/usr/include/ns3.27/ns3/random-variable-stream.h is in libns3-dev 3.27+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 | /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
/*
* Copyright (c) 2006 Georgia Tech Research Corporation
* Copyright (c) 2011 Mathieu Lacage
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Authors: Rajib Bhattacharjea<raj.b@gatech.edu>
* Hadi Arbabi<marbabi@cs.odu.edu>
* Mathieu Lacage <mathieu.lacage@gmail.com>
*
* Modified by Mitch Watrous <watrous@u.washington.edu>
*
*/
#ifndef RANDOM_VARIABLE_STREAM_H
#define RANDOM_VARIABLE_STREAM_H
#include "type-id.h"
#include "object.h"
#include "attribute-helper.h"
#include <stdint.h>
/**
* \file
* \ingroup randomvariable
* ns3::RandomVariableStream declaration, and related classes.
*/
namespace ns3 {
/**
* \ingroup core
* \defgroup randomvariable Random Variables
*
* \brief ns-3 random numbers are provided via instances of
* ns3::RandomVariableStream.
*
* - By default, ns-3 simulations use a fixed seed; if there is any
* randomness in the simulation, each run of the program will yield
* identical results unless the seed and/or run number is changed.
* - In ns-3.3 and earlier, ns-3 simulations used a random seed by default;
* this marks a change in policy starting with ns-3.4.
* - In ns-3.14 and earlier, ns-3 simulations used a different wrapper
* class called ns3::RandomVariable. This implementation is documented
* above under Legacy Random Variables. As of ns-3.15, this class has
* been replaced by ns3::RandomVariableStream; the underlying
* pseudo-random number generator has not changed.
* - To obtain randomness across multiple simulation runs, you must
* either set the seed differently or set the run number differently.
* To set a seed, call ns3::RngSeedManager::SetSeed() at the beginning
* of the program; to set a run number with the same seed, call
* ns3::RngSeedManager::SetRun() at the beginning of the program.
* - Each RandomVariableStream used in ns-3 has a virtual random number
* generator associated with it; all random variables use either
* a fixed or random seed based on the use of the global seed.
* - If you intend to perform multiple runs of the same scenario,
* with different random numbers, please be sure to read the manual
* section on how to perform independent replications.
*/
class RngStream;
/**
* \ingroup randomvariable
* \brief The basic uniform Random Number Generator (RNG).
*
* \note The underlying random number generation method used
* by ns-3 is the RngStream code by Pierre L'Ecuyer at
* the University of Montreal.
*
* ns-3 has a rich set of random number generators that allow stream
* numbers to be set deterministically if desired. Class
* RandomVariableStream defines the base class functionality required
* for all such random number generators.
*
* By default, the underlying generator is seeded all the time with
* the same seed value and run number coming from the ns3::GlobalValue
* \ref GlobalValueRngSeed "RngSeed" and \ref GlobalValueRngRun
* "RngRun". Also by default, the stream number value for the
* underlying RngStream is automatically allocated.
*
* Instances can be configured to return "antithetic" values.
* See the documentation for the specific distributions to see
* how this modifies the returned values.
*/
class RandomVariableStream : public Object
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Default constructor.
*/
RandomVariableStream ();
/**
* \brief Destructor.
*/
virtual ~RandomVariableStream();
/**
* \brief Specifies the stream number for the RngStream.
* \param [in] stream The stream number for the RngStream.
* -1 means "allocate a stream number automatically".
*/
void SetStream (int64_t stream);
/**
* \brief Returns the stream number for the RngStream.
* \return The stream number for the RngStream.
* -1 means this stream was allocated automatically.
*/
int64_t GetStream(void) const;
/**
* \brief Specify whether antithetic values should be generated.
* \param [in] isAntithetic If \c true antithetic value will be generated.
*/
void SetAntithetic(bool isAntithetic);
/**
* \brief Check if antithetic values will be generated.
* \return \c true if antithetic values will be generated.
*/
bool IsAntithetic(void) const;
/**
* \brief Get the next random value as a double drawn from the distribution.
* \return A floating point random value.
*/
virtual double GetValue (void) = 0;
/**
* \brief Get the next random value as an integer drawn from the distribution.
* \return An integer random value.
*/
virtual uint32_t GetInteger (void) = 0;
protected:
/**
* \brief Get the pointer to the underlying RngStream.
* \return The underlying RngStream
*/
RngStream *Peek(void) const;
private:
/**
* Copy constructor. These objects are not copyable.
*
* \param [in] o The RandomVariableStream to copy in construction.
* \internal
* Theoretically, it is possible to give them good copy semantics
* but not enough time to iron out the details.
*/
RandomVariableStream (const RandomVariableStream &o);
/**
* Assignment operator. These objects can't be copied by assignment.
*
* \param [in] o The RandomVariableStream to copy.
* \return lvalue RandomVariableStream.
*
* \internal
* Theoretically, it is possible to give them good copy semantics
* but not enough time to iron out the details.
*/
RandomVariableStream &operator = (const RandomVariableStream &o);
/** Pointer to the underlying RngStream. */
RngStream *m_rng;
/** Indicates if antithetic values should be generated by this RNG stream. */
bool m_isAntithetic;
/** The stream number for the RngStream. */
int64_t m_stream;
}; // class RandomVariableStream
/**
* \ingroup randomvariable
* \brief The uniform distribution Random Number Generator (RNG).
*
* This class supports the creation of objects that return random numbers
* from a fixed uniform distribution. It also supports the generation of
* single random numbers from various uniform distributions.
*
* The output range is \f$[min, max)\f$ for floating point values,
* (\c max <i>excluded</i>), and \f$[min, max]\f$ (\c max <i>included</i>)
* for integral values.
*
* \par Example
*
* Here is an example of how to use this class:
* \code
* double min = 0.0;
* double max = 10.0;
*
* Ptr<UniformRandomVariable> x = CreateObject<UniformRandomVariable> ();
* x->SetAttribute ("Min", DoubleValue (min));
* x->SetAttribute ("Max", DoubleValue (max));
*
* // The values returned by a uniformly distributed random
* // variable should always be within the range
* //
* // [min, max) .
* //
* double value = x->GetValue ();
* \endcode
*
* \par Antithetic Values.
*
* Normally this RNG returns values \f$x\f$ in the interval \f$[min,max)\f$.
* If an instance of this RNG is configured to return antithetic values,
* the actual value returned is calculated as follows:
*
* - Compute the initial random value \f$x\f$ as normal.
* - Compute the distance from the maximum, \f$y = max - x\f$
* - Return \f$x' = min + y = min + (max - x)\f$:
*/
class UniformRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a uniform distribution RNG with the default range.
*/
UniformRandomVariable ();
/**
* \brief Get the lower bound on randoms returned by GetValue(void).
* \return The lower bound on values from GetValue(void).
*/
double GetMin (void) const;
/**
* \brief Get the upper bound on values returned by GetValue(void).
* \return The upper bound on values from GetValue(void).
*/
double GetMax (void) const;
/**
* \brief Get the next random value, as a double in the specified range
* \f$[min, max)\f$.
*
* \note The upper limit is excluded from the output range.
*
* \param [in] min Low end of the range (included).
* \param [in] max High end of the range (excluded).
* \return A floating point random value.
*/
double GetValue (double min, double max);
/**
* \brief Get the next random value, as an unsigned integer in the
* specified range \f$[min, max]/f$.
*
* \note The upper limit is included in the output range.
*
* \param [in] min Low end of the range.
* \param [in] max High end of the range.
* \return A random unsigned integer value.
*/
uint32_t GetInteger (uint32_t min, uint32_t max);
// Inherited from RandomVariableStream
/**
* \brief Get the next random value as a double drawn from the distribution.
* \return A floating point random value.
* \note The upper limit is excluded from the output range.
*/
virtual double GetValue (void);
/**
* \brief Get the next random value as an integer drawn from the distribution.
* \return An integer random value.
* \note The upper limit is included in the output range.
*/
virtual uint32_t GetInteger (void);
private:
/** The lower bound on values that can be returned by this RNG stream. */
double m_min;
/** The upper bound on values that can be returned by this RNG stream. */
double m_max;
}; // class UniformRandomVariable
/**
* \ingroup randomvariable
* \brief The Random Number Generator (RNG) that returns a constant.
