This file is indexed.

/usr/include/octave-4.2.2/octave/Array.h is in liboctave-dev 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
// Template array classes
/*

Copyright (C) 1993-2017 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
Copyright (C) 2010 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if ! defined (octave_Array_h)
#define octave_Array_h 1

#include "octave-config.h"

#include <cassert>
#include <cstddef>

#include <algorithm>
#include <iosfwd>

#include "dim-vector.h"
#include "idx-vector.h"
#include "lo-error.h"
#include "lo-traits.h"
#include "lo-utils.h"
#include "oct-sort.h"
#include "quit.h"
#include "oct-refcount.h"

//! N Dimensional Array with copy-on-write semantics.
/*!
    The Array class is at the root of Octave.  It provides a container
    with an arbitrary number of dimensions.  The operator () provides
    access to individual elements via subscript and linear indexing.
    Indexing starts at 0.  Arrays are column-major order as in Fortran.

    @code{.cc}
    // 3 D Array with 10 rows, 20 columns, and 5 pages, filled with 7.0
    Array<double> A Array<double (dim_vector (10, 20, 5), 7.0);

    // set value for row 0, column 10, and page 3
    A(0, 10, 3) = 2.5;

    // get value for row 1, column 2, and page 0
    double v = A(1, 2, 0);

    // get value for 25th element (row 4, column 3, page 1)
    double v = A(24);
    @endcode

    ## Notes on STL compatibility

    ### size() and length()

    To access the total number of elements in an Array, use numel()
    which is short for number of elements and is equivalent to the
    Octave function with same name.

    @code{.cc}
    Array<int> A (dim_vector (10, 20, 4), 1);

    octave_idx_type n = A.numel (); // returns 800 (10x20x4)

    octave_idx_type nr = A.size (0); // returns 10 (number of rows/dimension 0)
    octave_idx_type nc = A.size (1); // returns 20 (number of columns)
    octave_idx_type nc = A.size (2); // returns 4 (size of dimension 3)
    octave_idx_type l6 = A.size (6); // returns 1 (implicit singleton dimension)

    // Alternatively, get a dim_vector which represents the dimensions.
    dim_vector dims = A.dims ();
    @endcode

    The methods size() and length() as they exist in the STL cause
    confusion in the context of a N dimensional array.

    The size() of an array is the length of all dimensions.  In Octave,
    the size() function returns a row vector with the length of each
    dimension, or the size of a specific dimension.  Only the latter is
    present in liboctave.

    Since there is more than 1 dimension, length() would not make sense
    without expliciting which dimension.  If the function existed, which
    length should it return?  Octave length() function returns the length
    of the longest dimension which is an odd definition, only useful for
    vectors and square matrices.  The alternatives numel(), rows(),
    columns(), and size(d) are more explict and recommended.

    ### size_type

    Array::size_type is `octave_idx_type` which is a typedef for `int`
    or `long int`, depending whether Octave was configured for 64-bit
    indexing.

    This is a signed integer which may cause problems when mixed with
    STL containers.  The reason is that Octave interacts with Fortran
    routines, providing an interface many Fortran numeric libraries.

    ## Subclasses

    The following subclasses specializations, will be of most use:
      - Matrix: Array<double> with only 2 dimensions
      - ComplexMatrix: Array<std::complex<double>> with only 2 dimensions
      - boolNDArray: N dimensional Array<bool>
      - ColumnVector: Array<double> with 1 column
      - string_vector: Array<std::string> with 1 column
      - Cell: Array<octave_value>, equivalent to an Octave cell.

*/
template <typename T>
class
Array
{
protected:

  //! The real representation of all arrays.
  class ArrayRep
  {
  public:

    T *data;
    octave_idx_type len;
    octave_refcount<int> count;

    ArrayRep (T *d, octave_idx_type l)
      : data (new T [l]), len (l), count (1)
    {
      std::copy (d, d+l, data);
    }

    template <typename U>
    ArrayRep (U *d, octave_idx_type l)
      : data (new T [l]), len (l), count (1)
    {
      std::copy (d, d+l, data);
    }

    ArrayRep (void) : data (0), len (0), count (1) { }

    explicit ArrayRep (octave_idx_type n)
      : data (new T [n]), len (n), count (1) { }

    explicit ArrayRep (octave_idx_type n, const T& val)
      : data (new T [n]), len (n), count (1)
    {
      std::fill_n (data, n, val);
    }

    ArrayRep (const ArrayRep& a)
      : data (new T [a.len]), len (a.len), count (1)
    {
      std::copy (a.data, a.data + a.len, data);
    }

    ~ArrayRep (void) { delete [] data; }

    octave_idx_type numel (void) const { return len; }

  private:

    // No assignment!

