/usr/include/octave-4.2.2/octave/Array.h is in liboctave-dev 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 | // Template array classes
/*
Copyright (C) 1993-2017 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
Copyright (C) 2010 VZLU Prague
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#if ! defined (octave_Array_h)
#define octave_Array_h 1
#include "octave-config.h"
#include <cassert>
#include <cstddef>
#include <algorithm>
#include <iosfwd>
#include "dim-vector.h"
#include "idx-vector.h"
#include "lo-error.h"
#include "lo-traits.h"
#include "lo-utils.h"
#include "oct-sort.h"
#include "quit.h"
#include "oct-refcount.h"
//! N Dimensional Array with copy-on-write semantics.
/*!
The Array class is at the root of Octave. It provides a container
with an arbitrary number of dimensions. The operator () provides
access to individual elements via subscript and linear indexing.
Indexing starts at 0. Arrays are column-major order as in Fortran.
@code{.cc}
// 3 D Array with 10 rows, 20 columns, and 5 pages, filled with 7.0
Array<double> A Array<double (dim_vector (10, 20, 5), 7.0);
// set value for row 0, column 10, and page 3
A(0, 10, 3) = 2.5;
// get value for row 1, column 2, and page 0
double v = A(1, 2, 0);
// get value for 25th element (row 4, column 3, page 1)
double v = A(24);
@endcode
## Notes on STL compatibility
### size() and length()
To access the total number of elements in an Array, use numel()
which is short for number of elements and is equivalent to the
Octave function with same name.
@code{.cc}
Array<int> A (dim_vector (10, 20, 4), 1);
octave_idx_type n = A.numel (); // returns 800 (10x20x4)
octave_idx_type nr = A.size (0); // returns 10 (number of rows/dimension 0)
octave_idx_type nc = A.size (1); // returns 20 (number of columns)
octave_idx_type nc = A.size (2); // returns 4 (size of dimension 3)
octave_idx_type l6 = A.size (6); // returns 1 (implicit singleton dimension)
// Alternatively, get a dim_vector which represents the dimensions.
dim_vector dims = A.dims ();
@endcode
The methods size() and length() as they exist in the STL cause
confusion in the context of a N dimensional array.
The size() of an array is the length of all dimensions. In Octave,
the size() function returns a row vector with the length of each
dimension, or the size of a specific dimension. Only the latter is
present in liboctave.
Since there is more than 1 dimension, length() would not make sense
without expliciting which dimension. If the function existed, which
length should it return? Octave length() function returns the length
of the longest dimension which is an odd definition, only useful for
vectors and square matrices. The alternatives numel(), rows(),
columns(), and size(d) are more explict and recommended.
### size_type
Array::size_type is `octave_idx_type` which is a typedef for `int`
or `long int`, depending whether Octave was configured for 64-bit
indexing.
This is a signed integer which may cause problems when mixed with
STL containers. The reason is that Octave interacts with Fortran
routines, providing an interface many Fortran numeric libraries.
## Subclasses
The following subclasses specializations, will be of most use:
- Matrix: Array<double> with only 2 dimensions
- ComplexMatrix: Array<std::complex<double>> with only 2 dimensions
- boolNDArray: N dimensional Array<bool>
- ColumnVector: Array<double> with 1 column
- string_vector: Array<std::string> with 1 column
- Cell: Array<octave_value>, equivalent to an Octave cell.
*/
template <typename T>
class
Array
{
protected:
//! The real representation of all arrays.
class ArrayRep
{
public:
T *data;
octave_idx_type len;
octave_refcount<int> count;
ArrayRep (T *d, octave_idx_type l)
: data (new T [l]), len (l), count (1)
{
std::copy (d, d+l, data);
}
template <typename U>
ArrayRep (U *d, octave_idx_type l)
: data (new T [l]), len (l), count (1)
{
std::copy (d, d+l, data);
}
ArrayRep (void) : data (0), len (0), count (1) { }
explicit ArrayRep (octave_idx_type n)
: data (new T [n]), len (n), count (1) { }
explicit ArrayRep (octave_idx_type n, const T& val)
: data (new T [n]), len (n), count (1)
{
std::fill_n (data, n, val);
}
ArrayRep (const ArrayRep& a)
: data (new T [a.len]), len (a.len), count (1)
{
std::copy (a.data, a.data + a.len, data);
}
~ArrayRep (void) { delete [] data; }
octave_idx_type numel (void) const { return len; }
private:
// No assignment!