*
* This RNG returns the same value for every sample.
*
* \par Antithetic Values.
*
* This RNG ignores the antithetic setting.
*/
class ConstantRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a constant RNG with the default constant value.
*/
ConstantRandomVariable ();
/**
* \brief Get the constant value returned by this RNG stream.
* \return The constant value.
*/
double GetConstant (void) const;
/**
* \brief Get the next random value, as a double equal to the argument.
* \param [in] constant The value to return.
* \return The floating point argument.
*/
double GetValue (double constant);
/**
* \brief Get the next random value, as an integer equal to the argument.
* \param [in] constant The value to return.
* \return The integer argument.
*/
uint32_t GetInteger (uint32_t constant);
// Inherited from RandomVariableStream
/* \note This RNG always returns the same value. */
virtual double GetValue (void);
/* \note This RNG always returns the same value. */
virtual uint32_t GetInteger (void);
private:
/** The constant value returned by this RNG stream. */
double m_constant;
}; // class ConstantRandomVariable
/**
* \ingroup randomvariable
* \brief The Random Number Generator (RNG) that returns a pattern of
* sequential values.
*
* This RNG has four configuration attributes:
*
* - An increment, \c Increment.
* - A consecutive repeat numer, \c Consecutive.
* - The minimum value, \c Min.
* - The maximum value, \c Max.
*
* The RNG starts at the \c Min value. Each return value is
* repeated \c Consecutive times, before advancing by the \c Increment.
* When the \c Increment would cause the value to equal or exceed
* \c Max it is reset to \c Min first.
*
* For example, if an instance is configured with:
*
* Attribute | Value
* :---------- | -----:
* Min | 2
* Max | 13
* Increment | 4
* Consecutive | 3
*
* The sequence will repeat this pattern: 2 2 2 6 6 6 10 10 10.
*
* Notice that \c Max will be a strict upper bound on the values:
* all values in the sequence will be less than \c Max.
*
* \par Antithetic Values.
*
* This RNG ignores the antithetic setting.
*/
class SequentialRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a sequential RNG with the default values
* for the sequence parameters.
*/
SequentialRandomVariable ();
/**
* \brief Get the first value of the sequence.
* \return The first value of the sequence.
*/
double GetMin (void) const;
/**
* \brief Get the limit of the sequence, which is (at least)
* one more than the last value of the sequence.
* \return The limit of the sequence.
*/
double GetMax (void) const;
/**
* \brief Get the increment for the sequence.
* \return The increment between distinct values for the sequence.
*/
Ptr<RandomVariableStream> GetIncrement (void) const;
/**
* \brief Get the number of times each distinct value of the sequence
* is repeated before incrementing to the next value.
* \return The number of times each value is repeated.
*/
uint32_t GetConsecutive (void) const;
// Inherited from RandomVariableStream
virtual double GetValue (void);
virtual uint32_t GetInteger (void);
private:
/** The first value of the sequence. */
double m_min;
/** Strict upper bound on the sequence. */
double m_max;
/** Increment between distinct values. */
Ptr<RandomVariableStream> m_increment;
/** The number of times each distinct value is repeated. */
uint32_t m_consecutive;
/** The current sequence value. */
double m_current;
/** The number of times the current distinct value has been repeated. */
uint32_t m_currentConsecutive;
/** Indicates if the current sequence value has been properly initialized. */
bool m_isCurrentSet;
}; // class SequentialRandomVariable
/**
* \ingroup randomvariable
* \brief The exponential distribution Random Number Generator (RNG).
*
* This class supports the creation of objects that return random numbers
* from a fixed exponential distribution. It also supports the generation of
* single random numbers from various exponential distributions.
*
* The probability density function of an exponential variable
* is defined as:
* \f[
* P(x) dx = \alpha e^{-\alpha x} dx, \quad x \in [0, +\infty)
* \f]
* over the interval \f$[0, +\infty)\f$, where \f$ \alpha = \frac{1}{Mean} \f$
* and \c Mean is a configurable attribute.
*
* The normal RNG value \f$x\f$ is calculated by
*
* \f[
* x = - 1/\alpha \log(u)
* \f]
*
* where \f$u\f$ is a uniform random variable on \f$[0,1)\f$.
*
* \par Bounded Distribution
*
* Since exponential distributions can theoretically return unbounded
* values, it is sometimes useful to specify a fixed upper limit. The
* bounded version is defined over the interval \f$[0,b]\f$ as:
*
* \f[
* P(x; b) dx = \alpha e^{-\alpha x} dx \quad x \in [0,b]
* \f]
*
* where the \c Bound \f$b\f$ is a configurable attribute.
*
* Note that in this case the true mean of the distribution is smaller
* than the nominal mean value:
*
* \f[
* <X: P(x; b)> = 1/\alpha - b/(e^{\alpha \, b} -1)
* \f]
*
* \par Example
*
* Here is an example of how to use this class:
* \code
* double mean = 3.14;
* double bound = 0.0;
*
* Ptr<ExponentialRandomVariable> x = CreateObject<ExponentialRandomVariable> ();
* x->SetAttribute ("Mean", DoubleValue (mean));
* x->SetAttribute ("Bound", DoubleValue (bound));
*
* // The expected value for the mean of the values returned by an
* // exponentially distributed random variable is equal to mean.
* double value = x->GetValue ();
* \endcode
*
* \par Antithetic Values.
*
* The antithetic value is calculated from
*
* \f[
* x' = - mean * \log(1 - u),
* \f]
*
* where again \f$u\f$ is a uniform random variable on \f$[0,1)\f$.
*/
class ExponentialRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates an exponential distribution RNG with the default
* values for the mean and upper bound.
*/
ExponentialRandomVariable ();
/**
* \brief Get the configured mean value of this RNG.
*
* \note This will not be the actual mean if the distribution is
* truncated by a bound.
* \return The configured mean value.
*/
double GetMean (void) const;
/**
* \brief Get the configured upper bound of this RNG.
* \return The upper bound.
*/
double GetBound (void) const;
/**
* \brief Get the next random value, as a double from
* the exponential distribution with the specified mean and upper bound.
* \param [in] mean Mean value of the unbounded exponential distribution.
* \param [in] bound Upper bound on values returned.
* \return A floating point random value.
*/
double GetValue (double mean, double bound);
/**
* \brief Get the next random value, as an unsigned integer from
* the exponential distribution with the specified mean and upper bound.
* \param [in] mean Mean value of the unbounded exponential distribution.
* \param [in] bound Upper bound on values returned.
* \return A random unsigned integer value.
*/
uint32_t GetInteger (uint32_t mean, uint32_t bound);
// Inherited from RandomVariableStream
virtual double GetValue (void);
virtual uint32_t GetInteger (void);
private:
/** The mean value of the unbounded exponential distribution. */
double m_mean;
/** The upper bound on values that can be returned by this RNG stream. */
double m_bound;
}; // class ExponentialRandomVariable
/**
* \ingroup randomvariable
* \brief The Pareto distribution Random Number Generator (RNG).
*
* This class supports the creation of objects that return random numbers
* from a fixed Pareto distribution. It also supports the generation of
* single random numbers from various Pareto distributions.
*
* The probability density function of a Pareto variable is defined
* over the range [\f$x_m\f$,\f$+\infty\f$) as: \f$ k \frac{x_m^k}{x^{k+1}}\f$
* where \f$x_m > 0\f$ is called the scale parameter and \f$ k > 0\f$
* is called the Pareto index or shape.
*
* The parameter \f$ x_m \f$ can be inferred from the mean and the parameter \f$ k \f$
* with the equation \f$ x_m = mean \frac{k-1}{k}, k > 1\f$.
*
* Since Pareto distributions can theoretically return unbounded values,
* it is sometimes useful to specify a fixed upper limit. Note however
* when the upper limit is specified, the true mean of the distribution
* is slightly smaller than the mean value specified.
*
* Here is an example of how to use this class:
* \code
* double scale = 5.0;
* double shape = 2.0;
*
* Ptr<ParetoRandomVariable> x = CreateObject<ParetoRandomVariable> ();
* x->SetAttribute ("Scale", DoubleValue (scale));
* x->SetAttribute ("Shape", DoubleValue (shape));
*
* // The expected value for the mean of the values returned by a
* // Pareto distributed random variable is
* //
* // shape * scale
* // E[value] = --------------- ,
* // shape - 1
*
* double value = x->GetValue ();
* \endcode
*/
class ParetoRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a Pareto distribution RNG with the default
* values for the mean, the shape, and upper bound.
