This file is indexed.

/usr/include/oce/PLib_JacobiPolynomial.hxx is in liboce-foundation-dev 0.18.2-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _PLib_JacobiPolynomial_HeaderFile
#define _PLib_JacobiPolynomial_HeaderFile

#include <Standard.hxx>
#include <Standard_DefineHandle.hxx>
#include <Handle_PLib_JacobiPolynomial.hxx>

#include <Standard_Integer.hxx>
#include <Handle_TColStd_HArray1OfReal.hxx>
#include <PLib_Base.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Real.hxx>
class TColStd_HArray1OfReal;
class Standard_ConstructionError;
class TColStd_Array1OfReal;
class TColStd_Array2OfReal;


//! This class provides method  to work with Jacobi  Polynomials
//! relativly to   an order of constraint
//! q  = myWorkDegree-2*(myNivConstr+1)
//! Jk(t)  for k=0,q compose  the   Jacobi Polynomial  base relativly  to  the weigth W(t)
//! iorder is the integer  value for the constraints:
//! iorder = 0 <=> ConstraintOrder  = GeomAbs_C0
//! iorder = 1 <=>  ConstraintOrder = GeomAbs_C1
//! iorder = 2 <=> ConstraintOrder = GeomAbs_C2
//! P(t) = R(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2)
//! the coefficients JacCoeff represents P(t) JacCoeff are stored as follow:
//!
//! c0(1)      c0(2) ....       c0(Dimension)
//! c1(1)      c1(2) ....       c1(Dimension)
//!
//! cDegree(1) cDegree(2) ....  cDegree(Dimension)
//!
//! The coefficients
//! c0(1)                  c0(2) ....            c0(Dimension)
//! c2*ordre+1(1)                ...          c2*ordre+1(dimension)
//!
//! represents the  part  of the polynomial in  the
//! canonical base: R(t)
//! R(t) = c0 + c1   t + ...+ c2*iordre+1 t**2*iordre+1
//! The following coefficients represents the part of the
//! polynomial in the Jacobi base ie Q(t)
//! Q(t) = c2*iordre+2  J0(t) + ...+ cDegree JDegree-2*iordre-2
class PLib_JacobiPolynomial : public PLib_Base
{

public:

  

  //! Initialize the polynomial class
  //! Degree has to be <= 30
  //! ConstraintOrder has to be GeomAbs_C0
  //! GeomAbs_C1
  //! GeomAbs_C2
  Standard_EXPORT PLib_JacobiPolynomial(const Standard_Integer WorkDegree, const GeomAbs_Shape ConstraintOrder);
  

  //! returns  the  Jacobi  Points   for  Gauss  integration ie
  //! the positive values of the Legendre roots by increasing values
  //! NbGaussPoints is the number of   points choosen for the  integral
  //! computation.
  //! TabPoints (0,NbGaussPoints/2)
  //! TabPoints (0) is loaded only for the odd values of NbGaussPoints
  //! The possible values for NbGaussPoints are : 8, 10,
  //! 15, 20, 25, 30, 35, 40, 50, 61
  //! NbGaussPoints must be greater than Degree
  Standard_EXPORT   void Points (const Standard_Integer NbGaussPoints, TColStd_Array1OfReal& TabPoints)  const;
  

  //! returns the Jacobi weigths for Gauss integration only for
  //! the positive    values of the  Legendre roots   in the order they
  //! are given by the method Points
  //! NbGaussPoints   is the number of points choosen   for  the integral
  //! computation.
  //! TabWeights  (0,NbGaussPoints/2,0,Degree)
  //! TabWeights (0,.) are only loaded for the odd values of NbGaussPoints
  //! The possible values for NbGaussPoints are : 8 , 10 , 15 ,20 ,25 , 30,
  //! 35 , 40 , 50 , 61 NbGaussPoints must be greater than Degree
  Standard_EXPORT   void Weights (const Standard_Integer NbGaussPoints, TColStd_Array2OfReal& TabWeights)  const;
  

  //! this method loads for k=0,q the maximum value of
  //! abs ( W(t)*Jk(t) )for t bellonging to [-1,1]
  //! This values are loaded is the array TabMax(0,myWorkDegree-2*(myNivConst+1))
  //! MaxValue ( me ; TabMaxPointer : in  out  Real );
  Standard_EXPORT   void MaxValue (TColStd_Array1OfReal& TabMax)  const;
  

  //! This  method computes the  maximum  error on the polynomial
  //! W(t) Q(t)  obtained  by   missing  the   coefficients of  JacCoeff   from
  //! NewDegree +1 to Degree
  Standard_EXPORT   Standard_Real MaxError (const Standard_Integer Dimension, Standard_Real& JacCoeff, const Standard_Integer NewDegree)  const;
  

  //! Compute NewDegree <= MaxDegree  so that MaxError is lower
  //! than Tol.
  //! MaxError can be greater than Tol  if it is not possible
  //! to find a NewDegree <= MaxDegree.
  //! In this case NewDegree = MaxDegree
  Standard_EXPORT   void ReduceDegree (const Standard_Integer Dimension, const Standard_Integer MaxDegree, const Standard_Real Tol, Standard_Real& JacCoeff, Standard_Integer& NewDegree, Standard_Real& MaxError)  const;
  
  Standard_EXPORT   Standard_Real AverageError (const Standard_Integer Dimension, Standard_Real& JacCoeff, const Standard_Integer NewDegree)  const;
  

  //! Convert the polynomial P(t) = R(t) + W(t) Q(t) in the canonical base.
  Standard_EXPORT   void ToCoefficients (const Standard_Integer Dimension, const Standard_Integer Degree, const TColStd_Array1OfReal& JacCoeff, TColStd_Array1OfReal& Coefficients)  const;
  
  //! Compute the values of the basis functions in u
  Standard_EXPORT   void D0 (const Standard_Real U, TColStd_Array1OfReal& BasisValue) ;
  
  //! Compute the values and the derivatives values of
  //! the basis functions in u
  Standard_EXPORT   void D1 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1) ;
  
  //! Compute the values and the derivatives values of
  //! the basis functions in u
  Standard_EXPORT   void D2 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2) ;
  
  //! Compute the values and the derivatives values of
  //! the basis functions in u
  Standard_EXPORT   void D3 (const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3) ;
  
  //! returns WorkDegree
      Standard_Integer WorkDegree()  const;
  
  //! returns NivConstr
      Standard_Integer NivConstr()  const;




  DEFINE_STANDARD_RTTI(PLib_JacobiPolynomial)

protected:




private: 

  
  //! Compute the values and the derivatives values of
  //! the basis functions in u
  Standard_EXPORT   void D0123 (const Standard_Integer NDerive, const Standard_Real U, TColStd_Array1OfReal& BasisValue, TColStd_Array1OfReal& BasisD1, TColStd_Array1OfReal& BasisD2, TColStd_Array1OfReal& BasisD3) ;

  Standard_Integer myWorkDegree;
  Standard_Integer myNivConstr;
  Standard_Integer myDegree;
  Handle(TColStd_HArray1OfReal) myTNorm;
  Handle(TColStd_HArray1OfReal) myCofA;
  Handle(TColStd_HArray1OfReal) myCofB;
  Handle(TColStd_HArray1OfReal) myDenom;


};


#include <PLib_JacobiPolynomial.lxx>





#endif // _PLib_JacobiPolynomial_HeaderFile