlang distribution with the specified k and lambda.
   * \param [in] k K value for the Erlang distribution.
   * \param [in] lambda Lambda value for the Erlang distribution.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  uint32_t GetInteger (uint32_t k, uint32_t lambda);

  /**
   * \brief Returns a random double from an Erlang distribution with the current k and lambda.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the two-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from an Erlang distribution with the current k and lambda.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /**
   * \brief Returns a random double from an exponential distribution with the specified mean and upper bound.
   * \param [in] mean Mean value of the random variables.
   * \param [in] bound Upper bound on values returned.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *         x = - mean * \log(u) 
   *    \f]
   *
   * is a value that would be returned normally, then \f$(1 - u\f$) is
   * the distance that \f$u\f$ would be from \f$1\f$.  The value
   * returned in the antithetic case, \f$x'\f$, is calculated as
   *
   *    \f[
   *         x' = - mean * \log(1 - u), 
   *    \f]
   *
   * which now involves the log of the distance \f$u\f$ is from the 1.
   */
  double GetExponentialValue (double mean, double bound);

  /** The k value for the Erlang distribution returned by this RNG stream. */
  uint32_t m_k;

  /** The lambda value for the Erlang distribution returned by this RNG stream. */
  double m_lambda;

};  // class ErlangRandomVariable
  

/**
 * \ingroup randomvariable
 * \brief The triangular distribution Random Number Generator (RNG) that
 * allows stream numbers to be set deterministically.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed triangular distribution.  It also supports the generation of
 * single random numbers from various triangular distributions.
 *
 * This distribution is a triangular distribution.  The probability density
 * is in the shape of a triangle.
 *
 * Here is an example of how to use this class:
 * \code
 *   double mean = 5.0;
 *   double min = 2.0;
 *   double max = 10.0;
 *   
 *   Ptr<TriangularRandomVariable> x = CreateObject<TriangularRandomVariable> ();
 *   x->SetAttribute ("Mean", DoubleValue (mean));
 *   x->SetAttribute ("Min", DoubleValue (min));
 *   x->SetAttribute ("Max", DoubleValue (max));
 *   
 *   // The expected value for the mean of the values returned by a
 *   // triangularly distributed random variable is equal to mean.
 *   double value = x->GetValue ();
 * \endcode
 */
class TriangularRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a triangular distribution RNG with the default
   * values for the mean, lower bound, and upper bound.
   */
  TriangularRandomVariable ();

  /**
   * \brief Returns the mean value for the triangular distribution returned by this RNG stream.
   * \return The mean value for the triangular distribution returned by this RNG stream.
   */
  double GetMean (void) const;

  /**
   * \brief Returns the lower bound for the triangular distribution returned by this RNG stream.
   * \return The lower bound for the triangular distribution returned by this RNG stream.
   */
  double GetMin (void) const;

  /**
   * \brief Returns the upper bound on values that can be returned by this RNG stream.
   * \return The upper bound on values that can be returned by this RNG stream.
   */
  double GetMax (void) const;

  /**
   * \brief Returns a random double from a triangular distribution with the specified mean, min, and max.
   * \param [in] mean Mean value for the triangular distribution.
   * \param [in] min Low end of the range.
   * \param [in] max High end of the range.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *        x = \left\{ \begin{array}{rl}
   *           min + \sqrt{u * (max - min) * (mode - min)} &\mbox{ if $u <= (mode - min)/(max - min)$} \\
   *           max - \sqrt{ (1 - u) * (max - min) * (max - mode) } &\mbox{ otherwise}
   *                 \end{array} \right.
   *    \f]
   *
   * is a value that would be returned normally, where the mode or
   * peak of the triangle is calculated as
   *
   *    \f[
   *         mode =  3.0 * mean - min - max  .
   *    \f]
   *
   * Then, \f$(1 - u\f$) is the distance that \f$u\f$ would be from
   * \f$1\f$.  The value returned in the antithetic case, \f$x'\f$, is
   * calculated as
   *
   *    \f[
   *        x' = \left\{ \begin{array}{rl}
   *           min + \sqrt{(1 - u) * (max - min) * (mode - min)} &\mbox{ if $(1 - u) <= (mode - min)/(max - min)$} \\
   *           max - \sqrt{ u * (max - min) * (max - mode) } &\mbox{ otherwise}
   *                 \end{array} \right.
   *     \f]
   *
   * which now involves the distance \f$u\f$ is from the 1.
   */
  double GetValue (double mean, double min, double max);

