This file is indexed.

/usr/include/oce/math_Recipes.hxx is in liboce-foundation-dev 0.18.2-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.

#ifndef math_Recipes_HeaderFile
#define math_Recipes_HeaderFile

#include <Standard_Boolean.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Real.hxx>

#ifndef __math_API
# if defined(WNT) && !defined(HAVE_NO_DLL)
#  ifdef __math_DLL
#   define __math_API __declspec( dllexport )
#  else
#   define __math_API __declspec( dllimport )
#  endif  /* __math_DLL */
# else
#  define __math_API
# endif  /* WNT */
#endif  /* __math_API */

class math_IntegerVector;
class math_Vector;
class math_Matrix;


const Standard_Integer math_Status_OK                  = 0;
const Standard_Integer math_Status_SingularMatrix      = 1;
const Standard_Integer math_Status_ArgumentError       = 2;
const Standard_Integer math_Status_NoConvergence       = 3;

__math_API Standard_Integer  LU_Decompose(math_Matrix& a, 
					  math_IntegerVector& indx, 
					  Standard_Real&   d,
					  Standard_Real    TINY = 1.0e-20);

// Given a matrix a(1..n, 1..n), this routine computes its LU decomposition, 
// The matrix a is replaced by this LU decomposition and the vector indx(1..n)
// is an output which records the row permutation effected by the partial
// pivoting; d is output as +1 or -1 depending on wether the number of row
// interchanges was even or odd.

__math_API Standard_Integer LU_Decompose(math_Matrix& a, 
					 math_IntegerVector& indx, 
					 Standard_Real&   d, 
					 math_Vector& vv,
					 Standard_Real    TINY = 1.0e-30);

// Idem to the previous LU_Decompose function. But the input Vector vv(1..n) is
// used internally as a scratch area.


__math_API void LU_Solve(const math_Matrix& a,
              const math_IntegerVector& indx, 
              math_Vector& b);

// Solves a * x = b for a vector x, where x is specified by a(1..n, 1..n),
// indx(1..n) as returned by LU_Decompose. n is the dimension of the 
// square matrix A. b(1..n) is the input right-hand side and will be 
// replaced by the solution vector.Neither a and indx are destroyed, so 
// the routine may be called sequentially with different b's.


__math_API Standard_Integer LU_Invert(math_Matrix& a);

// Given a matrix a(1..n, 1..n) this routine computes its inverse. The matrix
// a is replaced by its inverse.


__math_API Standard_Integer SVD_Decompose(math_Matrix& a,
					  math_Vector& w,                    
					  math_Matrix& v);

// Given a matrix a(1..m, 1..n), this routine computes its singular value 
// decomposition, a = u * w * transposed(v). The matrix u replaces a on 
// output. The diagonal matrix of singular values w is output as a vector 
// w(1..n). The matrix v is output as v(1..n, 1..n). m must be greater or
// equal to n; if it is smaller, then a should be filled up to square with
// zero rows.


__math_API Standard_Integer SVD_Decompose(math_Matrix& a,
					  math_Vector& w,
					  math_Matrix& v,
					  math_Vector& rv1);


// Idem to the previous LU_Decompose function. But the input Vector vv(1..m) 
// (the number of rows a(1..m, 1..n)) is used internally as a scratch area.


__math_API void SVD_Solve(const math_Matrix& u,
			  const math_Vector& w,
			  const math_Matrix& v,
			  const math_Vector& b,
			  math_Vector& x);

// Solves a * x = b for a vector x, where x is specified by u(1..m, 1..n),
// w(1..n), v(1..n, 1..n) as returned by SVD_Decompose. m and n are the 
// dimensions of A, and will be equal for square matrices. b(1..m) is the 
// input right-hand side. x(1..n) is the output solution vector.
// No input quantities are destroyed, so the routine may be called 
// sequentially with different b's.



__math_API Standard_Integer DACTCL_Decompose(math_Vector& a, const math_IntegerVector& indx,
					     const Standard_Real MinPivot = 1.e-20);

// Given a SYMMETRIC matrix a, this routine computes its 
// LU decomposition. 
// a is given through a vector of its non zero components of the upper
// triangular matrix.
// indx is the indice vector of the diagonal elements of a.
// a is replaced by its LU decomposition.
// The range of the matrix is n = indx.Length(), 
// and a.Length() = indx(n).



__math_API Standard_Integer DACTCL_Solve(const math_Vector& a, math_Vector& b, 
					 const math_IntegerVector& indx, 
					 const Standard_Real MinPivot = 1.e-20);

// Solves a * x = b for a vector x and a matrix a coming from DACTCL_Decompose.
// indx is the same vector as in DACTCL_Decompose.
// the vector b is replaced by the vector solution x.




__math_API Standard_Integer Jacobi(math_Matrix& a, math_Vector& d, math_Matrix& v, Standard_Integer& nrot);

// Computes all eigenvalues and eigenvectors of a real symmetric matrix
// a(1..n, 1..n). On output, elements of a above the diagonal are destroyed. 
// d(1..n) returns the eigenvalues of a. v(1..n, 1..n) is a matrix whose 
// columns contain, on output, the normalized eigenvectors of a. nrot returns
// the number of Jacobi rotations that were required.
// Eigenvalues are sorted into descending order, and eigenvectors are 
// arranges correspondingly.

#endif