/usr/include/oce/SelectMgr_Frustum.lxx is in liboce-visualization-dev 0.18.2-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | // Created on: 2015-03-16
// Created by: Varvara POSKONINA
// Copyright (c) 2005-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <NCollection_Vector.hxx>
#include <Poly_Array1OfTriangle.hxx>
#include <Standard_Assert.hxx>
// =======================================================================
// function : isSeparated
// purpose : Checks if AABB and frustum are separated along the given axis.
// =======================================================================
template <int N>
Standard_Boolean SelectMgr_Frustum<N>::isSeparated (const SelectMgr_Vec3& theBoxMin,
const SelectMgr_Vec3& theBoxMax,
const gp_XYZ& theDirect,
Standard_Boolean* theInside) const
{
const Standard_Real aMinB =
theDirect.X() * (theDirect.X() < 0.0 ? theBoxMax.x() : theBoxMin.x()) +
theDirect.Y() * (theDirect.Y() < 0.0 ? theBoxMax.y() : theBoxMin.y()) +
theDirect.Z() * (theDirect.Z() < 0.0 ? theBoxMax.z() : theBoxMin.z());
const Standard_Real aMaxB =
theDirect.X() * (theDirect.X() < 0.0 ? theBoxMin.x() : theBoxMax.x()) +
theDirect.Y() * (theDirect.Y() < 0.0 ? theBoxMin.y() : theBoxMax.y()) +
theDirect.Z() * (theDirect.Z() < 0.0 ? theBoxMin.z() : theBoxMax.z());
Standard_ASSERT_RAISE (aMaxB >= aMinB, "Error! Failed to project box");
// frustum projection
Standard_Real aMinF = DBL_MAX;
Standard_Real aMaxF = -DBL_MAX;
for (Standard_Integer aVertIdx = 0; aVertIdx < N * 2; ++aVertIdx)
{
const Standard_Real aProj = myVertices[aVertIdx].XYZ().Dot (theDirect);
aMinF = Min (aMinF, aProj);
aMaxF = Max (aMaxF, aProj);
if (aMinF <= aMaxB && aMaxF >= aMinB)
{
if (theInside == NULL || !(*theInside)) // only overlap test
{
return Standard_False;
}
}
}
if (aMinF > aMaxB || aMaxF < aMinB)
{
return Standard_True; // fully separated
}
else if (theInside != NULL) // to check for inclusion?
{
*theInside &= aMinB >= aMinF && aMaxB <= aMaxF;
}
return Standard_False;
}
// =======================================================================
// function : isSeparated
// purpose : Checks if triangle and frustum are separated along the
// given axis
// =======================================================================
template <int N>
Standard_Boolean SelectMgr_Frustum<N>::isSeparated (const gp_Pnt& thePnt1,
const gp_Pnt& thePnt2,
const gp_Pnt& thePnt3,
const gp_XYZ& theAxis) const
{
// frustum projection
Standard_Real aMinF = RealLast();
Standard_Real aMaxF = RealFirst();
// triangle projection
Standard_Real aMinTr = RealLast();
Standard_Real aMaxTr = RealFirst();
Standard_Real aTriangleProj;
aTriangleProj = theAxis.Dot (thePnt1.XYZ());
aMinTr = Min (aMinTr, aTriangleProj);
aMaxTr = Max (aMaxTr, aTriangleProj);
aTriangleProj = theAxis.Dot (thePnt2.XYZ());
aMinTr = Min (aMinTr, aTriangleProj);
aMaxTr = Max (aMaxTr, aTriangleProj);
aTriangleProj = theAxis.Dot (thePnt3.XYZ());
aMinTr = Min (aMinTr, aTriangleProj);
aMaxTr = Max (aMaxTr, aTriangleProj);
for (Standard_Integer aVertIter = 0; aVertIter < N * 2; ++aVertIter)
{
const Standard_Real aProj = myVertices[aVertIter].XYZ().Dot (theAxis);
aMinF = Min (aMinF, aProj);
aMaxF = Max (aMaxF, aProj);
if (aMinF <= aMaxTr && aMaxF >= aMinTr)
{
return Standard_False;
}
}
return aMinF > aMaxTr || aMaxF < aMinTr;
}
// =======================================================================
// function : hasOverlap
// purpose : Returns true if selecting volume is overlapped by
// axis-aligned bounding box with minimum corner at point
// theMinPnt and maximum at point theMaxPnt
// =======================================================================
template <int N>
Standard_Boolean SelectMgr_Frustum<N>::hasOverlap (const SelectMgr_Vec3& theMinPnt,
const SelectMgr_Vec3& theMaxPnt,
Standard_Boolean* theInside)
{
for (Standard_Integer anAxis = 0; anAxis < 3; ++anAxis)
{
if (theMinPnt[anAxis] > myMaxOrthoVertsProjections[anAxis]
|| theMaxPnt[anAxis] < myMinOrthoVertsProjections[anAxis])
{
return Standard_False; // fully separated
}
else if (theInside != NULL) // to check for inclusion?
