This file is indexed.

/usr/share/oce-0.18/src/Shaders/RaytraceBase.fs is in liboce-visualization11 0.18.2-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
#ifdef USE_TEXTURES
  #extension GL_ARB_bindless_texture : require
#endif

//! Normalized pixel coordinates.
in vec2 vPixel;

//! Sub-pixel offset in X direction for FSAA.
uniform float uOffsetX = 0.f;
//! Sub-pixel offset in Y direction for FSAA.
uniform float uOffsetY = 0.f;

//! Origin of viewing ray in left-top corner.
uniform vec3 uOriginLT;
//! Origin of viewing ray in left-bottom corner.
uniform vec3 uOriginLB;
//! Origin of viewing ray in right-top corner.
uniform vec3 uOriginRT;
//! Origin of viewing ray in right-bottom corner.
uniform vec3 uOriginRB;

//! Width of the rendering window.
uniform int uWinSizeX;
//! Height of the rendering window.
uniform int uWinSizeY;

//! Direction of viewing ray in left-top corner.
uniform vec3 uDirectLT;
//! Direction of viewing ray in left-bottom corner.
uniform vec3 uDirectLB;
//! Direction of viewing ray in right-top corner.
uniform vec3 uDirectRT;
//! Direction of viewing ray in right-bottom corner.
uniform vec3 uDirectRB;

//! Inverse model-view-projection matrix.
uniform mat4 uUnviewMat;

//! Texture buffer of data records of bottom-level BVH nodes.
uniform isamplerBuffer uSceneNodeInfoTexture;
//! Texture buffer of minimum points of bottom-level BVH nodes.
uniform samplerBuffer uSceneMinPointTexture;
//! Texture buffer of maximum points of bottom-level BVH nodes.
uniform samplerBuffer uSceneMaxPointTexture;
//! Texture buffer of transformations of high-level BVH nodes.
uniform samplerBuffer uSceneTransformTexture;

//! Texture buffer of vertex coords.
uniform samplerBuffer uGeometryVertexTexture;
//! Texture buffer of vertex normals.
uniform samplerBuffer uGeometryNormalTexture;
#ifdef USE_TEXTURES
  //! Texture buffer of per-vertex UV-coordinates.
  uniform samplerBuffer uGeometryTexCrdTexture;
#endif
//! Texture buffer of triangle indices.
uniform isamplerBuffer uGeometryTriangTexture;

//! Texture buffer of material properties.
uniform samplerBuffer uRaytraceMaterialTexture;
//! Texture buffer of light source properties.
uniform samplerBuffer uRaytraceLightSrcTexture;
//! Environment map texture.
uniform sampler2D uEnvironmentMapTexture;

//! Input pre-raytracing image rendered by OpenGL.
uniform sampler2D uOpenGlColorTexture;
//! Input pre-raytracing depth image rendered by OpenGL.
uniform sampler2D uOpenGlDepthTexture;

//! Total number of light sources.
uniform int uLightCount;
//! Intensity of global ambient light.
uniform vec4 uGlobalAmbient;

//! Enables/disables environment map.
uniform int uEnvironmentEnable;
//! Enables/disables computation of shadows.
uniform int uShadowsEnable;
//! Enables/disables computation of reflections.
uniform int uReflectionsEnable;

//! Radius of bounding sphere of the scene.
uniform float uSceneRadius;
//! Scene epsilon to prevent self-intersections.
uniform float uSceneEpsilon;

#ifdef USE_TEXTURES
  //! Unique 64-bit handles of OpenGL textures.
  uniform sampler2D uTextureSamplers[MAX_TEX_NUMBER];
#endif

/////////////////////////////////////////////////////////////////////////////////////////
// Specific data types
  
//! Stores ray parameters.
struct SRay
{
  vec3 Origin;
  
  vec3 Direct;
};

//! Stores intersection parameters.
struct SIntersect
{
  float Time;
  
  vec2 UV;
  
  vec3 Normal;
};

/////////////////////////////////////////////////////////////////////////////////////////
// Some useful constants

#define MAXFLOAT 1e15f

#define SMALL vec3 (exp2 (-80.0f))

#define ZERO vec3 (0.0f, 0.0f, 0.0f)
#define UNIT vec3 (1.0f, 1.0f, 1.0f)

#define AXIS_X vec3 (1.0f, 0.0f, 0.0f)
#define AXIS_Y vec3 (0.0f, 1.0f, 0.0f)
#define AXIS_Z vec3 (0.0f, 0.0f, 1.0f)

//! 32-bit state of random number generator.
uint RandState;

// =======================================================================
// function : SeedRand
// purpose  : Applies hash function by Thomas Wang to randomize seeds
//            (see http://www.burtleburtle.net/bob/hash/integer.html)
// =======================================================================
void SeedRand (in int theSeed)
{
  RandState = uint (int (gl_FragCoord.y) * uWinSizeX + int (gl_FragCoord.x) + theSeed);