*/
ParetoRandomVariable ();
/**
* \brief Returns the mean parameter for the Pareto distribution returned by this RNG stream.
* \return The mean parameter for the Pareto distribution returned by this RNG stream.
*/
NS_DEPRECATED
double GetMean (void) const;
/**
* \brief Returns the scale parameter for the Pareto distribution returned by this RNG stream.
* \return The scale parameter for the Pareto distribution returned by this RNG stream.
*/
double GetScale (void) const;
/**
* \brief Returns the shape parameter for the Pareto distribution returned by this RNG stream.
* \return The shape parameter for the Pareto distribution returned by this RNG stream.
*/
double GetShape (void) const;
/**
* \brief Returns the upper bound on values that can be returned by this RNG stream.
* \return The upper bound on values that can be returned by this RNG stream.
*/
double GetBound (void) const;
/**
* \brief Returns a random double from a Pareto distribution with the specified scale, shape, and upper bound.
* \param [in] scale Mean parameter for the Pareto distribution.
* \param [in] shape Shape parameter for the Pareto distribution.
* \param [in] bound Upper bound on values returned.
* \return A floating point random value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = \frac{scale}{u^{\frac{1}{shape}}}
* \f]
*
* is a value that would be returned normally.
*
* The value returned in the antithetic case, \f$x'\f$, is
* calculated as
*
* \f[
* x' = \frac{scale}{{(1 - u)}^{\frac{1}{shape}}} ,
* \f]
*
* which now involves the distance \f$u\f$ is from 1 in the denominator.
*/
double GetValue (double scale, double shape, double bound);
/**
* \brief Returns a random unsigned integer from a Pareto distribution with the specified mean, shape, and upper bound.
* \param [in] scale Scale parameter for the Pareto distribution.
* \param [in] shape Shape parameter for the Pareto distribution.
* \param [in] bound Upper bound on values returned.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = \frac{scale}{u^{\frac{1}{shape}}}
* \f]
*
* is a value that would be returned normally.
*
* The value returned in the antithetic case, \f$x'\f$, is
* calculated as
*
* \f[
* x' = \frac{scale}{{(1 - u)}^{\frac{1}{shape}}} ,
* \f]
*
* which now involves the distance \f$u\f$ is from 1 in the denominator.
*/
uint32_t GetInteger (uint32_t scale, uint32_t shape, uint32_t bound);
/**
* \brief Returns a random double from a Pareto distribution with the current mean, shape, and upper bound.
* \return A floating point random value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = \frac{scale}{u^{\frac{1}{shape}}}
* \f]
*
* is a value that would be returned normally, where
*
* \f[
* scale = mean * (shape - 1.0) / shape .
* \f]
*
* The value returned in the antithetic case, \f$x'\f$, is
* calculated as
*
* \f[
* x' = \frac{scale}{{(1 - u)}^{\frac{1}{shape}}} ,
* \f]
*
* which now involves the distance \f$u\f$ is from 1 in the denominator.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the three-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from a Pareto distribution with the current mean, shape, and upper bound.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = \frac{scale}{u^{\frac{1}{shape}}}
* \f]
*
* is a value that would be returned normally.
*
* The value returned in the antithetic case, \f$x'\f$, is
* calculated as
*
* \f[
* x' = \frac{scale}{{(1 - u)}^{\frac{1}{shape}}} ,
* \f]
*
* which now involves the distance \f$u\f$ is from 1 in the denominator.
*/
virtual uint32_t GetInteger (void);
private:
/** The mean parameter for the Pareto distribution returned by this RNG stream. */
double m_mean;
/** The scale parameter for the Pareto distribution returned by this RNG stream. */
double m_scale;
/** The shape parameter for the Pareto distribution returned by this RNG stream. */
double m_shape;
/** The upper bound on values that can be returned by this RNG stream. */
double m_bound;
}; // class ParetoRandomVariable
/**
* \ingroup randomvariable
* \brief The Weibull distribution Random Number Generator (RNG) that allows stream numbers to be set deterministically.
*
* This class supports the creation of objects that return random numbers
* from a fixed Weibull distribution. It also supports the generation of
* single random numbers from various Weibull distributions.
*
* The probability density function is defined over the interval [0, \f$+\infty\f$]
* as: \f$ \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-\left(\frac{x}{\lambda}\right)^k} \f$
* where \f$ k > 0\f$ is the shape parameter and \f$ \lambda > 0\f$ is the scale parameter. The
* specified mean is related to the scale and shape parameters by the following relation:
* \f$ mean = \lambda\Gamma\left(1+\frac{1}{k}\right) \f$ where \f$ \Gamma \f$ is the Gamma function.
*
* Since Weibull distributions can theoretically return unbounded values,
* it is sometimes useful to specify a fixed upper limit. Note however
* when the upper limit is specified, the true mean of the distribution
* is slightly smaller than the mean value specified.
*
* Here is an example of how to use this class:
* \code
* double scale = 5.0;
* double shape = 1.0;
*
* Ptr<WeibullRandomVariable> x = CreateObject<WeibullRandomVariable> ();
* x->SetAttribute ("Scale", DoubleValue (scale));
* x->SetAttribute ("Shape", DoubleValue (shape));
*
* // The expected value for the mean of the values returned by a
* // Weibull distributed random variable is
* //
* // E[value] = scale * Gamma(1 + 1 / shape) ,
* //
* // where Gamma() is the Gamma function. Note that
* //
* // Gamma(n) = (n - 1)!
* //
* // if n is a positive integer.
* //
* // For this example,
* //
* // Gamma(1 + 1 / shape) = Gamma(1 + 1 / 1)
* // = Gamma(2)
* // = (2 - 1)!
* // = 1
* //
* // which means
* //
* // E[value] = scale .
* //
* double value = x->GetValue ();
* \endcode
*/
class WeibullRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a Weibull distribution RNG with the default
* values for the scale, shape, and upper bound.
*/
WeibullRandomVariable ();
/**
* \brief Returns the scale parameter for the Weibull distribution returned by this RNG stream.
* \return The scale parameter for the Weibull distribution returned by this RNG stream.
*/
double GetScale (void) const;
/**
* \brief Returns the shape parameter for the Weibull distribution returned by this RNG stream.
* \return The shape parameter for the Weibull distribution returned by this RNG stream.
*/
double GetShape (void) const;
/**
* \brief Returns the upper bound on values that can be returned by this RNG stream.
* \return The upper bound on values that can be returned by this RNG stream.
*/
double GetBound (void) const;
/**
* \brief Returns a random double from a Weibull distribution with the specified scale, shape, and upper bound.
* \param [in] scale Scale parameter for the Weibull distribution.
* \param [in] shape Shape parameter for the Weibull distribution.
* \param [in] bound Upper bound on values returned.
* \return A floating point random value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = scale * {(-\log(u))}^{\frac{1}{shape}}
* \f]
*
* is a value that would be returned normally, then \f$(1 - u\f$) is
* the distance that \f$u\f$ would be from \f$1\f$. The value
* returned in the antithetic case, \f$x'\f$, is calculated as
*
* \f[
* x' = scale * {(-\log(1 - u))}^{\frac{1}{shape}} ,
* \f]
*
* which now involves the log of the distance \f$u\f$ is from 1.
*/
double GetValue (double scale, double shape, double bound);
/**
* \brief Returns a random unsigned integer from a Weibull distribution with the specified scale, shape, and upper bound.
* \param [in] scale Scale parameter for the Weibull distribution.
* \param [in] shape Shape parameter for the Weibull distribution.
* \param [in] bound Upper bound on values returned.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = scale * {(-\log(u))}^{\frac{1}{shape}}
* \f]
*
* is a value that would be returned normally, then \f$(1 - u\f$) is
* the distance that \f$u\f$ would be from \f$1\f$. The value
* returned in the antithetic case, \f$x'\f$, is calculated as
*
* \f[
* x' = scale * {(-\log(1 - u))}^{\frac{1}{shape}} ,
* \f]
*
* which now involves the log of the distance \f$u\f$ is from 1.