ArrayRep& operator = (const ArrayRep& a);
};
//--------------------------------------------------------------------
public:
void make_unique (void)
{
if (rep->count > 1)
{
ArrayRep *r = new ArrayRep (slice_data, slice_len);
if (--rep->count == 0)
delete rep;
rep = r;
slice_data = rep->data;
}
}
typedef T element_type;
typedef T value_type;
//! Used for operator(), and returned by numel() and size()
//! (beware: signed integer)
typedef octave_idx_type size_type;
typedef typename ref_param<T>::type crefT;
typedef bool (*compare_fcn_type) (typename ref_param<T>::type,
typename ref_param<T>::type);
protected:
dim_vector dimensions;
typename Array<T>::ArrayRep *rep;
// Rationale:
// slice_data is a pointer to rep->data, denoting together with slice_len the
// actual portion of the data referenced by this Array<T> object. This
// allows to make shallow copies not only of a whole array, but also of
// contiguous subranges. Every time rep is directly manipulated, slice_data
// and slice_len need to be properly updated.
T* slice_data;
octave_idx_type slice_len;
//! slice constructor
Array (const Array<T>& a, const dim_vector& dv,
octave_idx_type l, octave_idx_type u)
: dimensions (dv), rep(a.rep), slice_data (a.slice_data+l), slice_len (u-l)
{
rep->count++;
dimensions.chop_trailing_singletons ();
}
private:
static typename Array<T>::ArrayRep *nil_rep (void);
protected:
//! For jit support
Array (T *sdata, octave_idx_type slen, octave_idx_type *adims, void *arep)
: dimensions (adims),
rep (reinterpret_cast<typename Array<T>::ArrayRep *> (arep)),
slice_data (sdata), slice_len (slen) { }
public:
//! Empty ctor (0 by 0).
Array (void)
: dimensions (), rep (nil_rep ()), slice_data (rep->data),
slice_len (rep->len)
{
rep->count++;
}
//! nD uninitialized ctor.
explicit Array (const dim_vector& dv)
: dimensions (dv),
rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
slice_data (rep->data), slice_len (rep->len)
{
dimensions.chop_trailing_singletons ();
}
//! nD initialized ctor.
explicit Array (const dim_vector& dv, const T& val)
: dimensions (dv),
rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
slice_data (rep->data), slice_len (rep->len)
{
fill (val);
dimensions.chop_trailing_singletons ();
}
//! Reshape constructor.
Array (const Array<T>& a, const dim_vector& dv);
//! Constructor from standard library sequence containers.
template<template <typename...> class Container>
Array (const Container<T>& a, const dim_vector& dv);
//! Type conversion case.
template <typename U>
Array (const Array<U>& a)
: dimensions (a.dims ()),
rep (new typename Array<T>::ArrayRep (a.data (), a.numel ())),
slice_data (rep->data), slice_len (rep->len)
{ }
//! No type conversion case.
Array (const Array<T>& a)
: dimensions (a.dimensions), rep (a.rep), slice_data (a.slice_data),
slice_len (a.slice_len)
{
rep->count++;
}
public:
virtual ~Array (void)
{
if (--rep->count == 0)
delete rep;
}
Array<T>& operator = (const Array<T>& a)
{
if (this != &a)
{
if (--rep->count == 0)
delete rep;
rep = a.rep;
rep->count++;
dimensions = a.dimensions;
slice_data = a.slice_data;
slice_len = a.slice_len;
}
return *this;
}
void fill (const T& val);
void clear (void);
void clear (const dim_vector& dv);
void clear (octave_idx_type r, octave_idx_type c)
{ clear (dim_vector (r, c)); }
// Number of elements in the array. These are all synonyms.
