This file is indexed.

/usr/include/oce/BVH_LinearBuilder.lxx is in liboce-foundation-dev 0.18.2-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// Created on: 2014-09-11
// Created by: Danila ULYANOV
// Copyright (c) 2013-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.

#include <algorithm>

#include <Standard_Assert.hxx>

#include <NCollection_Array1.hxx>

#ifdef HAVE_TBB
  // On Windows, function TryEnterCriticalSection has appeared in Windows NT
  // and is surrounded by #ifdef in MS VC++ 7.1 headers.
  // Thus to use it we need to define appropriate macro saying that we will
  // run on Windows NT 4.0 at least
  #if defined(_WIN32) && !defined(_WIN32_WINNT)
    #define _WIN32_WINNT 0x0501
  #endif

  #include <tbb/task.h>
#endif

// =======================================================================
// function : BVH_LinearBuilder
// purpose  :
// =======================================================================
template<class T, int N>
BVH_LinearBuilder<T, N>::BVH_LinearBuilder (const Standard_Integer theLeafNodeSize,
                                            const Standard_Integer theMaxTreeDepth)
: BVH_Builder<T, N> (theLeafNodeSize,
                     theMaxTreeDepth)
{
  //
}

// =======================================================================
// function : ~BVH_LinearBuilder
// purpose  :
// =======================================================================
template<class T, int N>
BVH_LinearBuilder<T, N>::~BVH_LinearBuilder()
{
  //
}

namespace BVH
{
  // Radix sort STL predicate for 32-bit integer.
  class BitPredicate
  {
    Standard_Integer myBit;

  public:
    
    //! Creates new radix sort predicate.
    BitPredicate (const Standard_Integer theBit) : myBit (theBit) 
    {
      //
    }
    
    //! Returns predicate value.
    bool operator() (const BVH_EncodedLink theLink) const
    {
      const Standard_Integer aMask = 1 << myBit;

      return !(theLink.first & aMask); // 0-bit to the left side
    }
  };

  //! STL compare tool used in binary search algorithm.
  class BitComparator
  {
    Standard_Integer myBit;

  public:

    //! Creates new STL comparator.
    BitComparator (const Standard_Integer theBit) : myBit (theBit) 
    {
      //
    }

    //! Checks left value for the given bit.
    bool operator() (BVH_EncodedLink theLink1, BVH_EncodedLink /*theLink2*/)
    {
      return !(theLink1.first & (1 << myBit));
    }
  };

  //! Tool object for sorting link array using radix sort algorithm.
  struct RadixSorter
  {
    typedef std::vector<BVH_EncodedLink>::iterator LinkIterator;

    // Performs MSD (most significant digit) radix sort.
    static void Perform (LinkIterator theStart, LinkIterator theFinal, Standard_Integer theBit = 29)
    {
      while (theStart != theFinal && theBit >= 0)
      {
        LinkIterator anOffset = std::partition (theStart, theFinal, BitPredicate (theBit--));
        
        Perform (theStart, anOffset, theBit);
      
        theStart = anOffset;
      }
    }
  };

  //! Calculates bounding boxes (AABBs) for the given BVH tree. 
  template<class T, int N>
  Standard_Integer UpdateBounds (BVH_Set<T, N>* theSet, BVH_Tree<T, N>* theTree, const Standard_Integer theNode = 0)
  {
    const BVH_Vec4i aData = theTree->NodeInfoBuffer()[theNode];

    if (aData.x() == 0)
    {
      const Standard_Integer aLftChild = theTree->NodeInfoBuffer()[theNode].y();
      const Standard_Integer aRghChild = theTree->NodeInfoBuffer()[theNode].z();

      const Standard_Integer aLftDepth = UpdateBounds (theSet, theTree, aLftChild);
      const Standard_Integer aRghDepth = UpdateBounds (theSet, theTree, aRghChild);

      typename BVH_Box<T, N>::BVH_VecNt aLftMinPoint = theTree->MinPointBuffer()[aLftChild];
      typename BVH_Box<T, N>::BVH_VecNt aLftMaxPoint = theTree->MaxPointBuffer()[aLftChild];
      typename BVH_Box<T, N>::BVH_VecNt aRghMinPoint = theTree->MinPointBuffer()[aRghChild];
      typename BVH_Box<T, N>::BVH_VecNt aRghMaxPoint = theTree->MaxPointBuffer()[aRghChild];