*/
uint32_t GetInteger (uint32_t scale, uint32_t shape, uint32_t bound);
/**
* \brief Returns a random double from a Weibull distribution with the current scale, shape, and upper bound.
* \return A floating point random value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = scale * {(-\log(u))}^{\frac{1}{shape}}
* \f]
*
* is a value that would be returned normally, then \f$(1 - u\f$) is
* the distance that \f$u\f$ would be from \f$1\f$. The value
* returned in the antithetic case, \f$x'\f$, is calculated as
*
* \f[
* x' = scale * {(-\log(1 - u))}^{\frac{1}{shape}} ,
* \f]
*
* which now involves the log of the distance \f$u\f$ is from 1.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the three-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from a Weibull distribution with the current scale, shape, and upper bound.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = scale * {(-\log(u))}^{\frac{1}{shape}}
* \f]
*
* is a value that would be returned normally, then \f$(1 - u\f$) is
* the distance that \f$u\f$ would be from \f$1\f$. The value
* returned in the antithetic case, \f$x'\f$, is calculated as
*
* \f[
* x' = scale * {(-\log(1 - u))}^{\frac{1}{shape}} ,
* \f]
*
* which now involves the log of the distance \f$u\f$ is from 1.
*/
virtual uint32_t GetInteger (void);
private:
/** The scale parameter for the Weibull distribution returned by this RNG stream. */
double m_scale;
/** The shape parameter for the Weibull distribution returned by this RNG stream. */
double m_shape;
/** The upper bound on values that can be returned by this RNG stream. */
double m_bound;
}; // class WeibullRandomVariable
/**
* \ingroup randomvariable
* \brief The normal (Gaussian) distribution Random Number Generator
* (RNG) that allows stream numbers to be set deterministically.
*
* This class supports the creation of objects that return random numbers
* from a fixed normal distribution. It also supports the generation of
* single random numbers from various normal distributions.
*
* The density probability function is defined over the interval (\f$-\infty\f$,\f$+\infty\f$)
* as: \f$ \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{s\sigma^2}}\f$
* where \f$ mean = \mu \f$ and \f$ variance = \sigma^2 \f$
*
* Since normal distributions can theoretically return unbounded
* values, it is sometimes useful to specify a fixed bound. The
* NormalRandomVariable is bounded symmetrically about the mean by
* this bound, i.e. its values are confined to the interval
* [\f$mean-bound\f$,\f$mean+bound\f$].
*
* Here is an example of how to use this class:
* \code
* double mean = 5.0;
* double variance = 2.0;
*
* Ptr<NormalRandomVariable> x = CreateObject<NormalRandomVariable> ();
* x->SetAttribute ("Mean", DoubleValue (mean));
* x->SetAttribute ("Variance", DoubleValue (variance));
*
* // The expected value for the mean of the values returned by a
* // normally distributed random variable is equal to mean.
* double value = x->GetValue ();
* \endcode
*/
class NormalRandomVariable : public RandomVariableStream
{
public:
/** Large constant to bound the range. */
static const double INFINITE_VALUE;
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a normal distribution RNG with the default
* values for the mean, variance, and bound.
*/
NormalRandomVariable ();
/**
* \brief Returns the mean value for the normal distribution returned by this RNG stream.
* \return The mean value for the normal distribution returned by this RNG stream.
*/
double GetMean (void) const;
/**
* \brief Returns the variance value for the normal distribution returned by this RNG stream.
* \return The variance value for the normal distribution returned by this RNG stream.
*/
double GetVariance (void) const;
/**
* \brief Returns the bound on values that can be returned by this RNG stream.
* \return The bound on values that can be returned by this RNG stream.
*/
double GetBound (void) const;
/**
* \brief Returns a random double from a normal distribution with the specified mean, variance, and bound.
* \param [in] mean Mean value for the normal distribution.
* \param [in] variance Variance value for the normal distribution.
* \param [in] bound Bound on values returned.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & 2 * u1 - 1 \\
* v2 & = & 2 * u2 - 1 \\
* w & = & v1 * v1 + v2 * v2 \\
* y & = & \sqrt{\frac{-2 * \log(w)}{w}} \\
* x1 & = & mean + v1 * y * \sqrt{variance} \\
* x2 & = & mean + v2 * y * \sqrt{variance} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
* calculated as follows:
*
* \f{eqnarray*}{
* v1' & = & 2 * (1 - u1) - 1 \\
* v2' & = & 2 * (1 - u2) - 1 \\
* w' & = & v1' * v1' + v2' * v2' \\
* y' & = & \sqrt{\frac{-2 * \log(w')}{w'}} \\
* x1' & = & mean + v1' * y' * \sqrt{variance} \\
* x2' & = & mean + v2' * y' * \sqrt{variance} ,
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*/
double GetValue (double mean, double variance, double bound = NormalRandomVariable::INFINITE_VALUE);
/**
* \brief Returns a random unsigned integer from a normal distribution with the specified mean, variance, and bound.
* \param [in] mean Mean value for the normal distribution.
* \param [in] variance Variance value for the normal distribution.
* \param [in] bound Bound on values returned.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & 2 * u1 - 1 \\
* v2 & = & 2 * u2 - 1 \\
* w & = & v1 * v1 + v2 * v2 \\
* y & = & \sqrt{\frac{-2 * \log(w)}{w}} \\
* x1 & = & mean + v1 * y * \sqrt{variance} \\
* x2 & = & mean + v2 * y * \sqrt{variance} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
* calculated as follows:
*
* \f{eqnarray*}{
* v1' & = & 2 * (1 - u1) - 1 \\
* v2' & = & 2 * (1 - u2) - 1 \\
* w' & = & v1' * v1' + v2' * v2' \\
* y' & = & \sqrt{\frac{-2 * \log(w')}{w'}} \\
* x1' & = & mean + v1' * y' * \sqrt{variance} \\
* x2' & = & mean + v2' * y' * \sqrt{variance} ,
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*/
uint32_t GetInteger (uint32_t mean, uint32_t variance, uint32_t bound);
/**
* \brief Returns a random double from a normal distribution with the current mean, variance, and bound.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & 2 * u1 - 1 \\
* v2 & = & 2 * u2 - 1 \\
* w & = & v1 * v1 + v2 * v2 \\
* y & = & \sqrt{\frac{-2 * \log(w)}{w}} \\
* x1 & = & mean + v1 * y * \sqrt{variance} \\
* x2 & = & mean + v2 * y * \sqrt{variance} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
* calculated as follows:
*
* \f{eqnarray*}{
* v1' & = & 2 * (1 - u1) - 1 \\
* v2' & = & 2 * (1 - u2) - 1 \\
* w' & = & v1' * v1' + v2' * v2' \\
* y' & = & \sqrt{\frac{-2 * \log(w')}{w'}} \\
* x1' & = & mean + v1' * y' * \sqrt{variance} \\
* x2' & = & mean + v2' * y' * \sqrt{variance} ,
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the three-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from a normal distribution with the current mean, variance, and bound.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & 2 * u1 - 1 \\
* v2 & = & 2 * u2 - 1 \\
* w & = & v1 * v1 + v2 * v2 \\
* y & = & \sqrt{\frac{-2 * \log(w)}{w}} \\
* x1 & = & mean + v1 * y * \sqrt{variance} \\
* x2 & = & mean + v2 * y * \sqrt{variance} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
* calculated as follows:
*
* \f{eqnarray*}{
* v1' & = & 2 * (1 - u1) - 1 \\
* v2' & = & 2 * (1 - u2) - 1 \\
* w' & = & v1' * v1' + v2' * v2' \\
* y' & = & \sqrt{\frac{-2 * \log(w')}{w'}} \\
* x1' & = & mean + v1' * y' * \sqrt{variance} \\
* x2' & = & mean + v2' * y' * \sqrt{variance} ,
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*/
virtual uint32_t GetInteger (void);
private:
/** The mean value for the normal distribution returned by this RNG stream. */
double m_mean;
/** The variance value for the normal distribution returned by this RNG stream. */
double m_variance;
/** The bound on values that can be returned by this RNG stream. */
double m_bound;
/** True if the next value is valid. */
bool m_nextValid;
/** The algorithm produces two values at a time. */
double m_next;
}; // class NormalRandomVariable
/**
* \ingroup randomvariable
* \brief The log-normal distribution Random Number Generator
* (RNG) that allows stream numbers to be set deterministically.