{
*theInside &= theMinPnt[anAxis] >= myMinOrthoVertsProjections[anAxis]
&& theMaxPnt[anAxis] <= myMaxOrthoVertsProjections[anAxis];
}
}
const Standard_Integer anIncFactor = (myIsOrthographic && N == 4) ? 2 : 1;
for (Standard_Integer aPlaneIdx = 0; aPlaneIdx < N + 1; aPlaneIdx += anIncFactor)
{
const gp_XYZ& aPlane = myPlanes[aPlaneIdx].XYZ();
const Standard_Real aBoxProjMin =
aPlane.X() * (aPlane.X() < 0.f ? theMaxPnt.x() : theMinPnt.x()) +
aPlane.Y() * (aPlane.Y() < 0.f ? theMaxPnt.y() : theMinPnt.y()) +
aPlane.Z() * (aPlane.Z() < 0.f ? theMaxPnt.z() : theMinPnt.z());
const Standard_Real aBoxProjMax =
aPlane.X() * (aPlane.X() < 0.f ? theMinPnt.x() : theMaxPnt.x()) +
aPlane.Y() * (aPlane.Y() < 0.f ? theMinPnt.y() : theMaxPnt.y()) +
aPlane.Z() * (aPlane.Z() < 0.f ? theMinPnt.z() : theMaxPnt.z());
Standard_ASSERT_RAISE (aBoxProjMax >= aBoxProjMin, "Error! Failed to project box");
if (aBoxProjMin > myMaxVertsProjections[aPlaneIdx]
|| aBoxProjMax < myMinVertsProjections[aPlaneIdx])
{
return Standard_False; // fully separated
}
else if (theInside != NULL) // to check for inclusion?
{
*theInside &= aBoxProjMin >= myMinVertsProjections[aPlaneIdx]
&& aBoxProjMax <= myMaxVertsProjections[aPlaneIdx];
}
}
for (Standard_Integer aDim = 0; aDim < 3; ++aDim)
{
// the following code performs a speedup of cross-product
// of vector with 1.0 at the position aDim and myEdgeDirs[aVolDir]
const Standard_Integer aNext = (aDim + 1) % 3;
const Standard_Integer aNextNext = (aDim + 2) % 3;
for (Standard_Integer aVolDir = 0, aDirectionsNb = myIsOrthographic ? 4 : 6; aVolDir < aDirectionsNb; ++aVolDir)
{
gp_XYZ aDirection (DBL_MAX, DBL_MAX, DBL_MAX);
aDirection.ChangeData()[aDim] = 0;
aDirection.ChangeData()[aNext] = -myEdgeDirs[aVolDir].XYZ().GetData()[aNextNext];
aDirection.ChangeData()[aNextNext] = myEdgeDirs[aVolDir].XYZ().GetData()[aNext];
if (isSeparated (theMinPnt, theMaxPnt, aDirection, theInside))
{
return Standard_False;
}
}
}
return Standard_True;
}
// =======================================================================
// function : hasOverlap
// purpose : SAT intersection test between defined volume and given point
// =======================================================================
template <int N>
Standard_Boolean SelectMgr_Frustum<N>::hasOverlap (const gp_Pnt& thePnt)
{
const Standard_Integer anIncFactor = (myIsOrthographic && N == 4) ? 2 : 1;
for (Standard_Integer aPlaneIdx = 0; aPlaneIdx < N + 1; aPlaneIdx += anIncFactor)
{
const Standard_Real aPointProj = myPlanes[aPlaneIdx].XYZ().Dot (thePnt.XYZ());
if (aPointProj > myMaxVertsProjections[aPlaneIdx]