  RandState = (RandState + 0x479ab41du) + (RandState <<  8);
  RandState = (RandState ^ 0xe4aa10ceu) ^ (RandState >>  5);
  RandState = (RandState + 0x9942f0a6u) - (RandState << 14);
  RandState = (RandState ^ 0x5aedd67du) ^ (RandState >>  3);
  RandState = (RandState + 0x17bea992u) + (RandState <<  7);
}

// =======================================================================
// function : RandInt
// purpose  : Generates integer using Xorshift algorithm by G. Marsaglia
// =======================================================================
uint RandInt()
{
  RandState ^= (RandState << 13);
  RandState ^= (RandState >> 17);
  RandState ^= (RandState <<  5);

  return RandState;
}

// =======================================================================
// function : RandFloat
// purpose  : Generates a random float in [0, 1) range
// =======================================================================
float RandFloat()
{
  return float (RandInt()) * (1.f / 4294967296.f);
}

// =======================================================================
// function : MatrixColMultiplyPnt
// purpose  : Multiplies a vector by matrix
// =======================================================================
vec3 MatrixColMultiplyPnt (in vec3 v,
                           in vec4 m0,
                           in vec4 m1,
                           in vec4 m2,
                           in vec4 m3)
{
  return vec3 (m0[0] * v.x + m1[0] * v.y + m2[0] * v.z + m3[0],
               m0[1] * v.x + m1[1] * v.y + m2[1] * v.z + m3[1],
               m0[2] * v.x + m1[2] * v.y + m2[2] * v.z + m3[2]);
}

// =======================================================================
// function : MatrixColMultiplyDir
// purpose  : Multiplies a vector by matrix
// =======================================================================
vec3 MatrixColMultiplyDir (in vec3 v,
                           in vec4 m0,
                           in vec4 m1,
                           in vec4 m2,
                           in vec4 m3)
{
  return vec3 (m0[0] * v.x + m1[0] * v.y + m2[0] * v.z,
               m0[1] * v.x + m1[1] * v.y + m2[1] * v.z,
               m0[2] * v.x + m1[2] * v.y + m2[2] * v.z);
}

/////////////////////////////////////////////////////////////////////////////////////////
// Functions for compute ray-object intersection

// =======================================================================
// function : GenerateRay
// purpose  :
// =======================================================================
SRay GenerateRay (in vec2 thePixel)
{
  vec3 aP0 = mix (uOriginLB, uOriginRB, thePixel.x);
  vec3 aP1 = mix (uOriginLT, uOriginRT, thePixel.x);

  vec3 aD0 = mix (uDirectLB, uDirectRB, thePixel.x);
  vec3 aD1 = mix (uDirectLT, uDirectRT, thePixel.x);

  vec3 aDirection = normalize (mix (aD0, aD1, thePixel.y));

  return SRay (mix (aP0, aP1, thePixel.y), aDirection);
}

// =======================================================================
// function : ComputeOpenGlDepth
// purpose  :
// =======================================================================
float ComputeOpenGlDepth (in SRay theRay)
{
  // a depth in range [0,1]
  float anOpenGlDepth = texelFetch (uOpenGlDepthTexture, ivec2 (gl_FragCoord.xy), 0).r;
  // pixel point in NDC-space [-1,1]
  vec4 aPoint = vec4 (2.0f * vPixel.x - 1.0f,
                      2.0f * vPixel.y - 1.0f,
                      2.0f * anOpenGlDepth - 1.0f,
                      1.0f);
  vec4 aFinal = uUnviewMat * aPoint;
  aFinal.xyz *= 1.f / aFinal.w;

  return (anOpenGlDepth < 1.f) ? length (aFinal.xyz - theRay.Origin) : MAXFLOAT;
}

// =======================================================================
// function : ComputeOpenGlColor
// purpose  :
// =======================================================================
vec4 ComputeOpenGlColor (in SRay theRay)
{
  vec4 anOpenGlColor = texelFetch (uOpenGlColorTexture, ivec2 (gl_FragCoord.xy), 0);
  // During blending with factors GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA (for text and markers)
  // the alpha channel (written in the color buffer) was squared.
  anOpenGlColor.a = 1.f - sqrt (anOpenGlColor.a);

  return anOpenGlColor;
}

// =======================================================================
// function : IntersectSphere
// purpose  : Computes ray-sphere intersection
// =======================================================================
float IntersectSphere (in SRay theRay, in float theRadius)
{
  float aDdotD = dot (theRay.Direct, theRay.Direct);
  float aDdotO = dot (theRay.Direct, theRay.Origin);
  float aOdotO = dot (theRay.Origin, theRay.Origin);

  float aD = aDdotO * aDdotO - aDdotD * (aOdotO - theRadius * theRadius);

  if (aD > 0.0f)
  {
    float aTime = (sqrt (aD) - aDdotO) * (1.0f / aDdotD);
    
    return aTime > 0.0f ? aTime : MAXFLOAT;
  }

  return MAXFLOAT;
}

// =======================================================================
// function : IntersectTriangle
// purpose  : Computes ray-triangle intersection (branchless version)
// =======================================================================
float IntersectTriangle (in SRay theRay,
                         in vec3 thePnt0,
                         in vec3 thePnt1,
                         in vec3 thePnt2,
                         out vec2 theUV,
                         out vec3 theNorm)
{
  vec3 aEdge0 = thePnt1 - thePnt0;
  vec3 aEdge1 = thePnt0 - thePnt2;