    ArrayRep& operator = (const ArrayRep& a);
  };

  //--------------------------------------------------------------------

public:

  void make_unique (void)
  {
    if (rep->count > 1)
      {
        ArrayRep *r = new ArrayRep (slice_data, slice_len);

        if (--rep->count == 0)
          delete rep;

        rep = r;
        slice_data = rep->data;
      }
  }

  typedef T element_type;

  typedef T value_type;

  //! Used for operator(), and returned by numel() and size()
  //! (beware: signed integer)
  typedef octave_idx_type size_type;

  typedef typename ref_param<T>::type crefT;

  typedef bool (*compare_fcn_type) (typename ref_param<T>::type,
                                    typename ref_param<T>::type);

protected:

  dim_vector dimensions;

  typename Array<T>::ArrayRep *rep;

  // Rationale:
  // slice_data is a pointer to rep->data, denoting together with slice_len the
  // actual portion of the data referenced by this Array<T> object.  This
  // allows to make shallow copies not only of a whole array, but also of
  // contiguous subranges.  Every time rep is directly manipulated, slice_data
  // and slice_len need to be properly updated.

  T* slice_data;
  octave_idx_type slice_len;

  //! slice constructor
  Array (const Array<T>& a, const dim_vector& dv,
         octave_idx_type l, octave_idx_type u)
    : dimensions (dv), rep(a.rep), slice_data (a.slice_data+l), slice_len (u-l)
  {
    rep->count++;
    dimensions.chop_trailing_singletons ();
  }

private:

  static typename Array<T>::ArrayRep *nil_rep (void);

protected:

  //! For jit support
  Array (T *sdata, octave_idx_type slen, octave_idx_type *adims, void *arep)
    : dimensions (adims),
      rep (reinterpret_cast<typename Array<T>::ArrayRep *> (arep)),
      slice_data (sdata), slice_len (slen) { }

public:

  //! Empty ctor (0 by 0).
  Array (void)
    : dimensions (), rep (nil_rep ()), slice_data (rep->data),
      slice_len (rep->len)
  {
    rep->count++;
  }

  //! nD uninitialized ctor.
  explicit Array (const dim_vector& dv)
    : dimensions (dv),
      rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
      slice_data (rep->data), slice_len (rep->len)
  {
    dimensions.chop_trailing_singletons ();
  }

  //! nD initialized ctor.
  explicit Array (const dim_vector& dv, const T& val)
    : dimensions (dv),
      rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
      slice_data (rep->data), slice_len (rep->len)
  {
    fill (val);
    dimensions.chop_trailing_singletons ();
  }

  //! Reshape constructor.
  Array (const Array<T>& a, const dim_vector& dv);

  //! Constructor from standard library sequence containers.
  template<template <typename...> class Container>
  Array (const Container<T>& a, const dim_vector& dv);

  //! Type conversion case.
  template <typename U>
  Array (const Array<U>& a)
    : dimensions (a.dims ()),
      rep (new typename Array<T>::ArrayRep (a.data (), a.numel ())),
      slice_data (rep->data), slice_len (rep->len)
  { }

  //! No type conversion case.
  Array (const Array<T>& a)
    : dimensions (a.dimensions), rep (a.rep), slice_data (a.slice_data),
      slice_len (a.slice_len)
  {
    rep->count++;
  }

public:

  virtual ~Array (void)
  {
    if (--rep->count == 0)
      delete rep;
  }

  Array<T>& operator = (const Array<T>& a)
  {
    if (this != &a)
      {
        if (--rep->count == 0)
          delete rep;

        rep = a.rep;
        rep->count++;

        dimensions = a.dimensions;
        slice_data = a.slice_data;
        slice_len = a.slice_len;
      }

    return *this;
  }

  void fill (const T& val);

  void clear (void);
  void clear (const dim_vector& dv);

  void clear (octave_idx_type r, octave_idx_type c)
  { clear (dim_vector (r, c)); }

  // Number of elements in the array.  These are all synonyms.
  //@{
  //! Number of elements in the array.
  //! Synonymous with numel().
  //! @note This method is deprecated in favour of numel().
  OCTAVE_DEPRECATED ("use 'numel' instead")
  octave_idx_type capacity (void) const { return numel (); }

  //! Number of elements in the array.
  /*! Synonymous with numel().
      @note This method is deprecated in favour of numel().