*
* This class supports the creation of objects that return random numbers
* from a fixed log-normal distribution. It also supports the generation of
* single random numbers from various log-normal distributions.
*
* LogNormalRandomVariable defines a random variable with a log-normal
* distribution. If one takes the natural logarithm of random
* variable following the log-normal distribution, the obtained values
* follow a normal distribution.
*
* The probability density function is defined over the interval [0,\f$+\infty\f$) as:
* \f$ \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(ln(x) - \mu)^2}{2\sigma^2}}\f$
* where \f$ mean = e^{\mu+\frac{\sigma^2}{2}} \f$ and
* \f$ variance = (e^{\sigma^2}-1)e^{2\mu+\sigma^2}\f$
*
* The \f$ \mu \f$ and \f$ \sigma \f$ parameters can be calculated instead if
* the mean and variance are known with the following equations:
* \f$ \mu = ln(mean) - \frac{1}{2}ln\left(1+\frac{variance}{mean^2}\right)\f$, and,
* \f$ \sigma = \sqrt{ln\left(1+\frac{variance}{mean^2}\right)}\f$
*
* Here is an example of how to use this class:
* \code
* double mu = 5.0;
* double sigma = 2.0;
*
* Ptr<LogNormalRandomVariable> x = CreateObject<LogNormalRandomVariable> ();
* x->SetAttribute ("Mu", DoubleValue (mu));
* x->SetAttribute ("Sigma", DoubleValue (sigma));
*
* // The expected value for the mean of the values returned by a
* // log-normally distributed random variable is equal to
* //
* // 2
* // mu + sigma / 2
* // E[value] = e .
* //
* double value = x->GetValue ();
* \endcode
*/
class LogNormalRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a log-normal distribution RNG with the default
* values for mu and sigma.
*/
LogNormalRandomVariable ();
/**
* \brief Returns the mu value for the log-normal distribution returned by this RNG stream.
* \return The mu value for the log-normal distribution returned by this RNG stream.
*/
double GetMu (void) const;
/**
* \brief Returns the sigma value for the log-normal distribution returned by this RNG stream.
* \return The sigma value for the log-normal distribution returned by this RNG stream.
*/
double GetSigma (void) const;
/**
* \brief Returns a random double from a log-normal distribution with the specified mu and sigma.
* \param [in] mu Mu value for the log-normal distribution.
* \param [in] sigma Sigma value for the log-normal distribution.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the value that would be returned normally, \f$x\f$, is calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & -1 + 2 * u1 \\
* v2 & = & -1 + 2 * u2 \\
* r2 & = & v1 * v1 + v2 * v2 \\
* normal & = & v1 * \sqrt{\frac{-2.0 * \log{r2}}{r2}} \\
* x & = & \exp{sigma * normal + mu} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic value returned, \f$x'\f$, is calculated as
* follows:
*
* \f{eqnarray*}{
* v1' & = & -1 + 2 * (1 - u1) \\
* v2' & = & -1 + 2 * (1 - u2) \\
* r2' & = & v1' * v1' + v2' * v2' \\
* normal' & = & v1' * \sqrt{\frac{-2.0 * \log{r2'}}{r2'}} \\
* x' & = & \exp{sigma * normal' + mu} .
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*/
double GetValue (double mu, double sigma);
/**
* \brief Returns a random unsigned integer from a log-normal distribution with the specified mu and sigma.
* \param [in] mu Mu value for the log-normal distribution.
* \param [in] sigma Sigma value for the log-normal distribution.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the value that would be returned normally, \f$x\f$, is calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & -1 + 2 * u1 \\
* v2 & = & -1 + 2 * u2 \\
* r2 & = & v1 * v1 + v2 * v2 \\
* normal & = & v1 * \sqrt{\frac{-2.0 * \log{r2}}{r2}} \\
* x & = & \exp{sigma * normal + mu} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic value returned, \f$x'\f$, is calculated as
* follows:
*
* \f{eqnarray*}{
* v1' & = & -1 + 2 * (1 - u1) \\
* v2' & = & -1 + 2 * (1 - u2) \\
* r2' & = & v1' * v1' + v2' * v2' \\
* normal' & = & v1' * \sqrt{\frac{-2.0 * \log{r2'}}{r2'}} \\
* x' & = & \exp{sigma * normal' + mu} .
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*/
uint32_t GetInteger (uint32_t mu, uint32_t sigma);
/**
* \brief Returns a random double from a log-normal distribution with the current mu and sigma.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the value that would be returned normally, \f$x\f$, is calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & -1 + 2 * u1 \\
* v2 & = & -1 + 2 * u2 \\
* r2 & = & v1 * v1 + v2 * v2 \\
* normal & = & v1 * \sqrt{\frac{-2.0 * \log{r2}}{r2}} \\
* x & = & \exp{sigma * normal + mu} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic value returned, \f$x'\f$, is calculated as
* follows:
*
* \f{eqnarray*}{
* v1' & = & -1 + 2 * (1 - u1) \\
* v2' & = & -1 + 2 * (1 - u2) \\
* r2' & = & v1' * v1' + v2' * v2' \\
* normal' & = & v1' * \sqrt{\frac{-2.0 * \log{r2'}}{r2'}} \\
* x' & = & \exp{sigma * normal' + mu} .
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the two-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from a log-normal distribution with the current mu and sigma.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the value that would be returned normally, \f$x\f$, is calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & -1 + 2 * u1 \\
* v2 & = & -1 + 2 * u2 \\
* r2 & = & v1 * v1 + v2 * v2 \\
* normal & = & v1 * \sqrt{\frac{-2.0 * \log{r2}}{r2}} \\
* x & = & \exp{sigma * normal + mu} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic value returned, \f$x'\f$, is calculated as
* follows:
*
* \f{eqnarray*}{
* v1' & = & -1 + 2 * (1 - u1) \\
* v2' & = & -1 + 2 * (1 - u2) \\
* r2' & = & v1' * v1' + v2' * v2' \\
* normal' & = & v1' * \sqrt{\frac{-2.0 * \log{r2'}}{r2'}} \\
* x' & = & \exp{sigma * normal' + mu} .
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*/
virtual uint32_t GetInteger (void);
private:
/** The mu value for the log-normal distribution returned by this RNG stream. */
double m_mu;
/** The sigma value for the log-normal distribution returned by this RNG stream. */
double m_sigma;
}; // class LogNormalRandomVariable
/**
* \ingroup randomvariable
* \brief The gamma distribution Random Number Generator (RNG) that
* allows stream numbers to be set deterministically.
*
* This class supports the creation of objects that return random numbers
* from a fixed gamma distribution. It also supports the generation of
* single random numbers from various gamma distributions.
*
* The probability density function is defined over the interval [0,\f$+\infty\f$) as:
* \f$ x^{\alpha-1} \frac{e^{-\frac{x}{\beta}}}{\beta^\alpha \Gamma(\alpha)}\f$
* where \f$ mean = \alpha\beta \f$ and
* \f$ variance = \alpha \beta^2\f$
*
* Here is an example of how to use this class:
* \code
* double alpha = 5.0;
* double beta = 2.0;
*
* Ptr<GammaRandomVariable> x = CreateObject<GammaRandomVariable> ();
* x->SetAttribute ("Alpha", DoubleValue (alpha));
* x->SetAttribute ("Beta", DoubleValue (beta));
*
* // The expected value for the mean of the values returned by a
* // gammaly distributed random variable is equal to
* //
* // E[value] = alpha * beta .
* //
* double value = x->GetValue ();
* \endcode
*/
class GammaRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a gamma distribution RNG with the default values
* for alpha and beta.
*/
GammaRandomVariable ();
/**
* \brief Returns the alpha value for the gamma distribution returned by this RNG stream.
* \return The alpha value for the gamma distribution returned by this RNG stream.
*/
double GetAlpha (void) const;
/**
* \brief Returns the beta value for the gamma distribution returned by this RNG stream.
* \return The beta value for the gamma distribution returned by this RNG stream.
*/
double GetBeta (void) const;
/**
* \brief Returns a random double from a gamma distribution with the specified alpha and beta.
* \param [in] alpha Alpha value for the gamma distribution.
