This file is indexed.

/usr/include/oce/gp_Torus.hxx is in liboce-foundation-dev 0.18.2-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_Torus_HeaderFile
#define _gp_Torus_HeaderFile

#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>

#include <gp_Ax3.hxx>
#include <Standard_Real.hxx>
#include <Standard_Storable.hxx>
#include <Standard_Boolean.hxx>
#include <gp_Ax1.hxx>
#include <Standard_PrimitiveTypes.hxx>
class Standard_ConstructionError;
class Standard_DimensionError;
class gp_Ax3;
class gp_Ax1;
class gp_Pnt;
class TColStd_Array1OfReal;
class gp_Ax2;
class gp_Trsf;
class gp_Vec;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Torus);


//! Describes a torus.
//! A torus is defined by its major and minor radii and
//! positioned in space with a coordinate system (a gp_Ax3
//! object) as follows:
//! -   The origin of the coordinate system is the center of the torus;
//! -   The surface is obtained by rotating a circle of radius
//! equal to the minor radius of the torus about the "main
//! Direction" of the coordinate system. This circle is
//! located in the plane defined by the origin, the "X
//! Direction" and the "main Direction" of the coordinate
//! system. It is centered on the "X Axis" of this coordinate
//! system, and located at a distance, from the origin of
//! this coordinate system, equal to the major radius of the   torus;
//! -   The "X Direction" and "Y Direction" define the
//! reference plane of the torus.
//! The coordinate system described above is the "local
//! coordinate system" of the torus.
//! Note: when a gp_Torus torus is converted into a
//! Geom_ToroidalSurface torus, some implicit properties
//! of its local coordinate system are used explicitly:
//! -   its origin, "X Direction", "Y Direction" and "main
//! Direction" are used directly to define the parametric
//! directions on the torus and the origin of the parameters,
//! -   its implicit orientation (right-handed or left-handed)
//! gives the orientation (direct, indirect) to the
//! Geom_ToroidalSurface torus.
//! See Also
//! gce_MakeTorus which provides functions for more
//! complex torus constructions
//! Geom_ToroidalSurface which provides additional
//! functions for constructing tori and works, in particular,
//! with the parametric equations of tori.
class gp_Torus 
{

public:

  DEFINE_STANDARD_ALLOC

  
  //! creates an indefinite Torus.
    gp_Torus();
  

  //! a torus centered on the origin of coordinate system
  //! A3, with major radius MajorRadius and minor radius
  //! MinorRadius, and with the reference plane defined
  //! by the origin, the "X Direction" and the "Y Direction" of A3.
  //! Warnings :
  //! It is not forbidden to create a torus with
  //! MajorRadius = MinorRadius = 0.0
  //! Raises ConstructionError if MinorRadius < 0.0 or if MajorRadius < 0.0
    gp_Torus(const gp_Ax3& A3, const Standard_Real MajorRadius, const Standard_Real MinorRadius);
  
  //! Modifies this torus, by redefining its local coordinate
  //! system so that:
  //! -   its origin and "main Direction" become those of the
  //! axis A1 (the "X Direction" and "Y Direction" are then recomputed).
  //! Raises ConstructionError if the direction of A1 is parallel to the "XDirection"
  //! of the coordinate system of the toroidal surface.
      void SetAxis (const gp_Ax1& A1) ;
  
  //! Changes the location of the torus.
      void SetLocation (const gp_Pnt& Loc) ;
  
  //! Assigns value to the major radius  of this torus.
  //! Raises ConstructionError if MajorRadius - MinorRadius <= Resolution()
      void SetMajorRadius (const Standard_Real MajorRadius) ;
  
  //! Assigns value to the  minor radius of this torus.
  //! Raises ConstructionError if MinorRadius < 0.0 or if
  //! MajorRadius - MinorRadius <= Resolution from gp.
      void SetMinorRadius (const Standard_Real MinorRadius) ;
  
  //! Changes the local coordinate system of the surface.
      void SetPosition (const gp_Ax3& A3) ;
  
  //! Computes the area of the torus.
      Standard_Real Area()  const;
  
  //! Reverses the   U   parametrization of   the  torus
  //! reversing the YAxis.
      void UReverse() ;
  
  //! Reverses the   V   parametrization of   the  torus
  //! reversing the ZAxis.
  Standard_EXPORT   void VReverse() ;
  
  //! returns true if the Ax3, the local coordinate system of this torus, is right handed.
      Standard_Boolean Direct()  const;
  
  //! returns the symmetry axis of the torus.
     const  gp_Ax1& Axis()  const;
  