      BVH::BoxMinMax<T, N>::CwiseMin (aLftMinPoint, aRghMinPoint);
      BVH::BoxMinMax<T, N>::CwiseMax (aLftMaxPoint, aRghMaxPoint);
    
      theTree->MinPointBuffer()[theNode] = aLftMinPoint;
      theTree->MaxPointBuffer()[theNode] = aLftMaxPoint;

      return Max (aLftDepth, aRghDepth) + 1;
    }
    else
    {
      typename BVH_Box<T, N>::BVH_VecNt& aMinPoint = theTree->MinPointBuffer()[theNode];
      typename BVH_Box<T, N>::BVH_VecNt& aMaxPoint = theTree->MaxPointBuffer()[theNode];

      for (Standard_Integer aPrimIdx = aData.y(); aPrimIdx <= aData.z(); ++aPrimIdx)
      {
        const BVH_Box<T, N> aBox = theSet->Box (aPrimIdx);

        if (aPrimIdx == aData.y())
        {
          aMinPoint = aBox.CornerMin();
          aMaxPoint = aBox.CornerMax();
        }
        else
        {
          BVH::BoxMinMax<T, N>::CwiseMin (aMinPoint, aBox.CornerMin());
          BVH::BoxMinMax<T, N>::CwiseMax (aMaxPoint, aBox.CornerMax());
        }
      }
    }

    return 0;
  }
}

// =======================================================================
// function : EmitHierachy
// purpose  : Emits hierarchy from sorted Morton codes
// =======================================================================
template<class T, int N>
Standard_Integer BVH_LinearBuilder<T, N>::EmitHierachy (BVH_Tree<T, N>*                        theBVH,
                                                        const Standard_Integer                 theBit,
                                                        const Standard_Integer                 theShift,
                                                        std::vector<BVH_EncodedLink>::iterator theStart,
                                                        std::vector<BVH_EncodedLink>::iterator theFinal)
{
  if (theFinal - theStart > BVH_Builder<T, N>::myLeafNodeSize && theBit >= 0)
  {
    std::vector<BVH_EncodedLink>::iterator aPosition = std::lower_bound (
      theStart, theFinal, BVH_EncodedLink(), BVH::BitComparator (theBit));

    if (aPosition == theStart || aPosition == theFinal)
    {
      return EmitHierachy (theBVH, theBit - 1, theShift, theStart, theFinal);
    }

    // Build inner node
    const Standard_Integer aNode = theBVH->AddInnerNode (0, 0);

    const Standard_Integer aRghNode = theShift + static_cast<Standard_Integer> (aPosition - theStart);
    
    const Standard_Integer aLftChild = EmitHierachy (theBVH, theBit - 1, theShift, theStart, aPosition);
    const Standard_Integer aRghChild = EmitHierachy (theBVH, theBit - 1, aRghNode, aPosition, theFinal);

    theBVH->NodeInfoBuffer()[aNode].y() = aLftChild;
    theBVH->NodeInfoBuffer()[aNode].z() = aRghChild;
    
    return aNode;
  }
  else
  {
    // Build leaf node
    return theBVH->AddLeafNode (theShift, theShift + static_cast<Standard_Integer> (theFinal - theStart) - 1);
  }
}

#ifdef HAVE_TBB

namespace BVH
{
  //! TBB task for parallel radix sort.
  class RadixSortTask : public tbb::task
  {
    typedef std::vector<BVH_EncodedLink>::iterator LinkIterator;

  private:

    //! Start range element.
    LinkIterator myStart;
    
    //! Final range element.
    LinkIterator myFinal;

    //! Bit position for range partition.
    Standard_Integer myDigit;

  public:

    //! Creates new TBB radix sort task.
    RadixSortTask (LinkIterator theStart, LinkIterator theFinal, Standard_Integer theDigit)
    : myStart (theStart),
      myFinal (theFinal),
      myDigit (theDigit)
    {
      //
    }

    //! Executes the task.
    tbb::task* execute()
    {
      if (myDigit < 28)
      {
        BVH::RadixSorter::Perform (myStart, myFinal, myDigit);
      }
      else
      {
        LinkIterator anOffset = std::partition (myStart, myFinal, BitPredicate (myDigit));

        tbb::task_list aList;

        aList.push_back (*new ( allocate_child() )
          RadixSortTask (myStart, anOffset, myDigit - 1));

        aList.push_back (*new ( allocate_child() )
          RadixSortTask (anOffset, myFinal, myDigit - 1));

        set_ref_count (3); // count + 1
        spawn_and_wait_for_all (aList);
      }

      return NULL;
    }
  };

  //! TBB task for parallel bounds updating.
  template<class T, int N>
  class UpdateBoundTask: public tbb::task
  {
    //! Set of geometric objects.
    BVH_Set<T, N>* mySet;

    //! BVH tree built over the set.
    BVH_Tree<T, N>* myBVH;

    //! BVH node to update bounding box.
    Standard_Integer myNode;