//@{
//! Number of elements in the array.
//! Synonymous with numel().
//! @note This method is deprecated in favour of numel().
OCTAVE_DEPRECATED ("use 'numel' instead")
octave_idx_type capacity (void) const { return numel (); }
//! Number of elements in the array.
/*! Synonymous with numel().
@note This method is deprecated in favour of numel().
@note
This is @em not the same as @c %length() at the Octave interpreter.
At the Octave interpreter, the function @c %length() returns the
length of the greatest dimension. This method returns the total
number of elements.
*/
OCTAVE_DEPRECATED ("use 'numel' instead")
octave_idx_type length (void) const { return numel (); }
//! Number of elements in the array.
//! Synonymous with numel().
//! @note This method is deprecated in favour of numel().
OCTAVE_DEPRECATED ("use 'numel' instead")
octave_idx_type nelem (void) const { return numel (); }
//! Number of elements in the array.
octave_idx_type numel (void) const { return slice_len; }
//@}
//! Return the array as a column vector.
Array<T> as_column (void) const
{
Array<T> retval (*this);
if (dimensions.ndims () != 2 || dimensions(1) != 1)
retval.dimensions = dim_vector (numel (), 1);
return retval;
}
//! Return the array as a row vector.
Array<T> as_row (void) const
{
Array<T> retval (*this);
if (dimensions.ndims () != 2 || dimensions(0) != 1)
retval.dimensions = dim_vector (1, numel ());
return retval;
}
//! Return the array as a matrix.
Array<T> as_matrix (void) const
{
Array<T> retval (*this);
if (dimensions.ndims () != 2)
retval.dimensions = dimensions.redim (2);
return retval;
}
//! @name First dimension
//!
//! Get the first dimension of the array (number of rows)
//@{
octave_idx_type dim1 (void) const { return dimensions(0); }
octave_idx_type rows (void) const { return dim1 (); }
//@}
//! @name Second dimension
//!
//! Get the second dimension of the array (number of columns)
//@{
octave_idx_type dim2 (void) const { return dimensions(1); }
octave_idx_type cols (void) const { return dim2 (); }
octave_idx_type columns (void) const { return dim2 (); }
//@}
//! @name Third dimension
//!
//! Get the third dimension of the array (number of pages)
//@{
octave_idx_type dim3 (void) const { return dimensions(2); }
octave_idx_type pages (void) const { return dim3 (); }
//@}
//! Size of the specified dimension.
/*!
Dimensions beyond the Array number of dimensions return 1 as
those are implicit singleton dimensions.
Equivalent to Octave's `size (A, DIM)`
*/
size_type size (const size_type d) const
{
// Should we throw for negative values?
// Should >= ndims () be handled by dim_vector operator() instead ?
return d >= ndims () ? 1 : dimensions(d);
}
size_t byte_size (void) const
{ return static_cast<size_t> (numel ()) * sizeof (T); }
//! Return a const-reference so that dims ()(i) works efficiently.
const dim_vector& dims (void) const { return dimensions; }
//! Chop off leading singleton dimensions
Array<T> squeeze (void) const;
octave_idx_type compute_index (octave_idx_type i, octave_idx_type j) const;
octave_idx_type compute_index (octave_idx_type i, octave_idx_type j,
octave_idx_type k) const;
octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx) const;
octave_idx_type compute_index_unchecked (const Array<octave_idx_type>& ra_idx)
const
{ return dimensions.compute_index (ra_idx.data (), ra_idx.numel ()); }
// No checking, even for multiple references, ever.