|| aPointProj < myMinVertsProjections[aPlaneIdx])
{
return Standard_False;
}
}
return Standard_True;
}
// =======================================================================
// function : hasOverlap
// purpose : SAT intersection test between defined volume and given segment
// =======================================================================
template <int N>
Standard_Boolean SelectMgr_Frustum<N>::hasOverlap (const gp_Pnt& theStartPnt,
const gp_Pnt& theEndPnt)
{
const gp_XYZ& aDir = theEndPnt.XYZ() - theStartPnt.XYZ();
if (aDir.Modulus() < Precision::Confusion())
return Standard_True;
const Standard_Integer anIncFactor = (myIsOrthographic && N == 4) ? 2 : 1;
for (Standard_Integer aPlaneIdx = 0; aPlaneIdx < N + 1; aPlaneIdx += anIncFactor)
{
Standard_Real aMinSegm = RealLast(), aMaxSegm = RealFirst();
Standard_Real aMinF = RealLast(), aMaxF = RealFirst();
Standard_Real aProj1 = myPlanes[aPlaneIdx].XYZ().Dot (theStartPnt.XYZ());
Standard_Real aProj2 = myPlanes[aPlaneIdx].XYZ().Dot (theEndPnt.XYZ());
aMinSegm = Min (aProj1, aProj2);
aMaxSegm = Max (aProj1, aProj2);
aMaxF = myMaxVertsProjections[aPlaneIdx];
aMinF = myMinVertsProjections[aPlaneIdx];
if (aMinSegm > aMaxF
|| aMaxSegm < aMinF)
{
return Standard_False;
}
}
Standard_Real aMin1 = DBL_MAX, aMax1 = -DBL_MAX;
Standard_Real aMin2 = DBL_MAX, aMax2 = -DBL_MAX;
for (Standard_Integer aVertIdx = 0; aVertIdx < N * 2; ++aVertIdx)
{
Standard_Real aProjection = aDir.Dot (myVertices[aVertIdx].XYZ());
aMax2 = Max (aMax2, aProjection);
aMin2 = Min (aMin2, aProjection);
}
Standard_Real aProj1 = aDir.Dot (theStartPnt.XYZ());
Standard_Real aProj2 = aDir.Dot (theEndPnt.XYZ());
aMin1 = Min (aProj1, aProj2);
aMax1 = Max (aProj1, aProj2);
if (aMin1 > aMax2
|| aMax1 < aMin2)
{
return Standard_False;
}
Standard_Integer aDirectionsNb = myIsOrthographic ? 4 : 6;
for (Standard_Integer aEdgeDirIdx = 0; aEdgeDirIdx < aDirectionsNb; ++aEdgeDirIdx)
{
Standard_Real aMinSegm = DBL_MAX, aMaxSegm = -DBL_MAX;
Standard_Real aMinF = DBL_MAX, aMaxF = -DBL_MAX;
const gp_XYZ aTestDir = aDir.Crossed (myEdgeDirs[aEdgeDirIdx].XYZ());
Standard_Real Proj1 = aTestDir.Dot (theStartPnt.XYZ());
Standard_Real Proj2 = aTestDir.Dot (theEndPnt.XYZ());
aMinSegm = Min (Proj1, Proj2);
aMaxSegm = Max (Proj1, Proj2);
for (Standard_Integer aVertIdx = 0; aVertIdx < N * 2; ++aVertIdx)
{
Standard_Real aProjection = aTestDir.Dot (myVertices[aVertIdx].XYZ());
aMaxF = Max (aMaxF, aProjection);
aMinF = Min (aMinF, aProjection);
}
if (aMinSegm > aMaxF
|| aMaxSegm < aMinF)
{
return Standard_False;
}
}
return Standard_True;
}
// =======================================================================