  theNorm = cross (aEdge1, aEdge0);

  vec3 aEdge2 = (1.0f / dot (theNorm, theRay.Direct)) * (thePnt0 - theRay.Origin);

  float aTime = dot (theNorm, aEdge2);

  vec3 theVec = cross (theRay.Direct, aEdge2);

  theUV.x = dot (theVec, aEdge1);
  theUV.y = dot (theVec, aEdge0);

  return bool (int(aTime >= 0.0f) &
               int(theUV.x >= 0.0f) &
               int(theUV.y >= 0.0f) &
               int(theUV.x + theUV.y <= 1.0f)) ? aTime : MAXFLOAT;
}

//! Identifies the absence of intersection.
#define INALID_HIT ivec4 (-1)

//! Global stack shared between traversal functions.
int Stack[STACK_SIZE];

// =======================================================================
// function : ObjectNearestHit
// purpose  : Finds intersection with nearest object triangle
// =======================================================================
ivec4 ObjectNearestHit (in int theBVHOffset, in int theVrtOffset, in int theTrgOffset,
  in SRay theRay, in vec3 theInverse, inout SIntersect theHit, in int theSentinel)
{
  int aHead = theSentinel;  // stack pointer
  int aNode = theBVHOffset; // node to visit

  ivec4 aTriIndex = INALID_HIT;

  bool toContinue = true;

  while (toContinue)
  {
    ivec3 aData = texelFetch (uSceneNodeInfoTexture, aNode).xyz;

    if (aData.x == 0) // if inner node
    {
      float aTimeOut;
      float aTimeLft;
      float aTimeRgh;

      aData.y += theBVHOffset;
      aData.z += theBVHOffset;

      vec3 aNodeMinLft = texelFetch (uSceneMinPointTexture, aData.y).xyz;
      vec3 aNodeMinRgh = texelFetch (uSceneMinPointTexture, aData.z).xyz;
      vec3 aNodeMaxLft = texelFetch (uSceneMaxPointTexture, aData.y).xyz;
      vec3 aNodeMaxRgh = texelFetch (uSceneMaxPointTexture, aData.z).xyz;

      vec3 aTime0 = (aNodeMinLft - theRay.Origin) * theInverse;
      vec3 aTime1 = (aNodeMaxLft - theRay.Origin) * theInverse;

      vec3 aTimeMax = max (aTime0, aTime1);
      vec3 aTimeMin = min (aTime0, aTime1);

      aTime0 = (aNodeMinRgh - theRay.Origin) * theInverse;
      aTime1 = (aNodeMaxRgh - theRay.Origin) * theInverse;

      aTimeOut = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
      aTimeLft = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));

      int aHitLft = int(aTimeLft <= aTimeOut) & int(aTimeOut >= 0.0f) & int(aTimeLft <= theHit.Time);

      aTimeMax = max (aTime0, aTime1);
      aTimeMin = min (aTime0, aTime1);

      aTimeOut = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
      aTimeRgh = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));

      int aHitRgh = int(aTimeRgh <= aTimeOut) & int(aTimeOut >= 0.0f) & int(aTimeRgh <= theHit.Time);

      if (bool(aHitLft & aHitRgh))
      {
        aNode = (aTimeLft < aTimeRgh) ? aData.y : aData.z;

        Stack[++aHead] = (aTimeLft < aTimeRgh) ? aData.z : aData.y;
      }
      else
      {
        if (bool(aHitLft | aHitRgh))
        {
          aNode = bool(aHitLft) ? aData.y : aData.z;
        }
        else
        {
          toContinue = (aHead != theSentinel);

          if (toContinue)
            aNode = Stack[aHead--];
        }
      }
    }
    else // if leaf node
    {
      vec3 aNormal;
      vec2 aParams;

      for (int anIdx = aData.y; anIdx <= aData.z; ++anIdx)
      {
        ivec4 aTriangle = texelFetch (uGeometryTriangTexture, anIdx + theTrgOffset);

        vec3 aPoint0 = texelFetch (uGeometryVertexTexture, aTriangle.x += theVrtOffset).xyz;
        vec3 aPoint1 = texelFetch (uGeometryVertexTexture, aTriangle.y += theVrtOffset).xyz;
        vec3 aPoint2 = texelFetch (uGeometryVertexTexture, aTriangle.z += theVrtOffset).xyz;

        float aTime = IntersectTriangle (theRay,
                                         aPoint0,
                                         aPoint1,
                                         aPoint2,
                                         aParams,
                                         aNormal);

        if (aTime < theHit.Time)
        {
          aTriIndex = aTriangle;

          theHit = SIntersect (aTime, aParams, aNormal);
        }
      }

      toContinue = (aHead != theSentinel);

      if (toContinue)
        aNode = Stack[aHead--];
    }
  }

  return aTriIndex;
}

#define MATERIAL_AMBN(index) (11 * index + 0)
#define MATERIAL_DIFF(index) (11 * index + 1)
#define MATERIAL_SPEC(index) (11 * index + 2)
#define MATERIAL_EMIS(index) (11 * index + 3)
#define MATERIAL_REFL(index) (11 * index + 4)
#define MATERIAL_REFR(index) (11 * index + 5)
#define MATERIAL_TRAN(index) (11 * index + 6)
#define MATERIAL_TRS1(index) (11 * index + 7)
#define MATERIAL_TRS2(index) (11 * index + 8)
#define MATERIAL_TRS3(index) (11 * index + 9)