T& xelem (octave_idx_type n) { return slice_data[n]; }
crefT xelem (octave_idx_type n) const { return slice_data[n]; }
T& xelem (octave_idx_type i, octave_idx_type j)
{ return xelem (dim1 ()*j+i); }
crefT xelem (octave_idx_type i, octave_idx_type j) const
{ return xelem (dim1 ()*j+i); }
T& xelem (octave_idx_type i, octave_idx_type j, octave_idx_type k)
{ return xelem (i, dim2 ()*k+j); }
crefT xelem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const
{ return xelem (i, dim2 ()*k+j); }
T& xelem (const Array<octave_idx_type>& ra_idx)
{ return xelem (compute_index_unchecked (ra_idx)); }
crefT xelem (const Array<octave_idx_type>& ra_idx) const
{ return xelem (compute_index_unchecked (ra_idx)); }
// FIXME: would be nice to fix this so that we don't unnecessarily force
// a copy, but that is not so easy, and I see no clean way to do it.
T& checkelem (octave_idx_type n);
T& checkelem (octave_idx_type i, octave_idx_type j);
T& checkelem (octave_idx_type i, octave_idx_type j, octave_idx_type k);
T& checkelem (const Array<octave_idx_type>& ra_idx);
T& elem (octave_idx_type n)
{
make_unique ();
return xelem (n);
}
T& elem (octave_idx_type i, octave_idx_type j) { return elem (dim1 ()*j+i); }
T& elem (octave_idx_type i, octave_idx_type j, octave_idx_type k)
{ return elem (i, dim2 ()*k+j); }
T& elem (const Array<octave_idx_type>& ra_idx)
{ return Array<T>::elem (compute_index_unchecked (ra_idx)); }
#if defined (OCTAVE_ENABLE_BOUNDS_CHECK)
T& operator () (octave_idx_type n) { return checkelem (n); }
T& operator () (octave_idx_type i, octave_idx_type j)
{ return checkelem (i, j); }
T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
{ return checkelem (i, j, k); }
T& operator () (const Array<octave_idx_type>& ra_idx)
{ return checkelem (ra_idx); }
#else
T& operator () (octave_idx_type n) { return elem (n); }
T& operator () (octave_idx_type i, octave_idx_type j) { return elem (i, j); }
T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
{ return elem (i, j, k); }
T& operator () (const Array<octave_idx_type>& ra_idx)
{ return elem (ra_idx); }
#endif
crefT checkelem (octave_idx_type n) const;
crefT checkelem (octave_idx_type i, octave_idx_type j) const;
crefT checkelem (octave_idx_type i, octave_idx_type j,
octave_idx_type k) const;
crefT checkelem (const Array<octave_idx_type>& ra_idx) const;
crefT elem (octave_idx_type n) const { return xelem (n); }
crefT elem (octave_idx_type i, octave_idx_type j) const
{ return xelem (i, j); }
crefT elem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const
{ return xelem (i, j, k); }
crefT elem (const Array<octave_idx_type>& ra_idx) const
{ return Array<T>::xelem (compute_index_unchecked (ra_idx)); }
#if defined (OCTAVE_ENABLE_BOUNDS_CHECK)
crefT operator () (octave_idx_type n) const { return checkelem (n); }
crefT operator () (octave_idx_type i, octave_idx_type j) const
{ return checkelem (i, j); }
crefT operator () (octave_idx_type i, octave_idx_type j,
octave_idx_type k) const
{ return checkelem (i, j, k); }
crefT operator () (const Array<octave_idx_type>& ra_idx) const
{ return checkelem (ra_idx); }
#else
crefT operator () (octave_idx_type n) const { return elem (n); }
crefT operator () (octave_idx_type i, octave_idx_type j) const
{ return elem (i, j); }
crefT operator () (octave_idx_type i, octave_idx_type j,
octave_idx_type k) const
{ return elem (i, j, k); }
crefT operator () (const Array<octave_idx_type>& ra_idx) const
{ return elem (ra_idx); }
#endif
// Fast extractors. All of these produce shallow copies.
// Warning: none of these do check bounds, unless
// OCTAVE_ENABLE_BOUNDS_CHECK is defined!