    //! Level of the processed BVH node.
    Standard_Integer myLevel;

    //! Height of the processed BVH node.
    Standard_Integer* myHeight;

  public:

    //! Creates new TBB parallel bound update task.
    UpdateBoundTask (BVH_Set<T, N>*    theSet,
                     BVH_Tree<T, N>*   theBVH,
                     Standard_Integer  theNode,
                     Standard_Integer  theLevel,
                     Standard_Integer* theHeight)
    : mySet    (theSet),
      myBVH    (theBVH),
      myNode   (theNode),
      myLevel  (theLevel),
      myHeight (theHeight)
    {
      //
    }

    //! Executes the task.
    tbb::task* execute()
    {
      if (myBVH->IsOuter (myNode) || myLevel > 2)
      {
        *myHeight = BVH::UpdateBounds (mySet, myBVH, myNode);
      }
      else
      {
        Standard_Integer aLftHeight = 0;
        Standard_Integer aRghHeight = 0;

        tbb::task_list aList;

        const Standard_Integer aLftChild = myBVH->NodeInfoBuffer()[myNode].y();
        const Standard_Integer aRghChild = myBVH->NodeInfoBuffer()[myNode].z();

        Standard_Integer aCount = 1;

        if (!myBVH->IsOuter (aLftChild))
        {
          ++aCount;
          aList.push_back (*new ( allocate_child() )
            UpdateBoundTask (mySet, myBVH, aLftChild, myLevel + 1, &aLftHeight));
        }
        else
        {
          aLftHeight = BVH::UpdateBounds (mySet, myBVH, aLftChild);
        }

        if (!myBVH->IsOuter (aRghChild))
        {
          ++aCount;
          aList.push_back (*new( allocate_child() )
            UpdateBoundTask (mySet, myBVH, aRghChild, myLevel + 1, &aRghHeight));
        }
        else
        {
          aRghHeight = BVH::UpdateBounds (mySet, myBVH, aRghChild);
        }

        if (aCount > 1)
        {
          set_ref_count (aCount);
          spawn_and_wait_for_all (aList);
        }

        typename BVH_Box<T, N>::BVH_VecNt aLftMinPoint = myBVH->MinPointBuffer()[aLftChild];
        typename BVH_Box<T, N>::BVH_VecNt aLftMaxPoint = myBVH->MaxPointBuffer()[aLftChild];
        typename BVH_Box<T, N>::BVH_VecNt aRghMinPoint = myBVH->MinPointBuffer()[aRghChild];
        typename BVH_Box<T, N>::BVH_VecNt aRghMaxPoint = myBVH->MaxPointBuffer()[aRghChild];

        BVH::BoxMinMax<T, N>::CwiseMin (aLftMinPoint, aRghMinPoint);
        BVH::BoxMinMax<T, N>::CwiseMax (aLftMaxPoint, aRghMaxPoint);

        myBVH->MinPointBuffer()[myNode] = aLftMinPoint;
        myBVH->MaxPointBuffer()[myNode] = aLftMaxPoint;

        *myHeight = Max (aLftHeight, aRghHeight) + 1;
      }

      return NULL;
    }
  };
}

#endif

// =======================================================================
// function : Build
// purpose  :
// =======================================================================
template<class T, int N>
void BVH_LinearBuilder<T, N>::Build (BVH_Set<T, N>*       theSet,
                                     BVH_Tree<T, N>*      theBVH,
                                     const BVH_Box<T, N>& theBox)
{
  Standard_STATIC_ASSERT (N == 3 || N == 4);

  if (theBVH == NULL || theSet->Size() == 0)
  {
    return;
  }

  theBVH->Clear();

  const Standard_Integer aDimensionX = 1024;
  const Standard_Integer aDimensionY = 1024;
  const Standard_Integer aDimensionZ = 1024;

  const BVH_VecNt aSceneMin = theBox.CornerMin();
  const BVH_VecNt aSceneMax = theBox.CornerMax();

  const T aMinSize = static_cast<T> (BVH::THE_NODE_MIN_SIZE);

  const T aReverseSizeX = static_cast<T> (aDimensionX) / Max (aMinSize, aSceneMax.x() - aSceneMin.x());
  const T aReverseSizeY = static_cast<T> (aDimensionY) / Max (aMinSize, aSceneMax.y() - aSceneMin.y());
  const T aReverseSizeZ = static_cast<T> (aDimensionZ) / Max (aMinSize, aSceneMax.z() - aSceneMin.z());

  std::vector<BVH_EncodedLink> anEncodedLinks (theSet->Size(), BVH_EncodedLink());