  /**
   * \brief Returns a random unsigned integer from a triangular distribution with the specified mean, min, and max.
   * \param [in] mean Mean value for the triangular distribution.
   * \param [in] min Low end of the range.
   * \param [in] max High end of the range.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *        x = \left\{ \begin{array}{rl}
   *           min + \sqrt{u * (max - min) * (mode - min)} &\mbox{ if $u <= (mode - min)/(max - min)$} \\
   *           max - \sqrt{ (1 - u) * (max - min) * (max - mode) } &\mbox{ otherwise}
   *                 \end{array} \right.
   *    \f]
   *
   * is a value that would be returned normally, where the mode or
   * peak of the triangle is calculated as
   *
   *    \f[
   *         mode =  3.0 * mean - min - max  .
   *    \f]
   *
   * Then, \f$(1 - u\f$) is the distance that \f$u\f$ would be from
   * \f$1\f$.  The value returned in the antithetic case, \f$x'\f$, is
   * calculated as
   *
   *    \f[
   *        x' = \left\{ \begin{array}{rl}
   *           min + \sqrt{(1 - u) * (max - min) * (mode - min)} &\mbox{ if $(1 - u) <= (mode - min)/(max - min)$} \\
   *           max - \sqrt{ u * (max - min) * (max - mode) } &\mbox{ otherwise}
   *                 \end{array} \right.
   *     \f]
   *
   * which now involves the distance \f$u\f$ is from the 1.
   */
  uint32_t GetInteger (uint32_t mean, uint32_t min, uint32_t max);

  /**
   * \brief Returns a random double from a triangular distribution with the current mean, min, and max.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *        x = \left\{ \begin{array}{rl}
   *           min + \sqrt{u * (max - min) * (mode - min)} &\mbox{ if $u <= (mode - min)/(max - min)$} \\
   *           max - \sqrt{ (1 - u) * (max - min) * (max - mode) } &\mbox{ otherwise}
   *                 \end{array} \right.
   *    \f]
   *
   * is a value that would be returned normally, where the mode or
   * peak of the triangle is calculated as
   *
   *    \f[
   *         mode =  3.0 * mean - min - max  .
   *    \f]
   *
   * Then, \f$(1 - u\f$) is the distance that \f$u\f$ would be from
   * \f$1\f$.  The value returned in the antithetic case, \f$x'\f$, is
   * calculated as
   *
   *    \f[
   *        x' = \left\{ \begin{array}{rl}
   *           min + \sqrt{(1 - u) * (max - min) * (mode - min)} &\mbox{ if $(1 - u) <= (mode - min)/(max - min)$} \\
   *           max - \sqrt{ u * (max - min) * (max - mode) } &\mbox{ otherwise}
   *                 \end{array} \right.
   *     \f]
   *
   * which now involves the distance \f$u\f$ is from the 1.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the three-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from a triangular distribution with the current mean, min, and max.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if
   * m_isAntithetic is equal to true.  If \f$u\f$ is a uniform variable
   * over [0,1] and
   *
   *    \f[
   *        x = \left\{ \begin{array}{rl}
   *           min + \sqrt{u * (max - min) * (mode - min)} &\mbox{ if $u <= (mode - min)/(max - min)$} \\
   *           max - \sqrt{ (1 - u) * (max - min) * (max - mode) } &\mbox{ otherwise}
   *                 \end{array} \right.
   *    \f]
   *
   * is a value that would be returned normally, where the mode or
   * peak of the triangle is calculated as
   *
   *    \f[
   *         mode =  3.0 * mean - min - max  .
   *    \f]
   *
   * Then, \f$(1 - u\f$) is the distance that \f$u\f$ would be from
   * \f$1\f$.  The value returned in the antithetic case, \f$x'\f$, is
   * calculated as
   *
   *    \f[
   *        x' = \left\{ \begin{array}{rl}
   *           min + \sqrt{(1 - u) * (max - min) * (mode - min)} &\mbox{ if $(1 - u) <= (mode - min)/(max - min)$} \\
   *           max - \sqrt{ u * (max - min) * (max - mode) } &\mbox{ otherwise}
   *                 \end{array} \right.
   *     \f]
   *
   * which now involves the distance \f$u\f$ is from the 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /** The mean value for the triangular distribution returned by this RNG stream. */
  double m_mean;