//! Extract column: A(:,k+1).
Array<T> column (octave_idx_type k) const;
//! Extract page: A(:,:,k+1).
Array<T> page (octave_idx_type k) const;
//! Extract a slice from this array as a column vector: A(:)(lo+1:up).
//! Must be 0 <= lo && up <= numel. May be up < lo.
Array<T> linear_slice (octave_idx_type lo, octave_idx_type up) const;
Array<T> reshape (octave_idx_type nr, octave_idx_type nc) const
{ return Array<T> (*this, dim_vector (nr, nc)); }
Array<T> reshape (const dim_vector& new_dims) const
{ return Array<T> (*this, new_dims); }
Array<T> permute (const Array<octave_idx_type>& vec, bool inv = false) const;
Array<T> ipermute (const Array<octave_idx_type>& vec) const
{ return permute (vec, true); }
bool is_square (void) const { return (dim1 () == dim2 ()); }
bool is_empty (void) const { return numel () == 0; }
bool is_vector (void) const { return dimensions.is_vector (); }
Array<T> transpose (void) const;
Array<T> hermitian (T (*fcn) (const T&) = 0) const;
const T *data (void) const { return slice_data; }
const T *fortran_vec (void) const { return data (); }
T *fortran_vec (void);
bool is_shared (void) { return rep->count > 1; }
int ndims (void) const { return dimensions.ndims (); }
//@{
//! Indexing without resizing.
Array<T> index (const idx_vector& i) const;
Array<T> index (const idx_vector& i, const idx_vector& j) const;
Array<T> index (const Array<idx_vector>& ia) const;
//@}
virtual T resize_fill_value (void) const;
//@{
//! Resizing (with fill).
void resize2 (octave_idx_type nr, octave_idx_type nc, const T& rfv);
void resize2 (octave_idx_type nr, octave_idx_type nc)
{
resize2 (nr, nc, resize_fill_value ());
}
void resize1 (octave_idx_type n, const T& rfv);
void resize1 (octave_idx_type n) { resize1 (n, resize_fill_value ()); }
void resize (const dim_vector& dv, const T& rfv);
void resize (const dim_vector& dv) { resize (dv, resize_fill_value ()); }
//@}
//@{
//! Indexing with possible resizing and fill
// FIXME: this is really a corner case, that should better be
// handled directly in liboctinterp.
Array<T> index (const idx_vector& i, bool resize_ok, const T& rfv) const;
Array<T> index (const idx_vector& i, bool resize_ok) const
{
return index (i, resize_ok, resize_fill_value ());
}
Array<T> index (const idx_vector& i, const idx_vector& j, bool resize_ok,
const T& rfv) const;
Array<T> index (const idx_vector& i, const idx_vector& j,
bool resize_ok) const
{
return index (i, j, resize_ok, resize_fill_value ());
}
Array<T> index (const Array<idx_vector>& ia, bool resize_ok,
const T& rfv) const;
Array<T> index (const Array<idx_vector>& ia, bool resize_ok) const
{
return index (ia, resize_ok, resize_fill_value ());
}
//@}
//@{
//! Indexed assignment (always with resize & fill).
void assign (const idx_vector& i, const Array<T>& rhs, const T& rfv);
void assign (const idx_vector& i, const Array<T>& rhs)
{
assign (i, rhs, resize_fill_value ());
}
void assign (const idx_vector& i, const idx_vector& j, const Array<T>& rhs,
const T& rfv);
void assign (const idx_vector& i, const idx_vector& j, const Array<T>& rhs)
{
assign (i, j, rhs, resize_fill_value ());
}
void assign (const Array<idx_vector>& ia, const Array<T>& rhs, const T& rfv);
void assign (const Array<idx_vector>& ia, const Array<T>& rhs)
{
assign (ia, rhs, resize_fill_value ());
}
//@}
//@{
//! Deleting elements.