// function : hasOverlap
// purpose : SAT intersection test between frustum given and planar convex
// polygon represented as ordered point set
// =======================================================================
template <int N>
Standard_Boolean SelectMgr_Frustum<N>::hasOverlap (const Handle(TColgp_HArray1OfPnt)& theArrayOfPnts,
gp_Vec& theNormal)
{
Standard_Integer aStartIdx = theArrayOfPnts->Lower();
Standard_Integer anEndIdx = theArrayOfPnts->Upper();
const gp_XYZ& aPnt1 = theArrayOfPnts->Value (aStartIdx).XYZ();
const gp_XYZ& aPnt2 = theArrayOfPnts->Value (aStartIdx + 1).XYZ();
const gp_XYZ& aPnt3 = theArrayOfPnts->Value (aStartIdx + 2).XYZ();
const gp_XYZ aVec1 = aPnt1 - aPnt2;
const gp_XYZ aVec2 = aPnt3 - aPnt2;
theNormal = aVec2.Crossed (aVec1);
const gp_XYZ& aNormal = theNormal.XYZ();
Standard_Real aPolygProjection = aNormal.Dot (aPnt1);
Standard_Real aMax = RealFirst();
Standard_Real aMin = RealLast();
for (Standard_Integer aVertIdx = 0; aVertIdx < N * 2; ++aVertIdx)
{
Standard_Real aProjection = aNormal.Dot (myVertices[aVertIdx].XYZ());
aMax = Max (aMax, aProjection);
aMin = Min (aMin, aProjection);
}
if (aPolygProjection > aMax
|| aPolygProjection < aMin)
{
return Standard_False;
}
const Standard_Integer anIncFactor = (myIsOrthographic && N == 4) ? 2 : 1;
for (Standard_Integer aPlaneIdx = 0; aPlaneIdx < N + 1; aPlaneIdx += anIncFactor)
{
Standard_Real aMaxF = RealFirst();
Standard_Real aMinF = RealLast();
Standard_Real aMaxPolyg = RealFirst();
Standard_Real aMinPolyg = RealLast();
const gp_XYZ& aPlane = myPlanes[aPlaneIdx].XYZ();
for (Standard_Integer aPntIter = aStartIdx; aPntIter <= anEndIdx; ++aPntIter)
{
Standard_Real aProjection = aPlane.Dot (theArrayOfPnts->Value (aPntIter).XYZ());
aMaxPolyg = Max (aMaxPolyg, aProjection);
aMinPolyg = Min (aMinPolyg, aProjection);
}
aMaxF = myMaxVertsProjections[aPlaneIdx];
aMinF = myMinVertsProjections[aPlaneIdx];
if (aMinPolyg > aMaxF
|| aMaxPolyg < aMinF)
{
return Standard_False;
}
}
Standard_Integer aDirectionsNb = myIsOrthographic ? 4 : 6;
for (Standard_Integer aPntsIter = 0, aLastIdx = anEndIdx - aStartIdx, aLen = theArrayOfPnts->Length(); aPntsIter <= aLastIdx; ++aPntsIter)
{
const gp_XYZ aSegmDir = theArrayOfPnts->Value ((aPntsIter + 1) % aLen + aStartIdx).XYZ()
- theArrayOfPnts->Value (aPntsIter + aStartIdx).XYZ();
for (Standard_Integer aVolDir = 0; aVolDir < aDirectionsNb; ++aVolDir)
{
Standard_Real aMaxPolyg = RealFirst();
Standard_Real aMinPolyg = RealLast();
Standard_Real aMaxF = RealFirst();
Standard_Real aMinF = RealLast();
const gp_XYZ aTestDir = aSegmDir.Crossed (myEdgeDirs[aVolDir].XYZ());
