/usr/include/oce/Bnd_B2x.gxx is in liboce-foundation-dev 0.18.2-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | // Created on: 2005-09-08
// Created by: Alexander GRIGORIEV
// Copyright (c) 2005-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
inline Standard_Boolean _compareDist (const RealType aHSize[2],
const RealType aDist[2])
{
return (Abs(aDist[0]) > aHSize[0] || Abs(aDist[1]) > aHSize[1]);
}
inline Standard_Boolean _compareDistD (const gp_XY& aHSize, const gp_XY& aDist)
{
return (Abs(aDist.X()) > aHSize.X() || Abs(aDist.Y()) > aHSize.Y());
}
//=======================================================================
//function : Add
//purpose : Update the box by a point
//=======================================================================
void Bnd_B2x::Add (const gp_XY& thePnt) {
if (IsVoid()) {
myCenter[0] = RealType(thePnt.X());
myCenter[1] = RealType(thePnt.Y());
myHSize [0] = 0.;
myHSize [1] = 0.;
} else {
const RealType aDiff[2] = {
RealType(thePnt.X()) - myCenter[0],
RealType(thePnt.Y()) - myCenter[1]
};
if (aDiff[0] > myHSize[0]) {
const RealType aShift = (aDiff[0] - myHSize[0]) / 2;
myCenter[0] += aShift;
myHSize [0] += aShift;
} else if (aDiff[0] < -myHSize[0]) {
const RealType aShift = (aDiff[0] + myHSize[0]) / 2;
myCenter[0] += aShift;
myHSize [0] -= aShift;
}
if (aDiff[1] > myHSize[1]) {
const RealType aShift = (aDiff[1] - myHSize[1]) / 2;
myCenter[1] += aShift;
myHSize [1] += aShift;
} else if (aDiff[1] < -myHSize[1]) {
const RealType aShift = (aDiff[1] + myHSize[1]) / 2;
myCenter[1] += aShift;
myHSize [1] -= aShift;
}
}
}
//=======================================================================
//function : Limit
//purpose : limit the current box with the internals of theBox
//=======================================================================
Standard_Boolean Bnd_B2x::Limit (const Bnd_B2x& theBox)
{
Standard_Boolean aResult (Standard_False);
const RealType diffC[2] = {
theBox.myCenter[0] - myCenter[0],
theBox.myCenter[1] - myCenter[1]
};
const RealType sumH[2] = {
theBox.myHSize[0] + myHSize[0],
theBox.myHSize[1] + myHSize[1]
};
// check the condition IsOut
if (_compareDist (sumH, diffC) == Standard_False) {
const RealType diffH[2] = {
theBox.myHSize[0] - myHSize[0],
theBox.myHSize[1] - myHSize[1]
};
if (diffC[0] - diffH[0] > 0.) {
const RealType aShift = (diffC[0] - diffH[0]) / 2; // positive
myCenter[0] += aShift;
myHSize [0] -= aShift;
} else if (diffC[0] + diffH[0] < 0.) {
const RealType aShift = (diffC[0] + diffH[0]) / 2; // negative
myCenter[0] += aShift;
myHSize [0] += aShift;
}
if (diffC[1] - diffH[1] > 0.) {
const RealType aShift = (diffC[1] - diffH[1]) / 2; // positive
myCenter[1] += aShift;
myHSize [1] -= aShift;
} else if (diffC[1] + diffH[1] < 0.) {
const RealType aShift = (diffC[1] + diffH[1]) / 2; // negative
myCenter[1] += aShift;
myHSize [1] += aShift;
}
aResult = Standard_True;
}
return aResult;
}
//=======================================================================
//function : Transformed
//purpose :
//=======================================================================
Bnd_B2x Bnd_B2x::Transformed (const gp_Trsf2d& theTrsf) const
{
Bnd_B2x aResult;
const gp_TrsfForm aForm = theTrsf.Form();
const Standard_Real aScale = theTrsf.ScaleFactor();
const Standard_Real aScaleAbs = Abs(aScale);
if (aForm == gp_Identity)
aResult = * this;
else if (aForm== gp_Translation || aForm== gp_PntMirror || aForm== gp_Scale)
{
aResult.myCenter[0] =
(RealType)(myCenter[0] * aScale + theTrsf.TranslationPart().X());
aResult.myCenter[1] =
(RealType)(myCenter[1] * aScale + theTrsf.TranslationPart().Y());
aResult.myHSize[0] = (RealType)(myHSize[0] * aScaleAbs);
aResult.myHSize[1] = (RealType)(myHSize[1] * aScaleAbs);
} else {
gp_XY aCenter ((Standard_Real)myCenter[0],
(Standard_Real)myCenter[1]);
theTrsf.Transforms (aCenter);
aResult.myCenter[0] = (RealType)aCenter.X();
aResult.myCenter[1] = (RealType)aCenter.Y();
const Standard_Real * aMat = &theTrsf.HVectorialPart().Value(1,1);
aResult.myHSize[0] = (RealType)(aScaleAbs * (Abs(aMat[0]) * myHSize[0]+
Abs(aMat[1]) * myHSize[1]));
aResult.myHSize[1] = (RealType)(aScaleAbs * (Abs(aMat[2]) * myHSize[0]+
Abs(aMat[3]) * myHSize[1]));
}
return aResult;
}
//=======================================================================
//function : IsOut
//purpose : Intersection Box - Circle
//=======================================================================
Standard_Boolean Bnd_B2x::IsOut (const gp_XY& theCenter,
const Standard_Real theRadius,
const Standard_Boolean isCircleHollow) const
{
Standard_Boolean aResult (Standard_True);
if (isCircleHollow == Standard_False) {
// vector from the center of the circle to the nearest box face
const Standard_Real aDist[2] = {
Abs(theCenter.X()-Standard_Real(myCenter[0])) - Standard_Real(myHSize[0]),
Abs(theCenter.Y()-Standard_Real(myCenter[1])) - Standard_Real(myHSize[1])
};
Standard_Real aD (0.);
if (aDist[0] > 0.)