      @note
      This is @em not the same as @c %length() at the Octave interpreter.
      At the Octave interpreter, the function @c %length() returns the
      length of the greatest dimension.  This method returns the total
      number of elements.
   */
  OCTAVE_DEPRECATED ("use 'numel' instead")
  octave_idx_type length (void) const { return numel (); }

  //! Number of elements in the array.
  //! Synonymous with numel().
  //! @note This method is deprecated in favour of numel().
  OCTAVE_DEPRECATED ("use 'numel' instead")
  octave_idx_type nelem (void) const { return numel (); }

  //! Number of elements in the array.
  octave_idx_type numel (void) const { return slice_len; }
  //@}

  //! Return the array as a column vector.
  Array<T> as_column (void) const
  {
    Array<T> retval (*this);
    if (dimensions.ndims () != 2 || dimensions(1) != 1)
      retval.dimensions = dim_vector (numel (), 1);

    return retval;
  }

  //! Return the array as a row vector.
  Array<T> as_row (void) const
  {
    Array<T> retval (*this);
    if (dimensions.ndims () != 2 || dimensions(0) != 1)
      retval.dimensions = dim_vector (1, numel ());

    return retval;
  }

  //! Return the array as a matrix.
  Array<T> as_matrix (void) const
  {
    Array<T> retval (*this);
    if (dimensions.ndims () != 2)
      retval.dimensions = dimensions.redim (2);

    return retval;
  }

  //! @name First dimension
  //!
  //! Get the first dimension of the array (number of rows)
  //@{
  octave_idx_type dim1 (void) const { return dimensions(0); }
  octave_idx_type rows (void) const { return dim1 (); }
  //@}

  //! @name Second dimension
  //!
  //! Get the second dimension of the array (number of columns)
  //@{
  octave_idx_type dim2 (void) const { return dimensions(1); }
  octave_idx_type cols (void) const { return dim2 (); }
  octave_idx_type columns (void) const { return dim2 (); }
  //@}

  //! @name Third dimension
  //!
  //! Get the third dimension of the array (number of pages)
  //@{
  octave_idx_type dim3 (void) const { return dimensions(2); }
  octave_idx_type pages (void) const { return dim3 (); }
  //@}

  //! Size of the specified dimension.
  /*!
      Dimensions beyond the Array number of dimensions return 1 as
      those are implicit singleton dimensions.

      Equivalent to Octave's `size (A, DIM)`
  */
  size_type size (const size_type d) const
  {
    // Should we throw for negative values?
    // Should >= ndims () be handled by dim_vector operator() instead ?
    return d >= ndims () ? 1 : dimensions(d);
  }

  size_t byte_size (void) const
  { return static_cast<size_t> (numel ()) * sizeof (T); }

  //! Return a const-reference so that dims ()(i) works efficiently.
  const dim_vector& dims (void) const { return dimensions; }

  //! Chop off leading singleton dimensions
  Array<T> squeeze (void) const;

  octave_idx_type compute_index (octave_idx_type i, octave_idx_type j) const;
  octave_idx_type compute_index (octave_idx_type i, octave_idx_type j,
                                 octave_idx_type k) const;
  octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx) const;

  octave_idx_type compute_index_unchecked (const Array<octave_idx_type>& ra_idx)
  const
  { return dimensions.compute_index (ra_idx.data (), ra_idx.numel ()); }

  // No checking, even for multiple references, ever.

  T& xelem (octave_idx_type n) { return slice_data[n]; }
  crefT xelem (octave_idx_type n) const { return slice_data[n]; }

  T& xelem (octave_idx_type i, octave_idx_type j)
  { return xelem (dim1 ()*j+i); }
  crefT xelem (octave_idx_type i, octave_idx_type j) const
  { return xelem (dim1 ()*j+i); }

  T& xelem (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return xelem (i, dim2 ()*k+j); }
  crefT xelem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const
  { return xelem (i, dim2 ()*k+j); }

  T& xelem (const Array<octave_idx_type>& ra_idx)
  { return xelem (compute_index_unchecked (ra_idx)); }

  crefT xelem (const Array<octave_idx_type>& ra_idx) const
  { return xelem (compute_index_unchecked (ra_idx)); }

  // FIXME: would be nice to fix this so that we don't unnecessarily force
  //        a copy, but that is not so easy, and I see no clean way to do it.