//! A(I) = [] (with a single subscript)
void delete_elements (const idx_vector& i);
//! A(:,...,I,...,:) = [] (>= 2 subscripts, one of them is non-colon)
void delete_elements (int dim, const idx_vector& i);
//! Dispatcher to the above two.
void delete_elements (const Array<idx_vector>& ia);
//@}
//! Insert an array into another at a specified position. If
//! size (a) is [d1 d2 ... dN] and idx is [i1 i2 ... iN], this
//! method is equivalent to x(i1:i1+d1-1, i2:i2+d2-1, ... ,
//! iN:iN+dN-1) = a.
Array<T>& insert (const Array<T>& a, const Array<octave_idx_type>& idx);
//! This is just a special case for idx = [r c 0 ...]
Array<T>& insert (const Array<T>& a, octave_idx_type r, octave_idx_type c);
void maybe_economize (void)
{
if (rep->count == 1 && slice_len != rep->len)
{
ArrayRep *new_rep = new ArrayRep (slice_data, slice_len);
delete rep;
rep = new_rep;
slice_data = rep->data;
}
}
void print_info (std::ostream& os, const std::string& prefix) const;
//! Give a pointer to the data in mex format. Unsafe. This function
//! exists to support the MEX interface. You should not use it
//! anywhere else.
void *mex_get_data (void) const { return const_cast<T *> (data ()); }
Array<T> sort (int dim = 0, sortmode mode = ASCENDING) const;
Array<T> sort (Array<octave_idx_type> &sidx, int dim = 0,
sortmode mode = ASCENDING) const;
//! Ordering is auto-detected or can be specified.
sortmode is_sorted (sortmode mode = UNSORTED) const;
//! Sort by rows returns only indices.
Array<octave_idx_type> sort_rows_idx (sortmode mode = ASCENDING) const;
//! Ordering is auto-detected or can be specified.
sortmode is_sorted_rows (sortmode mode = UNSORTED) const;
//! @brief Do a binary lookup in a sorted array. Must not contain NaNs.
//! Mode can be specified or is auto-detected by comparing 1st and last element.
octave_idx_type lookup (const T& value, sortmode mode = UNSORTED) const;
//! Ditto, but for an array of values, specializing on the case when values
//! are sorted. NaNs get the value N.
Array<octave_idx_type> lookup (const Array<T>& values,
sortmode mode = UNSORTED) const;
//! Count nonzero elements.
octave_idx_type nnz (void) const;
//! Find indices of (at most n) nonzero elements. If n is specified,
//! backward specifies search from backward.
Array<octave_idx_type> find (octave_idx_type n = -1,
bool backward = false) const;
//! Returns the n-th element in increasing order, using the same
//! ordering as used for sort. n can either be a scalar index or a
//! contiguous range.
Array<T> nth_element (const idx_vector& n, int dim = 0) const;
//! Get the kth super or subdiagonal. The zeroth diagonal is the
//! ordinary diagonal.
Array<T> diag (octave_idx_type k = 0) const;
Array<T> diag (octave_idx_type m, octave_idx_type n) const;
//! Concatenation along a specified (0-based) dimension, equivalent
//! to cat(). dim = -1 corresponds to dim = 0 and dim = -2
//! corresponds to dim = 1, but apply the looser matching rules of
//! vertcat/horzcat.
static Array<T>
cat (int dim, octave_idx_type n, const Array<T> *array_list);
//! Apply function fcn to each element of the Array<T>. This function
//! is optimized with a manually unrolled loop.
template <typename U, typename F>
Array<U>
map (F fcn) const
{
octave_idx_type len = numel ();
const T *m = data ();
Array<U> result (dims ());
U *p = result.fortran_vec ();
octave_idx_type i;
for (i = 0; i < len - 3; i += 4)
{
octave_quit ();
p[i] = fcn (m[i]);
p[i+1] = fcn (m[i+1]);
p[i+2] = fcn (m[i+2]);
p[i+3] = fcn (m[i+3]);
}
octave_quit ();
for (; i < len; i++)
p[i] = fcn (m[i]);
return result;
}
//@{
//! Overloads for function references.