* \param [in] beta Beta value for the gamma distribution.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
double GetValue (double alpha, double beta);
/**
* \brief Returns a random unsigned integer from a gamma distribution with the specified alpha and beta.
* \param [in] alpha Alpha value for the gamma distribution.
* \param [in] beta Beta value for the gamma distribution.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
uint32_t GetInteger (uint32_t alpha, uint32_t beta);
/**
* \brief Returns a random double from a gamma distribution with the current alpha and beta.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the two-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from a gamma distribution with the current alpha and beta.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
virtual uint32_t GetInteger (void);
private:
/**
* \brief Returns a random double from a normal distribution with the specified mean, variance, and bound.
* \param [in] mean Mean value for the normal distribution.
* \param [in] variance Variance value for the normal distribution.
* \param [in] bound Bound on values returned.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u1\f$ and \f$u2\f$ are uniform variables
* over [0,1], then the values that would be returned normally, \f$x1\f$ and \f$x2\f$, are calculated as follows:
*
* \f{eqnarray*}{
* v1 & = & 2 * u1 - 1 \\
* v2 & = & 2 * u2 - 1 \\
* w & = & v1 * v1 + v2 * v2 \\
* y & = & \sqrt{\frac{-2 * \log(w)}{w}} \\
* x1 & = & mean + v1 * y * \sqrt{variance} \\
* x2 & = & mean + v2 * y * \sqrt{variance} .
* \f}
*
* For the antithetic case, \f$(1 - u1\f$) and \f$(1 - u2\f$) are
* the distances that \f$u1\f$ and \f$u2\f$ would be from \f$1\f$.
* The antithetic values returned, \f$x1'\f$ and \f$x2'\f$, are
* calculated as follows:
*
* \f{eqnarray*}{
* v1' & = & 2 * (1 - u1) - 1 \\
* v2' & = & 2 * (1 - u2) - 1 \\
* w' & = & v1' * v1' + v2' * v2' \\
* y' & = & \sqrt{\frac{-2 * \log(w')}{w'}} \\
* x1' & = & mean + v1' * y' * \sqrt{variance} \\
* x2' & = & mean + v2' * y' * \sqrt{variance} ,
* \f}
*
* which now involves the distances \f$u1\f$ and \f$u2\f$ are from 1.
*/
double GetNormalValue (double mean, double variance, double bound);
/** The alpha value for the gamma distribution returned by this RNG stream. */
double m_alpha;
/** The beta value for the gamma distribution returned by this RNG stream. */
double m_beta;
/** True if the next normal value is valid. */
bool m_nextValid;
/** The algorithm produces two normal values at a time. */
double m_next;
}; // class GammaRandomVariable
/**
* \ingroup randomvariable
* \brief The Erlang distribution Random Number Generator (RNG) that
* allows stream numbers to be set deterministically.
*
* This class supports the creation of objects that return random numbers
* from a fixed Erlang distribution. It also supports the generation of
* single random numbers from various Erlang distributions.
*
* The Erlang distribution is a special case of the Gamma distribution where k
* (= alpha) is a non-negative integer. Erlang distributed variables can be
* generated using a much faster algorithm than gamma variables.
*
* The probability density function is defined over the interval [0,\f$+\infty\f$) as:
* \f$ \frac{x^{k-1} e^{-\frac{x}{\lambda}}}{\lambda^k (k-1)!}\f$
* where \f$ mean = k \lambda \f$ and
* \f$ variance = k \lambda^2\f$
*
* Here is an example of how to use this class:
* \code
* uint32_t k = 5;
* double lambda = 2.0;
*
* Ptr<ErlangRandomVariable> x = CreateObject<ErlangRandomVariable> ();
* x->SetAttribute ("K", IntegerValue (k));
* x->SetAttribute ("Lambda", DoubleValue (lambda));
*
* // The expected value for the mean of the values returned by a
* // Erlangly distributed random variable is equal to
* //
* // E[value] = k * lambda .
* //
* double value = x->GetValue ();
* \endcode
*/
class ErlangRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates an Erlang distribution RNG with the default values
* for k and lambda.
*/
ErlangRandomVariable ();
/**
* \brief Returns the k value for the Erlang distribution returned by this RNG stream.
* \return The k value for the Erlang distribution returned by this RNG stream.
*/
uint32_t GetK (void) const;
/**
* \brief Returns the lambda value for the Erlang distribution returned by this RNG stream.
* \return The lambda value for the Erlang distribution returned by this RNG stream.
*/
double GetLambda (void) const;
/**
* \brief Returns a random double from an Erlang distribution with the specified k and lambda.
* \param [in] k K value for the Erlang distribution.
* \param [in] lambda Lambda value for the Erlang distribution.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
double GetValue (uint32_t k, double lambda);
/**
* \brief Returns a random unsigned integer from an Erlang distribution with the specified k and lambda.
* \param [in] k K value for the Erlang distribution.
* \param [in] lambda Lambda value for the Erlang distribution.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
uint32_t GetInteger (uint32_t k, uint32_t lambda);
/**
* \brief Returns a random double from an Erlang distribution with the current k and lambda.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the two-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from an Erlang distribution with the current k and lambda.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
virtual uint32_t GetInteger (void);
private:
/**
* \brief Returns a random double from an exponential distribution with the specified mean and upper bound.
* \param [in] mean Mean value of the random variables.
* \param [in] bound Upper bound on values returned.
* \return A floating point random value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = - mean * \log(u)
* \f]
*
* is a value that would be returned normally, then \f$(1 - u\f$) is
* the distance that \f$u\f$ would be from \f$1\f$. The value
* returned in the antithetic case, \f$x'\f$, is calculated as
*
* \f[
* x' = - mean * \log(1 - u),
* \f]
*
* which now involves the log of the distance \f$u\f$ is from the 1.
*/
double GetExponentialValue (double mean, double bound);
/** The k value for the Erlang distribution returned by this RNG stream. */
uint32_t m_k;
/** The lambda value for the Erlang distribution returned by this RNG stream. */
double m_lambda;
}; // class ErlangRandomVariable
/**
* \ingroup randomvariable
* \brief The triangular distribution Random Number Generator (RNG) that
* allows stream numbers to be set deterministically.
*
* This class supports the creation of objects that return random numbers
* from a fixed triangular distribution. It also supports the generation of
* single random numbers from various triangular distributions.
*
* This distribution is a triangular distribution. The probability density
* is in the shape of a triangle.
*
* Here is an example of how to use this class:
* \code
* double mean = 5.0;
* double min = 2.0;
* double max = 10.0;
*
* Ptr<TriangularRandomVariable> x = CreateObject<TriangularRandomVariable> ();
* x->SetAttribute ("Mean", DoubleValue (mean));
* x->SetAttribute ("Min", DoubleValue (min));
* x->SetAttribute ("Max", DoubleValue (max));
*
* // The expected value for the mean of the values returned by a
* // triangularly distributed random variable is equal to mean.
* double value = x->GetValue ();
* \endcode
*/
class TriangularRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a triangular distribution RNG with the default
* values for the mean, lower bound, and upper bound.
*/
TriangularRandomVariable ();
/**
* \brief Returns the mean value for the triangular distribution returned by this RNG stream.
* \return The mean value for the triangular distribution returned by this RNG stream.
*/
double GetMean (void) const;
/**
* \brief Returns the lower bound for the triangular distribution returned by this RNG stream.
* \return The lower bound for the triangular distribution returned by this RNG stream.
*/
double GetMin (void) const;
/**
* \brief Returns the upper bound on values that can be returned by this RNG stream.
* \return The upper bound on values that can be returned by this RNG stream.
*/
double GetMax (void) const;
/**
* \brief Returns a random double from a triangular distribution with the specified mean, min, and max.
* \param [in] mean Mean value for the triangular distribution.
* \param [in] min Low end of the range.
* \param [in] max High end of the range.
* \return A floating point random value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = \left\{ \begin{array}{rl}
* min + \sqrt{u * (max - min) * (mode - min)} &\mbox{ if $u <= (mode - min)/(max - min)$} \\
* max - \sqrt{ (1 - u) * (max - min) * (max - mode) } &\mbox{ otherwise}
* \end{array} \right.
* \f]
*
* is a value that would be returned normally, where the mode or
* peak of the triangle is calculated as
*
* \f[
* mode = 3.0 * mean - min - max .
