/usr/include/oce/PLib_HermitJacobi.hxx is in liboce-foundation-dev 0.18.2-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _PLib_HermitJacobi_HeaderFile
#define _PLib_HermitJacobi_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineHandle.hxx>
#include <Handle_PLib_HermitJacobi.hxx>
#include <math_Matrix.hxx>
#include <Handle_PLib_JacobiPolynomial.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <PLib_Base.hxx>
#include <Standard_Integer.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Real.hxx>
class PLib_JacobiPolynomial;
class Standard_ConstructionError;
class TColStd_Array1OfReal;
//! This class provides method to work with Jacobi Polynomials
//! relativly to an order of constraint
//! q = myWorkDegree-2*(myNivConstr+1)
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t)
//! iorder is the integer value for the constraints:
//! iorder = 0 <=> ConstraintOrder = GeomAbs_C0
//! iorder = 1 <=> ConstraintOrder = GeomAbs_C1
//! iorder = 2 <=> ConstraintOrder = GeomAbs_C2
//! P(t) = H(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2)
//! the coefficients JacCoeff represents P(t) JacCoeff are stored as follow:
//!
//! c0(1) c0(2) .... c0(Dimension)
//! c1(1) c1(2) .... c1(Dimension)
//!
//! cDegree(1) cDegree(2) .... cDegree(Dimension)
//!
//! The coefficients
//! c0(1) c0(2) .... c0(Dimension)
//! c2*ordre+1(1) ... c2*ordre+1(dimension)
//!
//! represents the part of the polynomial in the
//! Hermit's base: H(t)
//! H(t) = c0H00(t) + c1H01(t) + ...c(iordre)H(0 ;iorder)+ c(iordre+1)H10(t)+...
//! The following coefficients represents the part of the
//! polynomial in the Jacobi base ie Q(t)
//! Q(t) = c2*iordre+2 J0(t) + ...+ cDegree JDegree-2*iordre-2
class PLib_HermitJacobi : public PLib_Base
{
public:
//! Initialize the polynomial class
//! Degree has to be <= 30
//! ConstraintOrder has to be GeomAbs_C0
//! GeomAbs_C1
//! GeomAbs_C2
Standard_EXPORT PLib_HermitJacobi(const Standard_Integer WorkDegree, const GeomAbs_Shape ConstraintOrder);
//! This method computes the maximum error on the polynomial
//! W(t) Q(t) obtained by missing the coefficients of JacCoeff from
//! NewDegree +1 to Degree
Standard_EXPORT Standard_Real MaxError (const Standard_Integer Dimension, Standard_Real& HermJacCoeff, const Standard_Integer NewDegree) const;
//! Compute NewDegree <= MaxDegree so that MaxError is lower
//! than Tol.
//! MaxError can be greater than Tol if it is not possible
//! to find a NewDegree <= MaxDegree.
//! In this case NewDegree = MaxDegree
Standard_EXPORT void ReduceDegree (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Real Tol, Standard_Real& HermJacCoeff, Standard_Integer& NewDegree, Standard_Real& MaxError) const;
Standard_EXPORT Standard_Real AverageError (const Standard_Integer Dimension, Standard_Real& HermJacCoeff, const Standard_Integer NewDegree) const;
//! Convert the polynomial P(t) = H(t) + W(t) Q(t) in the canonical base.
Standard_EXPORT void ToCoefficients (const Standard_Integer Dimension, const Standard_Integer Degree, const TColStd_Array1OfReal& HermJacCoeff, TColStd_Array1OfReal& Coefficients) const;
//! Compute the values of the basis functions in u
Standard_EXPORT void D0 (const Standard_Real U, TColStd_Array1OfReal& BasisValue) ;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D1 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1) ;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D2 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2) ;
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D3 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3) ;
//! returns WorkDegree
Standard_Integer WorkDegree() const;
//! returns NivConstr
Standard_Integer NivConstr() const;
DEFINE_STANDARD_RTTI(PLib_HermitJacobi)
protected:
private:
//! Compute the values and the derivatives values of
//! the basis functions in u
Standard_EXPORT void D0123 (const Standard_Integer NDerive, const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3) ;
math_Matrix myH;
Handle(PLib_JacobiPolynomial) myJacobi;
TColStd_Array1OfReal myWCoeff;
};
#include <PLib_HermitJacobi.lxx>
#endif // _PLib_HermitJacobi_HeaderFile
|