template <typename U>
Array<U>
map (U (&fcn) (T)) const
{ return map<U, U (&) (T)> (fcn); }
template <typename U>
Array<U>
map (U (&fcn) (const T&)) const
{ return map<U, U (&) (const T&)> (fcn); }
//@}
//! Generic any/all test functionality with arbitrary predicate.
template <typename F, bool zero>
bool test (F fcn) const
{
return any_all_test<F, T, zero> (fcn, data (), numel ());
}
//@{
//! Simpler calls.
template <typename F>
bool test_any (F fcn) const
{ return test<F, false> (fcn); }
template <typename F>
bool test_all (F fcn) const
{ return test<F, true> (fcn); }
//@}
//@{
//! Overloads for function references.
bool test_any (bool (&fcn) (T)) const
{ return test<bool (&) (T), false> (fcn); }
bool test_any (bool (&fcn) (const T&)) const
{ return test<bool (&) (const T&), false> (fcn); }
bool test_all (bool (&fcn) (T)) const
{ return test<bool (&) (T), true> (fcn); }
bool test_all (bool (&fcn) (const T&)) const
{ return test<bool (&) (const T&), true> (fcn); }
//@}
template <typename U> friend class Array;
//! Returns true if this->dims () == dv, and if so, replaces this->dimensions
//! by a shallow copy of dv. This is useful for maintaining several arrays
//! with supposedly equal dimensions (e.g. structs in the interpreter).
bool optimize_dimensions (const dim_vector& dv);
//@{
//! WARNING: Only call these functions from jit
int *jit_ref_count (void) { return rep->count.get (); }
T *jit_slice_data (void) const { return slice_data; }
octave_idx_type *jit_dimensions (void) const { return dimensions.to_jit (); }
void *jit_array_rep (void) const { return rep; }
//@}
private:
static void instantiation_guard ();
};
// We use a variadic template for template template parameter so that
// we don't have to specify all the template parameters and limit this
// to Container<T>. http://stackoverflow.com/a/20499809/1609556
template<typename T>
template<template <typename...> class Container>
Array<T>::Array (const Container<T>& a, const dim_vector& dv)
: dimensions (dv), rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
slice_data (rep->data), slice_len (rep->len)
{
if (dimensions.safe_numel () != octave_idx_type (a.size ()))
{
std::string new_dims_str = dimensions.str ();
(*current_liboctave_error_handler)
("reshape: can't reshape %i elements into %s array",
a.size (), new_dims_str.c_str ());
}
octave_idx_type i = 0;
for (const T& x : a)
slice_data[i++] = x;
dimensions.chop_trailing_singletons ();
}
//! This is a simple wrapper template that will subclass an Array<T>
//! type or any later type derived from it and override the default
//! non-const operator() to not check for the array's uniqueness. It
//! is, however, the user's responsibility to ensure the array is
//! actually unaliased whenever elements are accessed.
template <typename ArrayClass>
class NoAlias : public ArrayClass
{
typedef typename ArrayClass::element_type T;
public:
NoAlias () : ArrayClass () { }
// FIXME: this would be simpler once C++0x is available
template <typename X>
explicit NoAlias (X x) : ArrayClass (x) { }
template <typename X, typename Y>
explicit NoAlias (X x, Y y) : ArrayClass (x, y) { }
template <typename X, typename Y, typename Z>
explicit NoAlias (X x, Y y, Z z) : ArrayClass (x, y, z) { }
T& operator () (octave_idx_type n)
{ return ArrayClass::xelem (n); }
T& operator () (octave_idx_type i, octave_idx_type j)
{ return ArrayClass::xelem (i, j); }
T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
{ return ArrayClass::xelem (i, j, k); }
T& operator () (const Array<octave_idx_type>& ra_idx)
{ return ArrayClass::xelem (ra_idx); }
};
template <typename T>
std::ostream&
operator << (std::ostream& os, const Array<T>& a);
#endif
|