* \f]
*
* Then, \f$(1 - u\f$) is the distance that \f$u\f$ would be from
* \f$1\f$. The value returned in the antithetic case, \f$x'\f$, is
* calculated as
*
* \f[
* x' = \left\{ \begin{array}{rl}
* min + \sqrt{(1 - u) * (max - min) * (mode - min)} &\mbox{ if $(1 - u) <= (mode - min)/(max - min)$} \\
* max - \sqrt{ u * (max - min) * (max - mode) } &\mbox{ otherwise}
* \end{array} \right.
* \f]
*
* which now involves the distance \f$u\f$ is from the 1.
*/
double GetValue (double mean, double min, double max);
/**
* \brief Returns a random unsigned integer from a triangular distribution with the specified mean, min, and max.
* \param [in] mean Mean value for the triangular distribution.
* \param [in] min Low end of the range.
* \param [in] max High end of the range.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = \left\{ \begin{array}{rl}
* min + \sqrt{u * (max - min) * (mode - min)} &\mbox{ if $u <= (mode - min)/(max - min)$} \\
* max - \sqrt{ (1 - u) * (max - min) * (max - mode) } &\mbox{ otherwise}
* \end{array} \right.
* \f]
*
* is a value that would be returned normally, where the mode or
* peak of the triangle is calculated as
*
* \f[
* mode = 3.0 * mean - min - max .
* \f]
*
* Then, \f$(1 - u\f$) is the distance that \f$u\f$ would be from
* \f$1\f$. The value returned in the antithetic case, \f$x'\f$, is
* calculated as
*
* \f[
* x' = \left\{ \begin{array}{rl}
* min + \sqrt{(1 - u) * (max - min) * (mode - min)} &\mbox{ if $(1 - u) <= (mode - min)/(max - min)$} \\
* max - \sqrt{ u * (max - min) * (max - mode) } &\mbox{ otherwise}
* \end{array} \right.
* \f]
*
* which now involves the distance \f$u\f$ is from the 1.
*/
uint32_t GetInteger (uint32_t mean, uint32_t min, uint32_t max);
/**
* \brief Returns a random double from a triangular distribution with the current mean, min, and max.
* \return A floating point random value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = \left\{ \begin{array}{rl}
* min + \sqrt{u * (max - min) * (mode - min)} &\mbox{ if $u <= (mode - min)/(max - min)$} \\
* max - \sqrt{ (1 - u) * (max - min) * (max - mode) } &\mbox{ otherwise}
* \end{array} \right.
* \f]
*
* is a value that would be returned normally, where the mode or
* peak of the triangle is calculated as
*
* \f[
* mode = 3.0 * mean - min - max .
* \f]
*
* Then, \f$(1 - u\f$) is the distance that \f$u\f$ would be from
* \f$1\f$. The value returned in the antithetic case, \f$x'\f$, is
* calculated as
*
* \f[
* x' = \left\{ \begin{array}{rl}
* min + \sqrt{(1 - u) * (max - min) * (mode - min)} &\mbox{ if $(1 - u) <= (mode - min)/(max - min)$} \\
* max - \sqrt{ u * (max - min) * (max - mode) } &\mbox{ otherwise}
* \end{array} \right.
* \f]
*
* which now involves the distance \f$u\f$ is from the 1.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the three-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from a triangular distribution with the current mean, min, and max.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if
* m_isAntithetic is equal to true. If \f$u\f$ is a uniform variable
* over [0,1] and
*
* \f[
* x = \left\{ \begin{array}{rl}
* min + \sqrt{u * (max - min) * (mode - min)} &\mbox{ if $u <= (mode - min)/(max - min)$} \\
* max - \sqrt{ (1 - u) * (max - min) * (max - mode) } &\mbox{ otherwise}
* \end{array} \right.
* \f]
*
* is a value that would be returned normally, where the mode or
* peak of the triangle is calculated as
*
* \f[
* mode = 3.0 * mean - min - max .
* \f]
*
* Then, \f$(1 - u\f$) is the distance that \f$u\f$ would be from
* \f$1\f$. The value returned in the antithetic case, \f$x'\f$, is
* calculated as
*
* \f[
* x' = \left\{ \begin{array}{rl}
* min + \sqrt{(1 - u) * (max - min) * (mode - min)} &\mbox{ if $(1 - u) <= (mode - min)/(max - min)$} \\
* max - \sqrt{ u * (max - min) * (max - mode) } &\mbox{ otherwise}
* \end{array} \right.
* \f]
*
* which now involves the distance \f$u\f$ is from the 1.
*/
virtual uint32_t GetInteger (void);
private:
/** The mean value for the triangular distribution returned by this RNG stream. */
double m_mean;
/** The lower bound on values that can be returned by this RNG stream. */
double m_min;
/** The upper bound on values that can be returned by this RNG stream. */
double m_max;
}; // class TriangularRandomVariable
/**
* \ingroup randomvariable
* \brief The Zipf distribution Random Number Generator (RNG) that
* allows stream numbers to be set deterministically.
*
* This class supports the creation of objects that return random numbers
* from a fixed Zipf distribution. It also supports the generation of
* single random numbers from various Zipf distributions.
*
* The Zipf's law states that given some corpus of natural language
* utterances, the frequency of any word is inversely proportional
* to its rank in the frequency table.
*
* Zipf's distribution has two parameters, alpha and N, where:
* \f$ \alpha > 0 \f$ (real) and \f$ N \in \{1,2,3 \dots\}\f$ (integer).
* Probability Mass Function is \f$ f(k; \alpha, N) = k^{-\alpha}/ H_{N,\alpha} \f$
* where \f$ H_{N,\alpha} = \sum_{m=1}^N m^{-\alpha} \f$
*
* Here is an example of how to use this class:
* \code
* uint32_t n = 1;
* double alpha = 2.0;
*
* Ptr<ZipfRandomVariable> x = CreateObject<ZipfRandomVariable> ();
* x->SetAttribute ("N", IntegerValue (n));
* x->SetAttribute ("Alpha", DoubleValue (alpha));
*
* // The expected value for the mean of the values returned by a
* // Zipfly distributed random variable is equal to
* //
* // H
* // N, alpha - 1
* // E[value] = ---------------
* // H
* // N, alpha
* //
* // where
* //
* // N
* // ---
* // \ -alpha
* // H = / m .
* // N, alpha ---
* // m=1
* //
* // For this test,
* //
* // -(alpha - 1)
* // 1
* // E[value] = ---------------
* // -alpha
* // 1
* //
* // = 1 .
* //
* double value = x->GetValue ();
* \endcode
*/
class ZipfRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a Zipf distribution RNG with the default values
* for n and alpha.
*/
ZipfRandomVariable ();
/**
* \brief Returns the n value for the Zipf distribution returned by this RNG stream.
* \return The n value for the Zipf distribution returned by this RNG stream.
*/
uint32_t GetN (void) const;
/**
* \brief Returns the alpha value for the Zipf distribution returned by this RNG stream.
* \return The alpha value for the Zipf distribution returned by this RNG stream.
*/
double GetAlpha (void) const;
/**
* \brief Returns a random double from a Zipf distribution with the specified n and alpha.
* \param [in] n N value for the Zipf distribution.
* \param [in] alpha Alpha value for the Zipf distribution.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
double GetValue (uint32_t n, double alpha);
/**
* \brief Returns a random unsigned integer from a Zipf distribution with the specified n and alpha.
* \param [in] n N value for the Zipf distribution.
* \param [in] alpha Alpha value for the Zipf distribution.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
uint32_t GetInteger (uint32_t n, uint32_t alpha);
/**
* \brief Returns a random double from a Zipf distribution with the current n and alpha.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the two-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from a Zipf distribution with the current n and alpha.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
virtual uint32_t GetInteger (void);
private:
/** The n value for the Zipf distribution returned by this RNG stream. */
uint32_t m_n;
/** The alpha value for the Zipf distribution returned by this RNG stream. */
double m_alpha;
/** The normalization constant. */
double m_c;
}; // class ZipfRandomVariable
/**
* \ingroup randomvariable
* \brief The zeta distribution Random Number Generator (RNG) that
* allows stream numbers to be set deterministically.