// =======================================================================
// function : ObjectAnyHit
// purpose  : Finds intersection with any object triangle
// =======================================================================
float ObjectAnyHit (in int theBVHOffset, in int theVrtOffset, in int theTrgOffset,
  in SRay theRay, in vec3 theInverse, in float theDistance, in int theSentinel)
{
  int aHead = theSentinel;  // stack pointer
  int aNode = theBVHOffset; // node to visit

#ifdef TRANSPARENT_SHADOWS
  float aFactor = 1.0f;
#endif

  while (true)
  {
    ivec4 aData = texelFetch (uSceneNodeInfoTexture, aNode);

    if (aData.x == 0) // if inner node
    {
      float aTimeOut;
      float aTimeLft;
      float aTimeRgh;

      aData.y += theBVHOffset;
      aData.z += theBVHOffset;

      vec3 aNodeMinLft = texelFetch (uSceneMinPointTexture, aData.y).xyz;
      vec3 aNodeMaxLft = texelFetch (uSceneMaxPointTexture, aData.y).xyz;
      vec3 aNodeMinRgh = texelFetch (uSceneMinPointTexture, aData.z).xyz;
      vec3 aNodeMaxRgh = texelFetch (uSceneMaxPointTexture, aData.z).xyz;

      vec3 aTime0 = (aNodeMinLft - theRay.Origin) * theInverse;
      vec3 aTime1 = (aNodeMaxLft - theRay.Origin) * theInverse;

      vec3 aTimeMax = max (aTime0, aTime1);
      vec3 aTimeMin = min (aTime0, aTime1);

      aTime0 = (aNodeMinRgh - theRay.Origin) * theInverse;
      aTime1 = (aNodeMaxRgh - theRay.Origin) * theInverse;

      aTimeOut = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
      aTimeLft = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));

      int aHitLft = int(aTimeLft <= aTimeOut) & int(aTimeOut >= 0.0f) & int(aTimeLft <= theDistance);

      aTimeMax = max (aTime0, aTime1);
      aTimeMin = min (aTime0, aTime1);

      aTimeOut = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
      aTimeRgh = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));

      int aHitRgh = int(aTimeRgh <= aTimeOut) & int(aTimeOut >= 0.0f) & int(aTimeRgh <= theDistance);

      if (bool(aHitLft & aHitRgh))
      {
        aNode = (aTimeLft < aTimeRgh) ? aData.y : aData.z;

        Stack[++aHead] = (aTimeLft < aTimeRgh) ? aData.z : aData.y;
      }
      else
      {
        if (bool(aHitLft | aHitRgh))
        {
          aNode = bool(aHitLft) ? aData.y : aData.z;
        }
        else
        {
#ifdef TRANSPARENT_SHADOWS
          if (aHead == theSentinel)
            return aFactor;
#else
          if (aHead == theSentinel)
            return 1.0f;
#endif

          aNode = Stack[aHead--];
        }
      }
    }
    else // if leaf node
    {
      vec3 aNormal;
      vec2 aParams;

      for (int anIdx = aData.y; anIdx <= aData.z; ++anIdx)
      {
        ivec4 aTriangle = texelFetch (uGeometryTriangTexture, anIdx + theTrgOffset);

        vec3 aPoint0 = texelFetch (uGeometryVertexTexture, aTriangle.x + theVrtOffset).xyz;
        vec3 aPoint1 = texelFetch (uGeometryVertexTexture, aTriangle.y + theVrtOffset).xyz;
        vec3 aPoint2 = texelFetch (uGeometryVertexTexture, aTriangle.z + theVrtOffset).xyz;

        float aTime = IntersectTriangle (theRay,
                                         aPoint0,
                                         aPoint1,
                                         aPoint2,
                                         aParams,
                                         aNormal);

#ifdef TRANSPARENT_SHADOWS
        if (aTime < theDistance)
        {
          aFactor *= 1.0f - texelFetch (uRaytraceMaterialTexture, MATERIAL_TRAN (aTriangle.w)).x;
        }
#else
        if (aTime < theDistance)
          return 0.0f;
#endif
      }

