This file is indexed.

/usr/include/oce/BVH_DistanceField.lxx is in liboce-foundation-dev 0.18.2-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
// Created on: 2014-09-06
// Created by: Denis BOGOLEPOV
// Copyright (c) 2013-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.

#include <Standard_Assert.hxx>

#include <BVH_Triangulation.hxx>

#ifdef HAVE_TBB
  // On Windows, function TryEnterCriticalSection has appeared in Windows NT
  // and is surrounded by #ifdef in MS VC++ 7.1 headers.
  // Thus to use it we need to define appropriate macro saying that we will
  // run on Windows NT 4.0 at least
  #if defined(_WIN32) && !defined(_WIN32_WINNT)
    #define _WIN32_WINNT 0x0501
  #endif

  #include <tbb/tbb.h>
#endif

// =======================================================================
// function : BVH_DistanceField
// purpose  :
// =======================================================================
template<class T, int N>
BVH_DistanceField<T, N>::BVH_DistanceField (const Standard_Integer theMaximumSize,
                                            const Standard_Boolean theComputeSign)
: myMaximumSize (theMaximumSize),
  myComputeSign (theComputeSign)
{
  Standard_STATIC_ASSERT (N == 3 || N == 4);

  myVoxelData = new T[myMaximumSize * myMaximumSize * myMaximumSize];
}

// =======================================================================
// function : ~BVH_DistanceField
// purpose  :
// =======================================================================
template<class T, int N>
BVH_DistanceField<T, N>::~BVH_DistanceField()
{
  delete [] myVoxelData;
}

#if defined (_WIN32) && defined (max)
  #undef max
#endif

#include <limits>

#define BVH_DOT3(A, B) (A.x() * B.x() + A.y() * B.y() + A.z() * B.z())

namespace BVH
{
  //=======================================================================
  //function : DistanceToBox
  //purpose  : Computes squared distance from point to box
  //=======================================================================
  template<class T, int N>
  T DistanceToBox (const typename VectorType<T, N>::Type& thePnt,
                   const typename VectorType<T, N>::Type& theMin,
                   const typename VectorType<T, N>::Type& theMax)
  {
    Standard_STATIC_ASSERT (N == 3 || N == 4);

    T aNearestX = Min (Max (thePnt.x(), theMin.x()), theMax.x());
    T aNearestY = Min (Max (thePnt.y(), theMin.y()), theMax.y());
    T aNearestZ = Min (Max (thePnt.z(), theMin.z()), theMax.z());

    if (aNearestX == thePnt.x()
     && aNearestY == thePnt.y()
     && aNearestZ == thePnt.z())
    {
      return static_cast<T> (0);
    }

    aNearestX -= thePnt.x();
    aNearestY -= thePnt.y();
    aNearestZ -= thePnt.z();

    return aNearestX * aNearestX +
           aNearestY * aNearestY +
           aNearestZ * aNearestZ;
  }

  //=======================================================================
  //function : DirectionToNearestPoint
  //purpose  : Computes squared distance from point to triangle
  // ======================================================================
  template<class T, int N>
  typename VectorType<T, N>::Type DirectionToNearestPoint (
    const typename VectorType<T, N>::Type& thePoint,
    const typename VectorType<T, N>::Type& theVertA,
    const typename VectorType<T, N>::Type& theVertB,
    const typename VectorType<T, N>::Type& theVertC)
  {
    Standard_STATIC_ASSERT (N == 3 || N == 4);

    const typename VectorType<T, N>::Type aAB = theVertB - theVertA;
    const typename VectorType<T, N>::Type aAC = theVertC - theVertA;
    const typename VectorType<T, N>::Type aAP = thePoint - theVertA;

    const T aABdotAP = BVH_DOT3 (aAB, aAP);
    const T aACdotAP = BVH_DOT3 (aAC, aAP);