*
* This class supports the creation of objects that return random numbers
* from a fixed zeta distribution. It also supports the generation of
* single random numbers from various zeta distributions.
*
* The Zeta distribution is closely related to Zipf distribution when
* N goes to infinity.
*
* Zeta distribution has one parameter, alpha, \f$ \alpha > 1 \f$ (real).
* Probability Mass Function is \f$ f(k; \alpha) = k^{-\alpha}/\zeta(\alpha) \f$
* where \f$ \zeta(\alpha) \f$ is the Riemann zeta function ( \f$ \sum_{n=1}^\infty n^{-\alpha} ) \f$
*
* Here is an example of how to use this class:
* \code
* double alpha = 2.0;
*
* Ptr<ZetaRandomVariable> x = CreateObject<ZetaRandomVariable> ();
* x->SetAttribute ("Alpha", DoubleValue (alpha));
*
* // The expected value for the mean of the values returned by a
* // zetaly distributed random variable is equal to
* //
* // zeta(alpha - 1)
* // E[value] = --------------- for alpha > 2 ,
* // zeta(alpha)
* //
* // where zeta(alpha) is the Riemann zeta function.
* //
* // There are no simple analytic forms for the Riemann zeta
* // function, which is the reason the known mean of the values
* // cannot be calculated in this example.
* //
* double value = x->GetValue ();
* \endcode
*/
class ZetaRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a zeta distribution RNG with the default value for
* alpha.
*/
ZetaRandomVariable ();
/**
* \brief Returns the alpha value for the zeta distribution returned by this RNG stream.
* \return The alpha value for the zeta distribution returned by this RNG stream.
*/
double GetAlpha (void) const;
/**
* \brief Returns a random double from a zeta distribution with the specified alpha.
* \param [in] alpha Alpha value for the zeta distribution.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
double GetValue (double alpha);
/**
* \brief Returns a random unsigned integer from a zeta distribution with the specified alpha.
* \param [in] alpha Alpha value for the zeta distribution.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
uint32_t GetInteger (uint32_t alpha);
/**
* \brief Returns a random double from a zeta distribution with the current alpha.
* \return A floating point random value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*
* Note that we have to re-implement this method here because the method is
* overloaded above for the two-argument variant and the c++ name resolution
* rules don't work well with overloads split between parent and child
* classes.
*/
virtual double GetValue (void);
/**
* \brief Returns a random unsigned integer from a zeta distribution with the current alpha.
* \return A random unsigned integer value.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
virtual uint32_t GetInteger (void);
private:
/** The alpha value for the zeta distribution returned by this RNG stream. */
double m_alpha;
/** Just for calculus simplifications. */
double m_b;
}; // class ZetaRandomVariable
/**
* \ingroup randomvariable
* \brief The Random Number Generator (RNG) that returns a predetermined sequence.
*
* Defines a random variable that has a specified, predetermined
* sequence. This would be useful when trying to force the RNG to
* return a known sequence, perhaps to compare ns-3 to some other
* simulator
*
* Creates a generator that returns successive elements of the values
* array on successive calls to RandomVariableStream::GetValue. Note
* that the values in the array are copied and stored by the generator
* (deep-copy). Also note that the sequence repeats if more values
* are requested than are present in the array.
*
* Here is an example of how to use this class:
* \code
* Ptr<DeterministicRandomVariable> s = CreateObject<DeterministicRandomVariable> ();
*
* // The following array should give the sequence
* //
* // 4, 4, 7, 7, 10, 10 .
* //
* double array [] = { 4, 4, 7, 7, 10, 10};
* uint64_t count = 6;
* s->SetValueArray (array, count);
*
* double value = x->GetValue ();
* \endcode
*/
class DeterministicRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates a deterministic RNG that will have a predetermined
* sequence of values.
*/
DeterministicRandomVariable ();
virtual ~DeterministicRandomVariable ();
/**
* \brief Sets the array of values that holds the predetermined sequence.
* \param [in] values Array of random values to return in sequence.
* \param [in] length Number of values in the array.
*
* Note that the values in the array are copied and stored
* (deep-copy).
*/
void SetValueArray (double* values, uint64_t length);
/**
* \brief Returns the next value in the sequence.
* \return The floating point next value in the sequence.
*/
virtual double GetValue (void);
/**
* \brief Returns the next value in the sequence.
* \return The integer next value in the sequence.
*/
virtual uint32_t GetInteger (void);
private:
/** Position in the array of values. */
uint64_t m_count;
/** Position of the next value in the array of values. */
uint64_t m_next;
/** Array of values to return in sequence. */
double* m_data;
}; // class DeterministicRandomVariable
/**
* \ingroup randomvariable
* \brief The Random Number Generator (RNG) that has a specified empirical distribution.
*
* Defines a random variable that has a specified, empirical
* distribution. The distribution is specified by a
* series of calls to the CDF member function, specifying a
* value and the probability that the function value is less than
* the specified value. When values are requested,
* a uniform random variable is used to select a probability,
* and the return value is interpreted linearly between the
* two appropriate points in the CDF. The method is known
* as inverse transform sampling:
* (http://en.wikipedia.org/wiki/Inverse_transform_sampling).
*
* Here is an example of how to use this class:
* \code
* // Create the RNG with a uniform distribution between 0 and 10.
* Ptr<EmpiricalRandomVariable> x = CreateObject<EmpiricalRandomVariable> ();
* x->CDF ( 0.0, 0.0);
* x->CDF ( 5.0, 0.5);
* x->CDF (10.0, 1.0);
*
* // The expected value for the mean of the values returned by this
* // empirical distribution is the midpoint of the distribution
* //
* // E[value] = 5 .
* //
* double value = x->GetValue ();
* \endcode
*/
class EmpiricalRandomVariable : public RandomVariableStream
{
public:
/**
* \brief Register this type.
* \return The object TypeId.
*/
static TypeId GetTypeId (void);
/**
* \brief Creates an empirical RNG that has a specified, empirical
* distribution.
*/
EmpiricalRandomVariable ();
/**
* \brief Specifies a point in the empirical distribution
* \param [in] v The function value for this point
* \param [in] c Probability that the function is less than or equal to v
*/
void CDF (double v, double c); // Value, prob <= Value
/**
* \brief Returns the next value in the empirical distribution.
* \return The floating point next value in the empirical distribution.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
virtual double GetValue (void);
/**
* \brief Returns the next value in the empirical distribution.
* \return The integer next value in the empirical distribution.
*
* Note that antithetic values are being generated if m_isAntithetic
* is equal to true. If \f$u\f$ is a uniform variable over [0,1]
* and \f$x\f$ is a value that would be returned normally, then
* \f$(1 - u\f$) is the distance that \f$u\f$ would be from \f$1\f$.
* The value returned in the antithetic case, \f$x'\f$, uses (1-u),
* which is the distance \f$u\f$ is from the 1.
*/
virtual uint32_t GetInteger (void);
private:
/** Helper to hold one point of the CDF. */
class ValueCDF
{
public:
/** Constructor. */
ValueCDF ();
/**
* Construct from values.
*
* \param [in] v The argumetn value.
* \param [in] c The CDF at the argument value \p v.
*/
ValueCDF (double v, double c);
/**
* Copy constructor.
*
* \param [in] c The other ValueCDF.
*/
ValueCDF (const ValueCDF& c);
/** The argument value. */
double value;
/** The CDF at \p value. */
double cdf;
};
/**
* Check that the CDF is valid.
*
* A valid CDF has
*
* - Strictly increasing arguments, and
* - Strictly increasing CDF.
*
* It is a fatal error to fail validation.
*/
virtual void Validate ();
/**
* Linear nterpolation between two points on the CDF to estimate
* the value at \p r.
*
* \param [in] c1 The first argument value.
* \param [in] c2 The secong argument value.
* \param [in] v1 The first CDF value.
* \param [in] v2 The secong CDF value.
* \param [in] r The argument value to interpolate to.
* \returns The interpolated CDF at \p r.
*/
virtual double Interpolate (double c1, double c2,
double v1, double v2, double r);
/** \c true once the CDF has been validated. */
bool m_validated;
/** The vector of CDF points. */
std::vector<ValueCDF> m_emp;
}; // class EmpiricalRandomVariable
} // namespace ns3
#endif /* RANDOM_VARIABLE_STREAM_H */
|