#ifdef TRANSPARENT_SHADOWS
      if (aHead == theSentinel || aFactor < 0.1f)
        return aFactor;
#else
      if (aHead == theSentinel)
        return 1.0f;
#endif

      aNode = Stack[aHead--];
    }
  }

#ifdef TRANSPARENT_SHADOWS
  return aFactor;
#else
  return 1.0f;
#endif
}

// =======================================================================
// function : SceneNearestHit
// purpose  : Finds intersection with nearest scene triangle
// =======================================================================
ivec4 SceneNearestHit (in SRay theRay, in vec3 theInverse, inout SIntersect theHit, out int theObjectId)
{
  int aHead = -1; // stack pointer
  int aNode =  0; // node to visit

  ivec4 aHitObject = INALID_HIT;

  while (true)
  {
    ivec4 aData = texelFetch (uSceneNodeInfoTexture, aNode);

    if (aData.x != 0) // if leaf node
    {
      vec3 aNodeMin = texelFetch (uSceneMinPointTexture, aNode).xyz;
      vec3 aNodeMax = texelFetch (uSceneMaxPointTexture, aNode).xyz;

      vec3 aTime0 = (aNodeMin - theRay.Origin) * theInverse;
      vec3 aTime1 = (aNodeMax - theRay.Origin) * theInverse;

      vec3 aTimes = min (aTime0, aTime1);

      if (max (aTimes.x, max (aTimes.y, aTimes.z)) < theHit.Time)
      {
        // fetch object transformation
        int anObjectId = aData.x - 1;

        vec4 aInvTransf0 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 0);
        vec4 aInvTransf1 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 1);
        vec4 aInvTransf2 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 2);
        vec4 aInvTransf3 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 3);

        SRay aTrsfRay = SRay (
          MatrixColMultiplyPnt (theRay.Origin, aInvTransf0, aInvTransf1, aInvTransf2, aInvTransf3),
          MatrixColMultiplyDir (theRay.Direct, aInvTransf0, aInvTransf1, aInvTransf2, aInvTransf3));

        vec3 aTrsfInverse = 1.0f / max (abs (aTrsfRay.Direct), SMALL);

        aTrsfInverse = mix (-aTrsfInverse, aTrsfInverse, step (ZERO, aTrsfRay.Direct));

        ivec4 aTriIndex = ObjectNearestHit (
          aData.y, aData.z, aData.w, aTrsfRay, aTrsfInverse, theHit, aHead);

        if (aTriIndex.x != -1)
        {
          aHitObject = ivec4 (aTriIndex.x,  // vertex 0
                              aTriIndex.y,  // vertex 1
                              aTriIndex.z,  // vertex 2
                              aTriIndex.w); // material

          theObjectId = anObjectId;
        }
      }

      if (aHead < 0)
        return aHitObject;

      aNode = Stack[aHead--];
    }
    else // if inner node
    {
      float aTimeOut;
      float aTimeLft;
      float aTimeRgh;

      vec3 aNodeMinLft = texelFetch (uSceneMinPointTexture, aData.y).xyz;
      vec3 aNodeMaxLft = texelFetch (uSceneMaxPointTexture, aData.y).xyz;
      vec3 aNodeMinRgh = texelFetch (uSceneMinPointTexture, aData.z).xyz;
      vec3 aNodeMaxRgh = texelFetch (uSceneMaxPointTexture, aData.z).xyz;

      vec3 aTime0 = (aNodeMinLft - theRay.Origin) * theInverse;
      vec3 aTime1 = (aNodeMaxLft - theRay.Origin) * theInverse;

      vec3 aTimeMax = max (aTime0, aTime1);
      vec3 aTimeMin = min (aTime0, aTime1);

      aTimeOut = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
      aTimeLft = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));

      int aHitLft = int(aTimeLft <= aTimeOut) & int(aTimeOut >= 0.0f) & int(aTimeLft <= theHit.Time);

      aTime0 = (aNodeMinRgh - theRay.Origin) * theInverse;
      aTime1 = (aNodeMaxRgh - theRay.Origin) * theInverse;

      aTimeMax = max (aTime0, aTime1);
      aTimeMin = min (aTime0, aTime1);

      aTimeOut = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
      aTimeRgh = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));

      int aHitRgh = int(aTimeRgh <= aTimeOut) & int(aTimeOut >= 0.0f) & int(aTimeRgh <= theHit.Time);

      if (bool(aHitLft & aHitRgh))
      {
        aNode = (aTimeLft < aTimeRgh) ? aData.y : aData.z;

        Stack[++aHead] = (aTimeLft < aTimeRgh) ? aData.z : aData.y;
      }
      else
      {
        if (bool(aHitLft | aHitRgh))
        {
          aNode = bool(aHitLft) ? aData.y : aData.z;
        }
        else
        {
          if (aHead < 0)
            return aHitObject;

          aNode = Stack[aHead--];
        }
      }
    }
  }

  return aHitObject;
}

// =======================================================================
// function : SceneAnyHit
// purpose  : Finds intersection with any scene triangle
// =======================================================================
float SceneAnyHit (in SRay theRay, in vec3 theInverse, in float theDistance)
{
  int aHead = -1; // stack pointer
  int aNode =  0; // node to visit

#ifdef TRANSPARENT_SHADOWS
  float aFactor = 1.0f;
#endif

  while (true)
  {
    ivec4 aData = texelFetch (uSceneNodeInfoTexture, aNode);

    if (aData.x != 0) // if leaf node
    {
      // fetch object transformation
      int anObjectId = aData.x - 1;

      vec4 aInvTransf0 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 0);
      vec4 aInvTransf1 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 1);
      vec4 aInvTransf2 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 2);
      vec4 aInvTransf3 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 3);