    if (aABdotAP <= static_cast<T> (0) && aACdotAP <= static_cast<T> (0))
    {
      return aAP;
    }

    const typename VectorType<T, N>::Type aBC = theVertC - theVertB;
    const typename VectorType<T, N>::Type aBP = thePoint - theVertB;

    const T aBAdotBP = -BVH_DOT3 (aAB, aBP);
    const T aBCdotBP =  BVH_DOT3 (aBC, aBP);

    if (aBAdotBP <= static_cast<T> (0) && aBCdotBP <= static_cast<T> (0))
    {
      return aBP;
    }

    const typename VectorType<T, N>::Type aCP = thePoint - theVertC;

    const T aCBdotCP = -BVH_DOT3 (aBC, aCP);
    const T aCAdotCP = -BVH_DOT3 (aAC, aCP);

    if (aCAdotCP <= static_cast<T> (0) && aCBdotCP <= static_cast<T> (0))
    {
      return aCP;
    }

    const T aACdotBP = BVH_DOT3 (aAC, aBP);

    const T aVC = aABdotAP * aACdotBP + aBAdotBP * aACdotAP;

    if (aVC <= static_cast<T> (0) && aABdotAP >= static_cast<T> (0) && aBAdotBP >= static_cast<T> (0))
    {
      return aAP - aAB * (aABdotAP / (aABdotAP + aBAdotBP));
    }

    const T aABdotCP = BVH_DOT3 (aAB, aCP);

    const T aVA = aBAdotBP * aCAdotCP - aABdotCP * aACdotBP;

    if (aVA <= static_cast<T> (0) && aBCdotBP >= static_cast<T> (0) && aCBdotCP >= static_cast<T> (0))
    {
      return aBP - aBC * (aBCdotBP / (aBCdotBP + aCBdotCP));
    }

    const T aVB = aABdotCP * aACdotAP + aABdotAP * aCAdotCP;

    if (aVB <= static_cast<T> (0) && aACdotAP >= static_cast<T> (0) && aCAdotCP >= static_cast<T> (0))
    {
      return aAP - aAC * (aACdotAP / (aACdotAP + aCAdotCP));
    }

    const T aNorm = static_cast<T> (1.0) / (aVA + aVB + aVC);

    const T aU = aVA * aNorm;
    const T aV = aVB * aNorm;

    return thePoint - (theVertA * aU + theVertB * aV + theVertC * (static_cast<T> (1.0) - aU - aV));
  }

  //=======================================================================
  //function : SquareDistanceToObject
  //purpose  : Computes squared distance from point to BVH triangulation
  //=======================================================================
  template<class T, int N>
  T SquareDistanceToObject (BVH_Object<T, N>* theObject,
    const typename VectorType<T, N>::Type& thePnt, Standard_Boolean& theIsOutside)
  {
    Standard_STATIC_ASSERT (N == 3 || N == 4);

    T aMinDistance = std::numeric_limits<T>::max();

    BVH_Triangulation<T, N>* aTriangulation =
      dynamic_cast<BVH_Triangulation<T, N>*> (theObject);

    Standard_ASSERT_RETURN (aTriangulation != NULL,
      "Error: Unsupported BVH object (non triangulation)", aMinDistance);

    const NCollection_Handle<BVH_Tree<T, N> >& aBVH = aTriangulation->BVH();

    if (aBVH.IsNull())
    {
      return Standard_False;
    }

    std::pair<Standard_Integer, T> aStack[32];