  //! Computes the coefficients of the implicit equation of the surface
  //! in the absolute cartesian coordinate system :
  //! Coef(1) * X**4 + Coef(2) * Y**4 + Coef(3) * Z**4 +
  //! Coef(4) * X**3 * Y + Coef(5) * X**3 * Z + Coef(6) * Y**3 * X +
  //! Coef(7) * Y**3 * Z + Coef(8) * Z**3 * X + Coef(9) * Z**3 * Y +
  //! Coef(10) * X**2 * Y**2 + Coef(11) * X**2 * Z**2 +
  //! Coef(12) * Y**2 * Z**2 + Coef(13) * X**3 + Coef(14) * Y**3 +
  //! Coef(15) * Z**3 + Coef(16) * X**2 * Y + Coef(17) * X**2 * Z +
  //! Coef(18) * Y**2 * X + Coef(19) * Y**2 * Z + Coef(20) * Z**2 * X +
  //! Coef(21) * Z**2 * Y + Coef(22) * X**2 + Coef(23) * Y**2 +
  //! Coef(24) * Z**2 + Coef(25) * X * Y + Coef(26) * X * Z +
  //! Coef(27) * Y * Z + Coef(28) * X + Coef(29) * Y + Coef(30) *  Z +
  //! Coef(31) = 0.0
  //! Raises DimensionError if the length of Coef is lower than 31.
  Standard_EXPORT   void Coefficients (TColStd_Array1OfReal& Coef)  const;
  
  //! Returns the Torus's location.
     const  gp_Pnt& Location()  const;
  
  //! Returns the local coordinates system of the torus.
     const  gp_Ax3& Position()  const;
  
  //! returns the major radius of the torus.
      Standard_Real MajorRadius()  const;
  
  //! returns the minor radius of the torus.
      Standard_Real MinorRadius()  const;
  
  //! Computes the volume of the torus.
      Standard_Real Volume()  const;
  
  //! returns the axis X of the torus.
      gp_Ax1 XAxis()  const;
  
  //! returns the axis Y of the torus.
      gp_Ax1 YAxis()  const;
  
  Standard_EXPORT   void Mirror (const gp_Pnt& P) ;
  

  //! Performs the symmetrical transformation of a torus
  //! with respect to the point P which is the center of the
  //! symmetry.
  Standard_EXPORT   gp_Torus Mirrored (const gp_Pnt& P)  const;
  
  Standard_EXPORT   void Mirror (const gp_Ax1& A1) ;
  

  //! Performs the symmetrical transformation of a torus with
  //! respect to an axis placement which is the axis of the
  //! symmetry.
  Standard_EXPORT   gp_Torus Mirrored (const gp_Ax1& A1)  const;
  
  Standard_EXPORT   void Mirror (const gp_Ax2& A2) ;
  

  //! Performs the symmetrical transformation of a torus with respect
  //! to a plane. The axis placement A2 locates the plane of the
  //! of the symmetry : (Location, XDirection, YDirection).
  Standard_EXPORT   gp_Torus Mirrored (const gp_Ax2& A2)  const;
  
      void Rotate (const gp_Ax1& A1, const Standard_Real Ang) ;
  

  //! Rotates a torus. A1 is the axis of the rotation.
  //! Ang is the angular value of the rotation in radians.
      gp_Torus Rotated (const gp_Ax1& A1, const Standard_Real Ang)  const;
  
      void Scale (const gp_Pnt& P, const Standard_Real S) ;
  

  //! Scales a torus. S is the scaling value.
  //! The absolute value of S is used to scale the torus
      gp_Torus Scaled (const gp_Pnt& P, const Standard_Real S)  const;
  
      void Transform (const gp_Trsf& T) ;
  

  //! Transforms a torus with the transformation T from class Trsf.
      gp_Torus Transformed (const gp_Trsf& T)  const;
  
      void Translate (const gp_Vec& V) ;
  

  //! Translates a torus in the direction of the vector V.
  //! The magnitude of the translation is the vector's magnitude.
      gp_Torus Translated (const gp_Vec& V)  const;
  
      void Translate (const gp_Pnt& P1, const gp_Pnt& P2) ;
  

  //! Translates a torus from the point P1 to the point P2.
      gp_Torus Translated (const gp_Pnt& P1, const gp_Pnt& P2)  const;
    const gp_Ax3& _CSFDB_Getgp_Toruspos() const { return pos; }
    Standard_Real _CSFDB_Getgp_TorusmajorRadius() const { return majorRadius; }
    void _CSFDB_Setgp_TorusmajorRadius(const Standard_Real p) { majorRadius = p; }
    Standard_Real _CSFDB_Getgp_TorusminorRadius() const { return minorRadius; }
    void _CSFDB_Setgp_TorusminorRadius(const Standard_Real p) { minorRadius = p; }



protected:




private: 


  gp_Ax3 pos;
  Standard_Real majorRadius;
  Standard_Real minorRadius;


};


#include <gp_Torus.lxx>





#endif // _gp_Torus_HeaderFile