      SRay aTrsfRay = SRay (
        MatrixColMultiplyPnt (theRay.Origin, aInvTransf0, aInvTransf1, aInvTransf2, aInvTransf3),
        MatrixColMultiplyDir (theRay.Direct, aInvTransf0, aInvTransf1, aInvTransf2, aInvTransf3));

      vec3 aTrsfInverse = 1.0f / max (abs (aTrsfRay.Direct), SMALL);

      aTrsfInverse = mix (-aTrsfInverse, aTrsfInverse, step (ZERO, aTrsfRay.Direct));

#ifdef TRANSPARENT_SHADOWS
      aFactor *= ObjectAnyHit (
        aData.y, aData.z, aData.w, aTrsfRay, aTrsfInverse, theDistance, aHead);

      if (aHead < 0 || aFactor < 0.1f)
        return aFactor;
#else
      bool isShadow = 0.0f == ObjectAnyHit (
        aData.y, aData.z, aData.w, aTrsfRay, aTrsfInverse, theDistance, aHead);

      if (aHead < 0 || isShadow)
        return isShadow ? 0.0f : 1.0f;
#endif

      aNode = Stack[aHead--];
    }
    else // if inner node
    {
      float aTimeOut;
      float aTimeLft;
      float aTimeRgh;

      vec3 aNodeMinLft = texelFetch (uSceneMinPointTexture, aData.y).xyz;
      vec3 aNodeMaxLft = texelFetch (uSceneMaxPointTexture, aData.y).xyz;
      vec3 aNodeMinRgh = texelFetch (uSceneMinPointTexture, aData.z).xyz;
      vec3 aNodeMaxRgh = texelFetch (uSceneMaxPointTexture, aData.z).xyz;
      
      vec3 aTime0 = (aNodeMinLft - theRay.Origin) * theInverse;
      vec3 aTime1 = (aNodeMaxLft - theRay.Origin) * theInverse;

      vec3 aTimeMax = max (aTime0, aTime1);
      vec3 aTimeMin = min (aTime0, aTime1);

      aTimeOut = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
      aTimeLft = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));

      int aHitLft = int(aTimeLft <= aTimeOut) & int(aTimeOut >= 0.0f) & int(aTimeLft <= theDistance);
      
      aTime0 = (aNodeMinRgh - theRay.Origin) * theInverse;
      aTime1 = (aNodeMaxRgh - theRay.Origin) * theInverse;

      aTimeMax = max (aTime0, aTime1);
      aTimeMin = min (aTime0, aTime1);

      aTimeOut = min (aTimeMax.x, min (aTimeMax.y, aTimeMax.z));
      aTimeRgh = max (aTimeMin.x, max (aTimeMin.y, aTimeMin.z));
      
      int aHitRgh = int(aTimeRgh <= aTimeOut) & int(aTimeOut >= 0.0f) & int(aTimeRgh <= theDistance);

      if (bool(aHitLft & aHitRgh))
      {
        aNode = (aTimeLft < aTimeRgh) ? aData.y : aData.z;

        Stack[++aHead] = (aTimeLft < aTimeRgh) ? aData.z : aData.y;
      }
      else
      {
        if (bool(aHitLft | aHitRgh))
        {
          aNode = bool(aHitLft) ? aData.y : aData.z;
        }
        else
        {
#ifdef TRANSPARENT_SHADOWS
          if (aHead < 0)
            return aFactor;
#else
          if (aHead < 0)
            return 1.0f;
#endif

          aNode = Stack[aHead--];
        }
      }
    }
  }

#ifdef TRANSPARENT_SHADOWS
  return aFactor;
#else
  return 1.0f;
#endif
}

#define PI 3.1415926f

// =======================================================================
// function : Latlong
// purpose  : Converts world direction to environment texture coordinates
// =======================================================================
vec2 Latlong (in vec3 thePoint, in float theRadius)
{
  float aPsi = acos (-thePoint.z / theRadius);

  float aPhi = atan (thePoint.y, thePoint.x) + PI;

  return vec2 (aPhi * 0.1591549f,
               aPsi * 0.3183098f);
}

// =======================================================================
// function : SmoothNormal
// purpose  : Interpolates normal across the triangle
// =======================================================================
vec3 SmoothNormal (in vec2 theUV, in ivec4 theTriangle)
{
  vec3 aNormal0 = texelFetch (uGeometryNormalTexture, theTriangle.x).xyz;
  vec3 aNormal1 = texelFetch (uGeometryNormalTexture, theTriangle.y).xyz;
  vec3 aNormal2 = texelFetch (uGeometryNormalTexture, theTriangle.z).xyz;

  return normalize (aNormal1 * theUV.x +
                    aNormal2 * theUV.y +
                    aNormal0 * (1.0f - theUV.x - theUV.y));
}