    Standard_Integer aHead = -1;
    Standard_Integer aNode =  0; // root node

    for (;;)
    {
      BVH_Vec4i aData = aBVH->NodeInfoBuffer()[aNode];

      if (aData.x() == 0) // if inner node
      {
        const T aDistToLft = DistanceToBox<T, N> (thePnt,
                                                  aBVH->MinPoint (aData.y()),
                                                  aBVH->MaxPoint (aData.y()));

        const T aDistToRgh = DistanceToBox<T, N> (thePnt,
                                                  aBVH->MinPoint (aData.z()),
                                                  aBVH->MaxPoint (aData.z()));

        const Standard_Boolean aHitLft = aDistToLft <= aMinDistance;
        const Standard_Boolean aHitRgh = aDistToRgh <= aMinDistance;

        if (aHitLft & aHitRgh)
        {
          aNode = (aDistToLft < aDistToRgh) ? aData.y() : aData.z();

          aStack[++aHead] = std::pair<Standard_Integer, T> (
            aDistToLft < aDistToRgh ? aData.z() : aData.y(), Max (aDistToLft, aDistToRgh));
        }
        else
        {
          if (aHitLft | aHitRgh)
          {
            aNode = aHitLft ? aData.y() : aData.z();
          }
          else
          {
            if (aHead < 0)
              return aMinDistance;

            std::pair<Standard_Integer, T>& anInfo = aStack[aHead--];

            while (anInfo.second > aMinDistance)
            {
              if (aHead < 0)
                return aMinDistance;

              anInfo = aStack[aHead--];
            }

            aNode = anInfo.first;
          }
        }
      }
      else  // if leaf node
      {
        for (Standard_Integer aTrgIdx = aData.y(); aTrgIdx <= aData.z(); ++aTrgIdx)
        {
          const BVH_Vec4i aTriangle = aTriangulation->Elements[aTrgIdx];

          const typename VectorType<T, N>::Type aVertex0 = aTriangulation->Vertices[aTriangle.x()];
          const typename VectorType<T, N>::Type aVertex1 = aTriangulation->Vertices[aTriangle.y()];
          const typename VectorType<T, N>::Type aVertex2 = aTriangulation->Vertices[aTriangle.z()];

          const typename VectorType<T, N>::Type aDirection =
            DirectionToNearestPoint<T, N> (thePnt, aVertex0, aVertex1, aVertex2);

          const T aDistance = BVH_DOT3 (aDirection, aDirection);

          if (aDistance < aMinDistance)
          {
            aMinDistance = aDistance;

            typename VectorType<T, N>::Type aTrgEdges[] = { aVertex1 - aVertex0,
                                                            aVertex2 - aVertex0 };

            typename VectorType<T, N>::Type aTrgNormal;
            
            aTrgNormal.x() = aTrgEdges[0].y() * aTrgEdges[1].z() - aTrgEdges[0].z() * aTrgEdges[1].y();
            aTrgNormal.y() = aTrgEdges[0].z() * aTrgEdges[1].x() - aTrgEdges[0].x() * aTrgEdges[1].z();
            aTrgNormal.z() = aTrgEdges[0].x() * aTrgEdges[1].y() - aTrgEdges[0].y() * aTrgEdges[1].x();

            theIsOutside = BVH_DOT3 (aTrgNormal, aDirection) > 0;
          }
        }

        if (aHead < 0)
          return aMinDistance;

        std::pair<Standard_Integer, T>& anInfo = aStack[aHead--];

        while (anInfo.second > aMinDistance)
        {
          if (aHead < 0)
            return aMinDistance;

          anInfo = aStack[aHead--];
        }

        aNode = anInfo.first;
      }
    }
  }

  //=======================================================================
  //function : SquareDistanceToGeomerty
  //purpose  : Computes squared distance from point to BVH geometry
  //=======================================================================
  template<class T, int N>
  T SquareDistanceToGeomerty (BVH_Geometry<T, N>& theGeometry,
    const typename VectorType<T, N>::Type& thePnt, Standard_Boolean& theIsOutside)
  {
    Standard_STATIC_ASSERT (N == 3 || N == 4);

    const NCollection_Handle<BVH_Tree<T, N> >& aBVH = theGeometry.BVH();

    if (aBVH.IsNull())
    {
      return Standard_False;
    }

    std::pair<Standard_Integer, T> aStack[32];