aD = aDist[0]*aDist[0];
if (aDist[1] > 0.)
aD += aDist[1]*aDist[1];
aResult = (aD > theRadius*theRadius);
} else {
const Standard_Real aDistC[2] = {
Abs(theCenter.X()-Standard_Real(myCenter[0])),
Abs(theCenter.Y()-Standard_Real(myCenter[1]))
};
// vector from the center of the circle to the nearest box face
Standard_Real aDist[2] = {
aDistC[0] - Standard_Real(myHSize[0]),
aDistC[1] - Standard_Real(myHSize[1])
};
Standard_Real aD (0.);
if (aDist[0] > 0.)
aD = aDist[0]*aDist[0];
if (aDist[1] > 0.)
aD += aDist[1]*aDist[1];
if (aD < theRadius*theRadius) {
// the box intersects the solid circle; check if it is completely
// inside the circle (in such case return isOut==True)
aDist[0] = aDistC[0] + Standard_Real(myHSize[0]);
aDist[1] = aDistC[1] + Standard_Real(myHSize[1]);
if (aDist[0]*aDist[0]+aDist[1]*aDist[1] > theRadius*theRadius)
aResult = Standard_False;
}
}
return aResult;
}
//=======================================================================
//function : IsOut
//purpose : Intersection Box - transformed Box
//=======================================================================
Standard_Boolean Bnd_B2x::IsOut (const Bnd_B2x& theBox,
const gp_Trsf2d& theTrsf) const
{
Standard_Boolean aResult (Standard_False);
const gp_TrsfForm aForm = theTrsf.Form();
const Standard_Real aScale = theTrsf.ScaleFactor();
const Standard_Real aScaleAbs = Abs(aScale);
if (aForm == gp_Translation || aForm == gp_Identity ||
aForm == gp_PntMirror || aForm == gp_Scale)
{
aResult =
(Abs (RealType(theBox.myCenter[0]*aScale + theTrsf.TranslationPart().X())
- myCenter[0])
> RealType (theBox.myHSize[0]*aScaleAbs) + myHSize[0] ||
Abs (RealType(theBox.myCenter[1]*aScale + theTrsf.TranslationPart().Y())
- myCenter[1])
> RealType (theBox.myHSize[1]*aScaleAbs) + myHSize[1]);
}
else {
// theBox is transformed and we check the resulting (enlarged) box against
// 'this' box.
const Standard_Real * aMat = &theTrsf.HVectorialPart().Value(1,1);
gp_XY aCenter ((Standard_Real)theBox.myCenter[0],
(Standard_Real)theBox.myCenter[1]);
theTrsf.Transforms (aCenter);
const Standard_Real aDist[2] = {
aCenter.X() - (Standard_Real)myCenter[0],
aCenter.Y() - (Standard_Real)myCenter[1]
};
const Standard_Real aMatAbs[4] = {
Abs(aMat[0]), Abs(aMat[1]), Abs(aMat[2]), Abs(aMat[3])
};
if (Abs(aDist[0]) > (aScaleAbs * (aMatAbs[0]*theBox.myHSize[0]+
aMatAbs[1]*theBox.myHSize[1]) +
(Standard_Real)myHSize[0]) ||
Abs(aDist[1]) > (aScaleAbs * (aMatAbs[2]*theBox.myHSize[0]+
aMatAbs[3]*theBox.myHSize[1]) +
(Standard_Real)myHSize[1]))
aResult = Standard_True;
else {
// theBox is rotated, scaled and translated. We apply the reverse
// translation and scaling then check against the rotated box 'this'
if ((Abs(aMat[0]*aDist[0]+aMat[2]*aDist[1])
> theBox.myHSize[0]*aScaleAbs + (aMatAbs[0]*myHSize[0] +
aMatAbs[2]*myHSize[1])) ||
(Abs(aMat[1]*aDist[0]+aMat[3]*aDist[1])
> theBox.myHSize[1]*aScaleAbs + (aMatAbs[1]*myHSize[0] +
aMatAbs[3]*myHSize[1])))
aResult = Standard_True;
}
}
return aResult;
}
//=======================================================================
//function : IsOut
//purpose : Intersection Box - Line
//=======================================================================
Standard_Boolean Bnd_B2x::IsOut (const gp_Ax2d& theLine) const
{
if (IsVoid())
return Standard_True;
// Intersect the line containing the segment.