// =======================================================================
// function : SmoothUV
// purpose  : Interpolates UV coordinates across the triangle
// =======================================================================
#ifdef USE_TEXTURES
vec2 SmoothUV (in vec2 theUV, in ivec4 theTriangle)
{
  vec2 aTexCrd0 = texelFetch (uGeometryTexCrdTexture, theTriangle.x).st;
  vec2 aTexCrd1 = texelFetch (uGeometryTexCrdTexture, theTriangle.y).st;
  vec2 aTexCrd2 = texelFetch (uGeometryTexCrdTexture, theTriangle.z).st;

  return aTexCrd1 * theUV.x +
         aTexCrd2 * theUV.y +
         aTexCrd0 * (1.0f - theUV.x - theUV.y);
}
#endif

// =======================================================================
// function : Refract
// purpose  : Computes refraction ray (also handles TIR)
// =======================================================================
vec3 Refract (in vec3 theInput,
              in vec3 theNormal,
              in float theRefractIndex,
              in float theInvRefractIndex)
{
  float aNdotI = dot (theInput, theNormal);

  float anIndex = aNdotI < 0.0f
                ? theInvRefractIndex
                : theRefractIndex;

  float aSquare = anIndex * anIndex * (1.0f - aNdotI * aNdotI);

  if (aSquare > 1.0f)
  {
    return reflect (theInput, theNormal);
  }

  float aNdotT = sqrt (1.0f - aSquare);

  return normalize (anIndex * theInput -
    (anIndex * aNdotI + (aNdotI < 0.0f ? aNdotT : -aNdotT)) * theNormal);
}

#define MIN_SLOPE 0.0001f
#define EPS_SCALE 8.0000f

#define THRESHOLD vec3 (0.1f)

#define INVALID_BOUNCES 1000

#define LIGHT_POS(index) (2 * index + 1)
#define LIGHT_PWR(index) (2 * index + 0)

// =======================================================================
// function : Radiance
// purpose  : Computes color along the given ray
// =======================================================================
vec4 Radiance (in SRay theRay, in vec3 theInverse)
{
  vec3 aResult = vec3 (0.0f);
  vec4 aWeight = vec4 (1.0f);

  int anObjectId;

  float anOpenGlDepth = ComputeOpenGlDepth (theRay);

  for (int aDepth = 0; aDepth < NB_BOUNCES; ++aDepth)
  {
    SIntersect aHit = SIntersect (MAXFLOAT, vec2 (ZERO), ZERO);

    ivec4 aTriIndex = SceneNearestHit (theRay, theInverse, aHit, anObjectId);

    if (aTriIndex.x == -1)
    {
      vec4 aColor = vec4 (0.0f);

      if (aWeight.w != 0.0f)
      {
        aColor = anOpenGlDepth != MAXFLOAT ?
          ComputeOpenGlColor (theRay) : vec4 (0.0f, 0.0f, 0.0f, 1.0f);
      }
      else if (bool(uEnvironmentEnable))
      {
        float aTime = IntersectSphere (theRay, uSceneRadius);

        aColor = textureLod (uEnvironmentMapTexture, Latlong (
          theRay.Direct * aTime + theRay.Origin, uSceneRadius), 0.0f);
      }

      return vec4 (aResult.xyz + aWeight.xyz * aColor.xyz, aWeight.w * aColor.w);
    }

    vec3 aInvTransf0 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 0).xyz;
    vec3 aInvTransf1 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 1).xyz;
    vec3 aInvTransf2 = texelFetch (uSceneTransformTexture, anObjectId * 4 + 2).xyz;

    aHit.Normal = normalize (vec3 (dot (aInvTransf0, aHit.Normal),
                                   dot (aInvTransf1, aHit.Normal),
                                   dot (aInvTransf2, aHit.Normal)));

    // For polygons that are parallel to the screen plane, the depth slope
    // is equal to 1, resulting in small polygon offset. For polygons that
    // that are at a large angle to the screen, the depth slope tends to 1,
    // resulting in a larger polygon offset
    float aPolygonOffset = uSceneEpsilon * EPS_SCALE /
      max (abs (dot (theRay.Direct, aHit.Normal)), MIN_SLOPE);

    if (anOpenGlDepth < aHit.Time + aPolygonOffset)
    {
      vec4 aGlColor = ComputeOpenGlColor (theRay);

      aResult += aWeight.xyz * aGlColor.xyz;
      aWeight *= aGlColor.w;
    }

    theRay.Origin += theRay.Direct * aHit.Time; // intersection point

    vec3 aNormal = SmoothNormal (aHit.UV, aTriIndex);

    aNormal = normalize (vec3 (dot (aInvTransf0, aNormal),
                               dot (aInvTransf1, aNormal),
                               dot (aInvTransf2, aNormal)));

    vec3 aAmbient  = texelFetch (
      uRaytraceMaterialTexture, MATERIAL_AMBN (aTriIndex.w)).rgb;
    vec4 aDiffuse  = texelFetch (
      uRaytraceMaterialTexture, MATERIAL_DIFF (aTriIndex.w));
    vec4 aSpecular = texelFetch (
      uRaytraceMaterialTexture, MATERIAL_SPEC (aTriIndex.w));
    vec4 aOpacity  = texelFetch (
      uRaytraceMaterialTexture, MATERIAL_TRAN (aTriIndex.w));