  /** The lower bound on values that can be returned by this RNG stream. */
  double m_min;

  /** The upper bound on values that can be returned by this RNG stream. */
  double m_max;

};  // class TriangularRandomVariable
  

/**
 * \ingroup randomvariable
 * \brief The Zipf distribution Random Number Generator (RNG) that
 * allows stream numbers to be set deterministically.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed Zipf distribution.  It also supports the generation of
 * single random numbers from various Zipf distributions.
 *
 * The Zipf's law states that given some corpus of natural language
 * utterances, the frequency of any word is inversely proportional
 * to its rank in the frequency table.
 *
 * Zipf's distribution has two parameters, alpha and N, where:
 * \f$ \alpha > 0 \f$ (real) and \f$ N \in \{1,2,3 \dots\}\f$ (integer).
 * Probability Mass Function is \f$ f(k; \alpha, N) = k^{-\alpha}/ H_{N,\alpha} \f$
 * where \f$ H_{N,\alpha} = \sum_{m=1}^N m^{-\alpha} \f$
 *
 * Here is an example of how to use this class:
 * \code
 *   uint32_t n = 1;
 *   double alpha = 2.0;
 *   
 *   Ptr<ZipfRandomVariable> x = CreateObject<ZipfRandomVariable> ();
 *   x->SetAttribute ("N", IntegerValue (n));
 *   x->SetAttribute ("Alpha", DoubleValue (alpha));
 *   
 *   // The expected value for the mean of the values returned by a
 *   // Zipfly distributed random variable is equal to 
 *   //
 *   //                   H
 *   //                    N, alpha - 1
 *   //     E[value]  =  ---------------
 *   //                     H
 *   //                      N, alpha
 *   //                          
 *   // where
 *   //
 *   //                    N   
 *   //                   ---    
 *   //                   \     -alpha
 *   //     H          =  /    m        .
 *   //      N, alpha     ---
 *   //                   m=1    
 *   //                 
 *   // For this test,
 *   //
 *   //                      -(alpha - 1)
 *   //                     1
 *   //     E[value]  =  ---------------
 *   //                      -alpha
 *   //                     1
 *   //
 *   //               =  1  .
 *   //               
 *   double value = x->GetValue ();
 * \endcode
 */
class ZipfRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a Zipf distribution RNG with the default values
   * for n and alpha.
   */
  ZipfRandomVariable ();

  /**
   * \brief Returns the n value for the Zipf distribution returned by this RNG stream.
   * \return The n value for the Zipf distribution returned by this RNG stream.
   */
  uint32_t GetN (void) const;

  /**
   * \brief Returns the alpha value for the Zipf distribution returned by this RNG stream.
   * \return The alpha value for the Zipf distribution returned by this RNG stream.
   */
  double GetAlpha (void) const;

  /**
   * \brief Returns a random double from a Zipf distribution with the specified n and alpha.
   * \param [in] n N value for the Zipf distribution.
   * \param [in] alpha Alpha value for the Zipf distribution.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  double GetValue (uint32_t n, double alpha);

  /**
   * \brief Returns a random unsigned integer from a Zipf distribution with the specified n and alpha.
   * \param [in] n N value for the Zipf distribution.
   * \param [in] alpha Alpha value for the Zipf distribution.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  uint32_t GetInteger (uint32_t n, uint32_t alpha);

  /**
   * \brief Returns a random double from a Zipf distribution with the current n and alpha.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the two-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from a Zipf distribution with the current n and alpha.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /** The n value for the Zipf distribution returned by this RNG stream. */
  uint32_t m_n;

  /** The alpha value for the Zipf distribution returned by this RNG stream. */
  double m_alpha;

  /** The normalization constant. */
  double m_c;