    Standard_Integer aHead = -1;
    Standard_Integer aNode =  0; // root node

    T aMinDistance = std::numeric_limits<T>::max();

    for (;;)
    {
      BVH_Vec4i aData = aBVH->NodeInfoBuffer()[aNode];

      if (aData.x() == 0) // if inner node
      {
        const T aDistToLft = DistanceToBox<T, N> (thePnt,
                                                  aBVH->MinPoint (aData.y()),
                                                  aBVH->MaxPoint (aData.y()));

        const T aDistToRgh = DistanceToBox<T, N> (thePnt,
                                                  aBVH->MinPoint (aData.z()),
                                                  aBVH->MaxPoint (aData.z()));

        const Standard_Boolean aHitLft = aDistToLft <= aMinDistance;
        const Standard_Boolean aHitRgh = aDistToRgh <= aMinDistance;

        if (aHitLft & aHitRgh)
        {
          aNode = (aDistToLft < aDistToRgh) ? aData.y() : aData.z();

          aStack[++aHead] = std::pair<Standard_Integer, T> (
            aDistToLft < aDistToRgh ? aData.z() : aData.y(), Max (aDistToLft, aDistToRgh));
        }
        else
        {
          if (aHitLft | aHitRgh)
          {
            aNode = aHitLft ? aData.y() : aData.z();
          }
          else
          {
            if (aHead < 0)
              return aMinDistance;

            std::pair<Standard_Integer, T>& anInfo = aStack[aHead--];

            while (anInfo.second > aMinDistance)
            {
              if (aHead < 0)
                return aMinDistance;

              anInfo = aStack[aHead--];
            }

            aNode = anInfo.first;
          }
        }
      }
      else  // if leaf node
      {
        Standard_Boolean isOutside = Standard_True;

        const T aDistance = SquareDistanceToObject (
          theGeometry.Objects()(aNode).operator->(), thePnt, isOutside);

        if (aDistance < aMinDistance)
        {
          aMinDistance = aDistance;
          theIsOutside = isOutside;
        }

        if (aHead < 0)
          return aMinDistance;

        std::pair<Standard_Integer, T>& anInfo = aStack[aHead--];

        while (anInfo.second > aMinDistance)
        {
          if (aHead < 0)
            return aMinDistance;

          anInfo = aStack[aHead--];
        }

        aNode = anInfo.first;
      }
    }
  }
}

#undef BVH_DOT3

#ifdef HAVE_TBB

//! Tool object for parallel construction of distance field (uses Intel TBB).
template<class T, int N>
class BVH_ParallelDistanceFieldBuilder
{
private:

  //! Input BVH geometry.
  BVH_Geometry<T, N>* myGeometry;

  //! Output distance field.
  BVH_DistanceField<T, N>* myOutField;

public:

  BVH_ParallelDistanceFieldBuilder (BVH_DistanceField<T, N>* theOutField, BVH_Geometry<T, N>* theGeometry)
  : myGeometry (theGeometry),
    myOutField (theOutField)
  {
    //
  }

  void operator() (const tbb::blocked_range<Standard_Integer>& theRange) const
  {
    myOutField->BuildSlices (*myGeometry, theRange.begin(), theRange.end());
  }
};

#endif

// =======================================================================
// function : BuildSlices
// purpose  : Performs building of distance field for the given Z slices
// =======================================================================
template<class T, int N>
void BVH_DistanceField<T, N>::BuildSlices (BVH_Geometry<T, N>& theGeometry,
  const Standard_Integer theStartSlice, const Standard_Integer theFinalSlice)
{
  for (Standard_Integer aZ = theStartSlice; aZ < theFinalSlice; ++aZ)
  {
    for (Standard_Integer aY = 0; aY < myDimensionY; ++aY)
    {
      for (Standard_Integer aX = 0; aX < myDimensionX; ++aX)
      {
        BVH_VecNt aCenter;
        
        aCenter.x() = myCornerMin.x() + myVoxelSize.x() * (aX + static_cast<T> (0.5));
        aCenter.y() = myCornerMin.y() + myVoxelSize.y() * (aY + static_cast<T> (0.5));
        aCenter.z() = myCornerMin.z() + myVoxelSize.z() * (aZ + static_cast<T> (0.5));