#ifdef USE_TEXTURES
    if (aDiffuse.w >= 0.f)
    {
      vec4 aTexCoord = vec4 (SmoothUV (aHit.UV, aTriIndex), 0.f, 1.f);

      vec4 aTrsfRow1 = texelFetch (
        uRaytraceMaterialTexture, MATERIAL_TRS1 (aTriIndex.w));
      vec4 aTrsfRow2 = texelFetch (
        uRaytraceMaterialTexture, MATERIAL_TRS2 (aTriIndex.w));

      aTexCoord.st = vec2 (dot (aTrsfRow1, aTexCoord),
                           dot (aTrsfRow2, aTexCoord));

      vec3 aTexColor = textureLod (
        uTextureSamplers[int(aDiffuse.w)], aTexCoord.st, 0.f).rgb;

      aDiffuse.rgb *= aTexColor;
      aAmbient.rgb *= aTexColor;
    }
#endif

    vec3 aEmission = texelFetch (
      uRaytraceMaterialTexture, MATERIAL_EMIS (aTriIndex.w)).rgb;

    float aGeomFactor = dot (aNormal, theRay.Direct);

    aResult.xyz += aWeight.xyz * aOpacity.x * (
      uGlobalAmbient.xyz * aAmbient * max (abs (aGeomFactor), 0.5f) + aEmission);

    vec3 aSidedNormal = mix (aNormal, -aNormal, step (0.0f, aGeomFactor));

    for (int aLightIdx = 0; aLightIdx < uLightCount; ++aLightIdx)
    {
      vec4 aLight = texelFetch (
        uRaytraceLightSrcTexture, LIGHT_POS (aLightIdx));

      float aDistance = MAXFLOAT;

      if (aLight.w != 0.0f) // point light source
      {
        aDistance = length (aLight.xyz -= theRay.Origin);

        aLight.xyz *= 1.0f / aDistance;
      }

      float aLdotN = dot (aLight.xyz, aSidedNormal);

      if (aLdotN > 0.0f) // first check if light source is important
      {
        float aVisibility = 1.0f;

        if (bool(uShadowsEnable))
        {
          SRay aShadow = SRay (theRay.Origin, aLight.xyz);

          aShadow.Origin += uSceneEpsilon * (aLight.xyz +
            mix (-aHit.Normal, aHit.Normal, step (0.0f, dot (aHit.Normal, aLight.xyz))));

          vec3 aInverse = 1.0f / max (abs (aLight.xyz), SMALL);

          aVisibility = SceneAnyHit (
            aShadow, mix (-aInverse, aInverse, step (ZERO, aLight.xyz)), aDistance);
        }

        if (aVisibility > 0.0f)
        {
          vec3 aIntensity = vec3 (texelFetch (
            uRaytraceLightSrcTexture, LIGHT_PWR (aLightIdx)));

          float aRdotV = dot (reflect (aLight.xyz, aSidedNormal), theRay.Direct);

          aResult.xyz += aWeight.xyz * (aOpacity.x * aVisibility) * aIntensity *
            (aDiffuse.xyz * aLdotN + aSpecular.xyz * pow (max (0.f, aRdotV), aSpecular.w));
        }
      }
    }

    if (aOpacity.x != 1.0f)
    {
      aWeight *= aOpacity.y;

      if (aOpacity.z != 1.0f)
      {
        theRay.Direct = Refract (theRay.Direct, aNormal, aOpacity.z, aOpacity.w);
      }
      else
      {
        anOpenGlDepth -= aHit.Time + uSceneEpsilon;
      }
    }
    else
    {
      aWeight *= bool(uReflectionsEnable) ?
        texelFetch (uRaytraceMaterialTexture, MATERIAL_REFL (aTriIndex.w)) : vec4 (0.0f);

      vec3 aReflect = reflect (theRay.Direct, aNormal);

      if (dot (aReflect, aHit.Normal) * dot (theRay.Direct, aHit.Normal) > 0.0f)
      {
        aReflect = reflect (theRay.Direct, aHit.Normal);
      }

      theRay.Direct = aReflect;
    }

    if (all (lessThanEqual (aWeight.xyz, THRESHOLD)))
    {
      aDepth = INVALID_BOUNCES;
    }
    else if (aOpacity.x == 1.0f || aOpacity.z != 1.0f) // if no simple transparency
    {
      theRay.Origin += aHit.Normal * mix (
        -uSceneEpsilon, uSceneEpsilon, step (0.0f, dot (aHit.Normal, theRay.Direct)));

      theInverse = 1.0f / max (abs (theRay.Direct), SMALL);

      theInverse = mix (-theInverse, theInverse, step (ZERO, theRay.Direct));

      anOpenGlDepth = MAXFLOAT; // disable combining image with OpenGL output
    }

    theRay.Origin += theRay.Direct * uSceneEpsilon;
  }

  return vec4 (aResult.x,
               aResult.y,
               aResult.z,
               aWeight.w);
}