const Standard_Real aProd[3] = {
theLine.Direction().XY() ^ (gp_XY (myCenter[0] - theLine.Location().X(),
myCenter[1] - theLine.Location().Y())),
theLine.Direction().X() * Standard_Real(myHSize[1]),
theLine.Direction().Y() * Standard_Real(myHSize[0])
};
return (Abs(aProd[0]) > (Abs(aProd[1]) + Abs(aProd[2])));
}
//=======================================================================
//function : IsOut
//purpose : Intersection Box - Segment
//=======================================================================
Standard_Boolean Bnd_B2x::IsOut (const gp_XY& theP0, const gp_XY& theP1) const
{
Standard_Boolean aResult (Standard_True);
if (IsVoid() == Standard_False)
{
// Intersect the line containing the segment.
const gp_XY aSegDelta (theP1 - theP0);
const Standard_Real aProd[3] = {
aSegDelta ^ (gp_XY (myCenter[0], myCenter[1]) - theP0),
aSegDelta.X() * Standard_Real(myHSize[1]),
aSegDelta.Y() * Standard_Real(myHSize[0])
};
if (Abs(aProd[0]) < (Abs(aProd[1]) + Abs(aProd[2])))
{
// Intersection with line detected; check the segment as bounding box
const gp_XY aHSeg (0.5 * aSegDelta.X(), 0.5 * aSegDelta.Y());
const gp_XY aHSegAbs (Abs(aHSeg.X()), Abs(aHSeg.Y()));
aResult = _compareDistD (gp_XY((Standard_Real)myHSize[0],
(Standard_Real)myHSize[1]) + aHSegAbs,
theP0 + aHSeg-gp_XY((Standard_Real)myCenter[0],
(Standard_Real)myCenter[1]));
}
}
return aResult;
}
//=======================================================================
//function : IsIn
//purpose : Test the complete inclusion of this box in transformed theOtherBox
//=======================================================================
Standard_Boolean Bnd_B2x::IsIn (const Bnd_B2x& theBox,
const gp_Trsf2d& theTrsf) const
{
Standard_Boolean aResult (Standard_False);
const gp_TrsfForm aForm = theTrsf.Form();
const Standard_Real aScale = theTrsf.ScaleFactor();
const Standard_Real aScaleAbs = Abs(aScale);
if (aForm == gp_Translation || aForm == gp_Identity ||
aForm == gp_PntMirror || aForm == gp_Scale)
{
aResult =
(Abs (RealType(theBox.myCenter[0]*aScale + theTrsf.TranslationPart().X())
- myCenter[0])
< RealType (theBox.myHSize[0]*aScaleAbs) - myHSize[0] &&
Abs (RealType(theBox.myCenter[1]*aScale + theTrsf.TranslationPart().Y())
- myCenter[1])
< RealType (theBox.myHSize[1]*aScaleAbs) - myHSize[1]);
} else {
// theBox is rotated, scaled and translated. We apply the reverse
// translation and scaling then check against the rotated box 'this'
const Standard_Real * aMat = &theTrsf.HVectorialPart().Value(1,1);
gp_XY aCenter ((Standard_Real)theBox.myCenter[0],
(Standard_Real)theBox.myCenter[1]);
theTrsf.Transforms (aCenter);
const Standard_Real aDist[2] = {
aCenter.X() - (Standard_Real)myCenter[0],
aCenter.Y() - (Standard_Real)myCenter[1]
};
if ((Abs(aMat[0]*aDist[0]+aMat[2]*aDist[1])
< theBox.myHSize[0]*aScaleAbs - (Abs(aMat[0])*myHSize[0] +
Abs(aMat[2])*myHSize[1])) &&
(Abs(aMat[1]*aDist[0]+aMat[3]*aDist[1])
< theBox.myHSize[1]*aScaleAbs - (Abs(aMat[1])*myHSize[0] +
Abs(aMat[3])*myHSize[1])))
aResult = Standard_True;
}
return aResult;
}
|