for (Standard_Integer aPntIter = aStartIdx; aPntIter <= anEndIdx; ++aPntIter)
{
Standard_Real aProjection = aTestDir.Dot (theArrayOfPnts->Value (aPntIter).XYZ());
aMaxPolyg = Max (aMaxPolyg, aProjection);
aMinPolyg = Min (aMinPolyg, aProjection);
}
for (Standard_Integer aVertIdx = 0; aVertIdx < N * 2; ++aVertIdx)
{
Standard_Real aProjection = aTestDir.Dot (myVertices[aVertIdx].XYZ());
aMaxF = Max (aMaxF, aProjection);
aMinF = Min (aMinF, aProjection);
}
if (aMinPolyg > aMaxF
|| aMaxPolyg < aMinF)
{
return Standard_False;
}
}
}
return Standard_True;
}
// =======================================================================
// function : hasOverlap
// purpose : SAT intersection test between defined volume and given triangle
// =======================================================================
template <int N>
Standard_Boolean SelectMgr_Frustum<N>::hasOverlap (const gp_Pnt& thePnt1,
const gp_Pnt& thePnt2,
const gp_Pnt& thePnt3,
gp_Vec& theNormal)
{
const gp_XYZ aTrEdges[3] = { thePnt2.XYZ() - thePnt1.XYZ(),
thePnt3.XYZ() - thePnt2.XYZ(),
thePnt1.XYZ() - thePnt3.XYZ() };
const Standard_Integer anIncFactor = (myIsOrthographic && N == 4) ? 2 : 1;
for (Standard_Integer aPlaneIdx = 0; aPlaneIdx < N + 1; aPlaneIdx += anIncFactor)
{
const gp_XYZ& aPlane = myPlanes[aPlaneIdx].XYZ();
Standard_Real aTriangleProj;
aTriangleProj = aPlane.Dot (thePnt1.XYZ());
Standard_Real aTriangleProjMin = aTriangleProj;
Standard_Real aTriangleProjMax = aTriangleProj;
aTriangleProj = aPlane.Dot (thePnt2.XYZ());
aTriangleProjMin = Min (aTriangleProjMin, aTriangleProj);
aTriangleProjMax = Max (aTriangleProjMax, aTriangleProj);
aTriangleProj = aPlane.Dot (thePnt3.XYZ());
aTriangleProjMin = Min (aTriangleProjMin, aTriangleProj);
aTriangleProjMax = Max (aTriangleProjMax, aTriangleProj);
Standard_Real aFrustumProjMax = myMaxVertsProjections[aPlaneIdx];
Standard_Real aFrustumProjMin = myMinVertsProjections[aPlaneIdx];
if (aTriangleProjMin > aFrustumProjMax
|| aTriangleProjMax < aFrustumProjMin)
{
return Standard_False;
}
}
theNormal = aTrEdges[2].Crossed (aTrEdges[0]);
if (isSeparated (thePnt1, thePnt2, thePnt3, theNormal.XYZ()))
{
return Standard_False;
}
Standard_Integer aDirectionsNb = myIsOrthographic ? 4 : 6;
for (Standard_Integer aTriangleEdgeIdx = 0; aTriangleEdgeIdx < 3; ++aTriangleEdgeIdx)
{
for (Standard_Integer aVolDir = 0; aVolDir < aDirectionsNb; ++aVolDir)
{
const gp_XYZ& aTestDirection = myEdgeDirs[aVolDir].XYZ().Crossed (aTrEdges[aTriangleEdgeIdx]);
if (isSeparated (thePnt1, thePnt2, thePnt3, aTestDirection))
{
return Standard_False;
}
}
}
return Standard_True;
}
|