This file is indexed.

/usr/include/oce/PLib_HermitJacobi.hxx is in liboce-foundation-dev 0.18.2-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _PLib_HermitJacobi_HeaderFile
#define _PLib_HermitJacobi_HeaderFile

#include <Standard.hxx>
#include <Standard_DefineHandle.hxx>
#include <Handle_PLib_HermitJacobi.hxx>

#include <math_Matrix.hxx>
#include <Handle_PLib_JacobiPolynomial.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <PLib_Base.hxx>
#include <Standard_Integer.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Real.hxx>
class PLib_JacobiPolynomial;
class Standard_ConstructionError;
class TColStd_Array1OfReal;


//! This class provides method  to work with Jacobi Polynomials
//! relativly to an order of constraint
//! q = myWorkDegree-2*(myNivConstr+1)
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t)
//! iorder is the integer  value for the constraints:
//! iorder = 0 <=> ConstraintOrder = GeomAbs_C0
//! iorder = 1 <=> ConstraintOrder = GeomAbs_C1
//! iorder = 2 <=> ConstraintOrder = GeomAbs_C2
//! P(t) = H(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2)
//! the coefficients JacCoeff represents P(t) JacCoeff are stored as follow:
//!
//! c0(1)      c0(2) ....       c0(Dimension)
//! c1(1)      c1(2) ....       c1(Dimension)
//!
//! cDegree(1) cDegree(2) ....  cDegree(Dimension)
//!
//! The coefficients
//! c0(1)                  c0(2) ....            c0(Dimension)
//! c2*ordre+1(1)                ...          c2*ordre+1(dimension)
//!
//! represents the  part  of the polynomial in  the
//! Hermit's base: H(t)
//! H(t) = c0H00(t) + c1H01(t) + ...c(iordre)H(0 ;iorder)+ c(iordre+1)H10(t)+...
//! The following coefficients represents the part of the
//! polynomial in the Jacobi base ie Q(t)
//! Q(t) = c2*iordre+2  J0(t) + ...+ cDegree JDegree-2*iordre-2
class PLib_HermitJacobi : public PLib_Base
{

public:

  

  //! Initialize the polynomial class
  //! Degree has to be <= 30
  //! ConstraintOrder has to be GeomAbs_C0
  //! GeomAbs_C1
  //! GeomAbs_C2
  Standard_EXPORT PLib_HermitJacobi(const Standard_Integer WorkDegree, const GeomAbs_Shape ConstraintOrder);
  

  //! This  method computes the  maximum  error on the polynomial
  //! W(t) Q(t) obtained by missing the coefficients of JacCoeff from
  //! NewDegree +1 to Degree
  Standard_EXPORT   Standard_Real MaxError (const Standard_Integer Dimension, Standard_Real& HermJacCoeff, const Standard_Integer NewDegree)  const;
  

  //! Compute NewDegree <= MaxDegree so that MaxError is lower
  //! than Tol.
  //! MaxError can be greater than Tol if it is not possible
  //! to find a NewDegree <= MaxDegree.
  //! In this case NewDegree = MaxDegree
  Standard_EXPORT   void ReduceDegree (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Real Tol, Standard_Real& HermJacCoeff, Standard_Integer& NewDegree, Standard_Real& MaxError)  const;
  
  Standard_EXPORT   Standard_Real AverageError (const Standard_Integer Dimension, Standard_Real& HermJacCoeff, const Standard_Integer NewDegree)  const;
  

  //! Convert the polynomial P(t) = H(t) + W(t) Q(t) in the canonical base.
  Standard_EXPORT   void ToCoefficients (const Standard_Integer Dimension, const Standard_Integer Degree, const TColStd_Array1OfReal& HermJacCoeff, TColStd_Array1OfReal& Coefficients)  const;
  
  //! Compute the values of the basis functions in u
  Standard_EXPORT   void D0 (const Standard_Real U, TColStd_Array1OfReal& BasisValue) ;
  
  //! Compute the values and the derivatives values of
  //! the basis functions in u
  Standard_EXPORT   void D1 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1) ;
  
  //! Compute the values and the derivatives values of
  //! the basis functions in u
  Standard_EXPORT   void D2 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2) ;
  
  //! Compute the values and the derivatives values of
  //! the basis functions in u
  Standard_EXPORT   void D3 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3) ;
  
  //! returns WorkDegree
      Standard_Integer WorkDegree()  const;
  
  //! returns NivConstr
      Standard_Integer NivConstr()  const;




  DEFINE_STANDARD_RTTI(PLib_HermitJacobi)

protected:




private: 

  
  //! Compute the values and the derivatives values of
  //! the basis functions in u
  Standard_EXPORT   void D0123 (const Standard_Integer NDerive, const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3) ;

  math_Matrix myH;
  Handle(PLib_JacobiPolynomial) myJacobi;
  TColStd_Array1OfReal myWCoeff;


};


#include <PLib_HermitJacobi.lxx>





#endif // _PLib_HermitJacobi_HeaderFile