  // Step 1 -- Assign Morton code to each primitive
  for (Standard_Integer aPrimIdx = 0; aPrimIdx < theSet->Size(); ++aPrimIdx)
  {
    const BVH_VecNt aCenter = theSet->Box (aPrimIdx).Center();

    Standard_Integer aVoxelX = BVH::IntFloor ((aCenter.x() - aSceneMin.x()) * aReverseSizeX);
    Standard_Integer aVoxelY = BVH::IntFloor ((aCenter.y() - aSceneMin.y()) * aReverseSizeY);
    Standard_Integer aVoxelZ = BVH::IntFloor ((aCenter.z() - aSceneMin.z()) * aReverseSizeZ);

    aVoxelX = Max (0, Min (aVoxelX, aDimensionX - 1));
    aVoxelY = Max (0, Min (aVoxelY, aDimensionY - 1));
    aVoxelZ = Max (0, Min (aVoxelZ, aDimensionZ - 1));

    aVoxelX = (aVoxelX | (aVoxelX << 16)) & 0x030000FF;
    aVoxelX = (aVoxelX | (aVoxelX <<  8)) & 0x0300F00F;
    aVoxelX = (aVoxelX | (aVoxelX <<  4)) & 0x030C30C3;
    aVoxelX = (aVoxelX | (aVoxelX <<  2)) & 0x09249249;

    aVoxelY = (aVoxelY | (aVoxelY << 16)) & 0x030000FF;
    aVoxelY = (aVoxelY | (aVoxelY <<  8)) & 0x0300F00F;
    aVoxelY = (aVoxelY | (aVoxelY <<  4)) & 0x030C30C3;
    aVoxelY = (aVoxelY | (aVoxelY <<  2)) & 0x09249249;

    aVoxelZ = (aVoxelZ | (aVoxelZ << 16)) & 0x030000FF;
    aVoxelZ = (aVoxelZ | (aVoxelZ <<  8)) & 0x0300F00F;
    aVoxelZ = (aVoxelZ | (aVoxelZ <<  4)) & 0x030C30C3;
    aVoxelZ = (aVoxelZ | (aVoxelZ <<  2)) & 0x09249249;

    anEncodedLinks[aPrimIdx] = BVH_EncodedLink (
      aVoxelX | (aVoxelY << 1) | (aVoxelZ << 2), aPrimIdx);
  }

  // Step 2 -- Sort primitives by their Morton codes using radix sort
#ifdef HAVE_TBB

  BVH::RadixSortTask& aSortTask = *new ( tbb::task::allocate_root() )
    BVH::RadixSortTask (anEncodedLinks.begin(), anEncodedLinks.end(), 29);

  tbb::task::spawn_root_and_wait (aSortTask);

#else

  BVH::RadixSorter::Perform (anEncodedLinks.begin(), anEncodedLinks.end());

#endif

  // Step 3 -- Emitting BVH hierarchy from sorted Morton codes
  EmitHierachy (theBVH, 29, 0, anEncodedLinks.begin(), anEncodedLinks.end());

  NCollection_Array1<Standard_Integer> aLinkMap (0, theSet->Size() - 1);

  for (Standard_Integer aLinkIdx = 0; aLinkIdx < theSet->Size(); ++aLinkIdx)
  {
    aLinkMap (anEncodedLinks[aLinkIdx].second) = aLinkIdx;
  }

  // Step 4 -- Rearranging primitive list according to Morton codes (in place)
  Standard_Integer aPrimIdx = 0;

  while (aPrimIdx < theSet->Size())
  {
    const Standard_Integer aSortIdx = aLinkMap (aPrimIdx);

    if (aPrimIdx != aSortIdx)
    {
      theSet->Swap (aPrimIdx, aSortIdx);

      std::swap (aLinkMap (aPrimIdx),
                 aLinkMap (aSortIdx));
    }
    else
    {
      ++aPrimIdx;
    }
  }

  // Step 5 -- Compute bounding boxes of BVH nodes
  theBVH->MinPointBuffer().resize (theBVH->NodeInfoBuffer().size());
  theBVH->MaxPointBuffer().resize (theBVH->NodeInfoBuffer().size());

  Standard_Integer aDepth = 0;

#ifdef HAVE_TBB

  // Note: Although TBB tasks are allocated using placement
  // new, we do not need to delete them explicitly
  BVH::UpdateBoundTask<T, N>& aRootTask = *new ( tbb::task::allocate_root() )
    BVH::UpdateBoundTask<T, N> (theSet, theBVH, 0, 0, &aDepth);

  tbb::task::spawn_root_and_wait (aRootTask);

#else

  aDepth = BVH::UpdateBounds (theSet, theBVH, 0);

#endif

  BVH_Builder<T, N>::UpdateDepth (theBVH, aDepth);
}