};  // class ZipfRandomVariable
  

/**
 * \ingroup randomvariable
 * \brief The zeta distribution Random Number Generator (RNG) that
 * allows stream numbers to be set deterministically.
 *
 * This class supports the creation of objects that return random numbers
 * from a fixed zeta distribution.  It also supports the generation of
 * single random numbers from various zeta distributions.
 *
 * The Zeta distribution is closely related to Zipf distribution when
 * N goes to infinity.
 *
 * Zeta distribution has one parameter, alpha, \f$ \alpha > 1 \f$ (real).
 * Probability Mass Function is \f$ f(k; \alpha) = k^{-\alpha}/\zeta(\alpha) \f$
 * where \f$ \zeta(\alpha) \f$ is the Riemann zeta function ( \f$ \sum_{n=1}^\infty n^{-\alpha} ) \f$
 *
 * Here is an example of how to use this class:
 * \code
 *   double alpha = 2.0;
 *   
 *   Ptr<ZetaRandomVariable> x = CreateObject<ZetaRandomVariable> ();
 *   x->SetAttribute ("Alpha", DoubleValue (alpha));
 *   
 *   // The expected value for the mean of the values returned by a
 *   // zetaly distributed random variable is equal to 
 *   //
 *   //                   zeta(alpha - 1)
 *   //     E[value]  =  ---------------   for alpha > 2 ,
 *   //                     zeta(alpha)
 *   //                          
 *   // where zeta(alpha) is the Riemann zeta function.
 *   //                 
 *   // There are no simple analytic forms for the Riemann zeta
 *   // function, which is the reason the known mean of the values
 *   // cannot be calculated in this example.
 *   //               
 *   double value = x->GetValue ();
 * \endcode
 */
class ZetaRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a zeta distribution RNG with the default value for
   * alpha.
   */
  ZetaRandomVariable ();

  /**
   * \brief Returns the alpha value for the zeta distribution returned by this RNG stream.
   * \return The alpha value for the zeta distribution returned by this RNG stream.
   */
  double GetAlpha (void) const;

  /**
   * \brief Returns a random double from a zeta distribution with the specified alpha.
   * \param [in] alpha Alpha value for the zeta distribution.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  double GetValue (double alpha);

  /**
   * \brief Returns a random unsigned integer from a zeta distribution with the specified alpha.
   * \param [in] alpha Alpha value for the zeta distribution.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  uint32_t GetInteger (uint32_t alpha);

  /**
   * \brief Returns a random double from a zeta distribution with the current alpha.
   * \return A floating point random value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   *
   * Note that we have to re-implement this method here because the method is
   * overloaded above for the two-argument variant and the c++ name resolution
   * rules don't work well with overloads split between parent and child
   * classes.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns a random unsigned integer from a zeta distribution with the current alpha.
   * \return A random unsigned integer value.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /** The alpha value for the zeta distribution returned by this RNG stream. */
  double m_alpha;

  /** Just for calculus simplifications. */
  double m_b;

};  // class ZetaRandomVariable
  

/**
 * \ingroup randomvariable
 * \brief The Random Number Generator (RNG) that returns a predetermined sequence.
 *
 * Defines a random variable that has a specified, predetermined
 * sequence.  This would be useful when trying to force the RNG to
 * return a known sequence, perhaps to compare ns-3 to some other
 * simulator
 *
 * Creates a generator that returns successive elements of the values
 * array on successive calls to RandomVariableStream::GetValue.  Note
 * that the values in the array are copied and stored by the generator
 * (deep-copy).  Also note that the sequence repeats if more values
 * are requested than are present in the array.
 *
 * Here is an example of how to use this class:
 * \code
 *   Ptr<DeterministicRandomVariable> s = CreateObject<DeterministicRandomVariable> ();
 * 
 *   // The following array should give the sequence
 *   //
 *   //    4, 4, 7, 7, 10, 10 .
 *   //
 *   double array [] = { 4, 4, 7, 7, 10, 10};
 *   uint64_t count = 6;
 *   s->SetValueArray (array, count);
 * 
 *   double value = x->GetValue ();
 * \endcode
 */
class DeterministicRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates a deterministic RNG that will have a predetermined
   * sequence of values.
   */
  DeterministicRandomVariable ();
  virtual ~DeterministicRandomVariable ();

  /**
   * \brief Sets the array of values that holds the predetermined sequence.
   * \param [in] values Array of random values to return in sequence.
   * \param [in] length Number of values in the array.
   *
   * Note that the values in the array are copied and stored
   * (deep-copy).
   */
  void SetValueArray (double* values, uint64_t length);

  /**
   * \brief Returns the next value in the sequence.
   * \return The floating point next value in the sequence.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns the next value in the sequence.
   * \return The integer next value in the sequence.
   */
  virtual uint32_t GetInteger (void);

private:
  /** Position in the array of values. */
  uint64_t   m_count;