        Standard_Boolean isOutside = Standard_True;

        const T aDistance = sqrt (
          BVH::SquareDistanceToGeomerty<T, N> (theGeometry, aCenter, isOutside));

        Voxel (aX, aY, aZ) = (!myComputeSign || isOutside) ? aDistance : -aDistance;
      }
    }
  }
}

// =======================================================================
// function : Build
// purpose  : Builds 3D distance field from BVH geometry
// =======================================================================
template<class T, int N>
Standard_Boolean BVH_DistanceField<T, N>::Build (BVH_Geometry<T, N>& theGeometry)
{
  if (theGeometry.Size() == 0)
  {
    return Standard_False;
  }

  const BVH_VecNt aGlobalBoxSize = theGeometry.Box().Size();

  const T aMaxBoxSide = Max (Max (aGlobalBoxSize.x(), aGlobalBoxSize.y()), aGlobalBoxSize.z());

  myDimensionX = static_cast<Standard_Integer> (myMaximumSize * aGlobalBoxSize.x() / aMaxBoxSide);
  myDimensionY = static_cast<Standard_Integer> (myMaximumSize * aGlobalBoxSize.y() / aMaxBoxSide);
  myDimensionZ = static_cast<Standard_Integer> (myMaximumSize * aGlobalBoxSize.z() / aMaxBoxSide);

  myDimensionX = Min (myMaximumSize, Max (myDimensionX, 16));
  myDimensionY = Min (myMaximumSize, Max (myDimensionY, 16));
  myDimensionZ = Min (myMaximumSize, Max (myDimensionZ, 16));

  const BVH_VecNt aGlobalBoxMin = theGeometry.Box().CornerMin();
  const BVH_VecNt aGlobalBoxMax = theGeometry.Box().CornerMax();

  const Standard_Integer aVoxelOffset = 2;

  myCornerMin.x() = aGlobalBoxMin.x() - aVoxelOffset * aGlobalBoxSize.x() / (myDimensionX - 2 * aVoxelOffset);
  myCornerMin.y() = aGlobalBoxMin.y() - aVoxelOffset * aGlobalBoxSize.y() / (myDimensionY - 2 * aVoxelOffset);
  myCornerMin.z() = aGlobalBoxMin.z() - aVoxelOffset * aGlobalBoxSize.z() / (myDimensionZ - 2 * aVoxelOffset);

  myCornerMax.x() = aGlobalBoxMax.x() + aVoxelOffset * aGlobalBoxSize.x() / (myDimensionX - 2 * aVoxelOffset);
  myCornerMax.y() = aGlobalBoxMax.y() + aVoxelOffset * aGlobalBoxSize.y() / (myDimensionY - 2 * aVoxelOffset);
  myCornerMax.z() = aGlobalBoxMax.z() + aVoxelOffset * aGlobalBoxSize.z() / (myDimensionZ - 2 * aVoxelOffset);
  
  myVoxelSize.x() = (myCornerMax.x() - myCornerMin.x()) / myDimensionX;
  myVoxelSize.y() = (myCornerMax.y() - myCornerMin.y()) / myDimensionY;
  myVoxelSize.z() = (myCornerMax.z() - myCornerMin.z()) / myDimensionZ;

#ifdef HAVE_TBB
  
  tbb::parallel_for (tbb::blocked_range<Standard_Integer> (0, myDimensionZ),
    BVH_ParallelDistanceFieldBuilder<T, N> (this, &theGeometry));

#else

  BuildSlices (theGeometry, 0, myDimensionZ);

#endif

  return Standard_True;
}