  /** Position of the next value in the array of values. */
  uint64_t   m_next;

  /** Array of values to return in sequence. */
  double* m_data;

};  // class DeterministicRandomVariable
  

/**
 * \ingroup randomvariable
 * \brief The Random Number Generator (RNG) that has a specified empirical distribution.
 *
 * Defines a random variable  that has a specified, empirical
 * distribution.  The distribution is specified by a
 * series of calls to the CDF member function, specifying a
 * value and the probability that the function value is less than
 * the specified value.  When values are requested,
 * a uniform random variable is used to select a probability,
 * and the return value is interpreted linearly between the
 * two appropriate points in the CDF.  The method is known
 * as inverse transform sampling:
 * (http://en.wikipedia.org/wiki/Inverse_transform_sampling).
 *
 * Here is an example of how to use this class:
 * \code
 *   // Create the RNG with a uniform distribution between 0 and 10.
 *   Ptr<EmpiricalRandomVariable> x = CreateObject<EmpiricalRandomVariable> ();
 *   x->CDF ( 0.0,  0.0);
 *   x->CDF ( 5.0,  0.5);
 *   x->CDF (10.0,  1.0);
 * 
 *   // The expected value for the mean of the values returned by this
 *   // empirical distribution is the midpoint of the distribution
 *   //
 *   //     E[value]  =  5 .
 *   //                          
 *   double value = x->GetValue ();
 * \endcode
 */
class EmpiricalRandomVariable : public RandomVariableStream
{
public:
  /**
   * \brief Register this type.
   * \return The object TypeId.
   */
  static TypeId GetTypeId (void);

  /**
   * \brief Creates an empirical RNG that has a specified, empirical
   * distribution.
   */
  EmpiricalRandomVariable ();

  /**
   * \brief Specifies a point in the empirical distribution
   * \param [in] v The function value for this point
   * \param [in] c Probability that the function is less than or equal to v
   */
  void CDF (double v, double c);  // Value, prob <= Value

  /**
   * \brief Returns the next value in the empirical distribution.
   * \return The floating point next value in the empirical distribution.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  virtual double GetValue (void);

  /**
   * \brief Returns the next value in the empirical distribution.
   * \return The integer next value in the empirical distribution.
   *
   * Note that antithetic values are being generated if m_isAntithetic
   * is equal to true.  If \f$u\f$ is a uniform variable over [0,1]
   * and \f$x\f$ is a value that would be returned normally, then
   * \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
   * The value returned in the antithetic case, \f$x'\f$, uses (1-u),
   * which is the distance \f$u\f$ is from the 1.
   */
  virtual uint32_t GetInteger (void);

private:
  /** Helper to hold one point of the CDF. */
  class ValueCDF
  {
public:
    /** Constructor. */
    ValueCDF ();
    /**
     * Construct from values.
     *
     * \param [in] v The argumetn value.
     * \param [in] c The CDF at the argument value \p v.
     */
    ValueCDF (double v, double c);
    /**
     * Copy constructor.
     *
     * \param [in] c The other ValueCDF.
     */
    ValueCDF (const ValueCDF& c);

    /** The argument value. */
    double value;
    /** The CDF at \p value. */
    double    cdf;
  };
  /**
   * Check that the CDF is valid.
   *
   * A valid CDF has
   *
   * - Strictly increasing arguments, and
   * - Strictly increasing CDF.
   *
   * It is a fatal error to fail validation.
   */
  virtual void Validate ();
  /**
   * Linear nterpolation between two points on the CDF to estimate
   * the value at \p r.
   *
   * \param [in] c1 The first argument value.
   * \param [in] c2 The secong argument value.
   * \param [in] v1 The first CDF value.
   * \param [in] v2 The secong CDF value.
   * \param [in] r  The argument value to interpolate to.
   * \returns The interpolated CDF at \p r.
   */
  virtual double Interpolate (double c1, double c2,
                              double v1, double v2, double r);
  
  /** \c true once the CDF has been validated. */
  bool m_validated;
  /** The vector of CDF points. */
  std::vector<ValueCDF> m_emp;

};  // class EmpiricalRandomVariable
  

} // namespace ns3

#endif /* RANDOM_VARIABLE_STREAM_H */