  T& checkelem (octave_idx_type n);
  T& checkelem (octave_idx_type i, octave_idx_type j);
  T& checkelem (octave_idx_type i, octave_idx_type j, octave_idx_type k);
  T& checkelem (const Array<octave_idx_type>& ra_idx);

  T& elem (octave_idx_type n)
  {
    make_unique ();
    return xelem (n);
  }

  T& elem (octave_idx_type i, octave_idx_type j) { return elem (dim1 ()*j+i); }

  T& elem (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return elem (i, dim2 ()*k+j); }

  T& elem (const Array<octave_idx_type>& ra_idx)
  { return Array<T>::elem (compute_index_unchecked (ra_idx)); }

#if defined (OCTAVE_ENABLE_BOUNDS_CHECK)
  T& operator () (octave_idx_type n) { return checkelem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j)
  { return checkelem (i, j); }
  T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return checkelem (i, j, k); }
  T& operator () (const Array<octave_idx_type>& ra_idx)
  { return checkelem (ra_idx); }
#else
  T& operator () (octave_idx_type n) { return elem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j) { return elem (i, j); }
  T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return elem (i, j, k); }
  T& operator () (const Array<octave_idx_type>& ra_idx)
  { return elem (ra_idx); }
#endif

  crefT checkelem (octave_idx_type n) const;
  crefT checkelem (octave_idx_type i, octave_idx_type j) const;
  crefT checkelem (octave_idx_type i, octave_idx_type j,
                   octave_idx_type k) const;
  crefT checkelem (const Array<octave_idx_type>& ra_idx) const;

  crefT elem (octave_idx_type n) const { return xelem (n); }

  crefT elem (octave_idx_type i, octave_idx_type j) const
  { return xelem (i, j); }

  crefT elem (octave_idx_type i, octave_idx_type j, octave_idx_type k) const
  { return xelem (i, j, k); }

  crefT elem (const Array<octave_idx_type>& ra_idx) const
  { return Array<T>::xelem (compute_index_unchecked (ra_idx)); }

#if defined (OCTAVE_ENABLE_BOUNDS_CHECK)
  crefT operator () (octave_idx_type n) const { return checkelem (n); }
  crefT operator () (octave_idx_type i, octave_idx_type j) const
  { return checkelem (i, j); }
  crefT operator () (octave_idx_type i, octave_idx_type j,
                     octave_idx_type k) const
  { return checkelem (i, j, k); }
  crefT operator () (const Array<octave_idx_type>& ra_idx) const
  { return checkelem (ra_idx); }
#else
  crefT operator () (octave_idx_type n) const { return elem (n); }
  crefT operator () (octave_idx_type i, octave_idx_type j) const
  { return elem (i, j); }
  crefT operator () (octave_idx_type i, octave_idx_type j,
                     octave_idx_type k) const
  { return elem (i, j, k); }
  crefT operator () (const Array<octave_idx_type>& ra_idx) const
  { return elem (ra_idx); }
#endif

  // Fast extractors.  All of these produce shallow copies.
  // Warning: none of these do check bounds, unless
  // OCTAVE_ENABLE_BOUNDS_CHECK is defined!

  //! Extract column: A(:,k+1).
  Array<T> column (octave_idx_type k) const;
  //! Extract page: A(:,:,k+1).
  Array<T> page (octave_idx_type k) const;

  //! Extract a slice from this array as a column vector: A(:)(lo+1:up).
  //! Must be 0 <= lo && up <= numel.  May be up < lo.
  Array<T> linear_slice (octave_idx_type lo, octave_idx_type up) const;

  Array<T> reshape (octave_idx_type nr, octave_idx_type nc) const
  { return Array<T> (*this, dim_vector (nr, nc)); }

  Array<T> reshape (const dim_vector& new_dims) const
  { return Array<T> (*this, new_dims); }

  Array<T> permute (const Array<octave_idx_type>& vec, bool inv = false) const;
  Array<T> ipermute (const Array<octave_idx_type>& vec) const
  { return permute (vec, true); }

  bool is_square (void) const { return (dim1 () == dim2 ()); }

  bool is_empty (void) const { return numel () == 0; }

  bool is_vector (void) const { return dimensions.is_vector (); }

  Array<T> transpose (void) const;
  Array<T> hermitian (T (*fcn) (const T&) = 0) const;

  const T *data (void) const { return slice_data; }

  const T *fortran_vec (void) const { return data (); }

  T *fortran_vec (void);

  bool is_shared (void) { return rep->count > 1; }

  int ndims (void) const { return dimensions.ndims (); }

  //@{
  //! Indexing without resizing.
  Array<T> index (const idx_vector& i) const;

  Array<T> index (const idx_vector& i, const idx_vector& j) const;

  Array<T> index (const Array<idx_vector>& ia) const;
  //@}

  virtual T resize_fill_value (void) const;

  //@{
  //! Resizing (with fill).
  void resize2 (octave_idx_type nr, octave_idx_type nc, const T& rfv);
  void resize2 (octave_idx_type nr, octave_idx_type nc)
  {
    resize2 (nr, nc, resize_fill_value ());
  }

  void resize1 (octave_idx_type n, const T& rfv);
  void resize1 (octave_idx_type n) { resize1 (n, resize_fill_value ()); }

  void resize (const dim_vector& dv, const T& rfv);
  void resize (const dim_vector& dv) { resize (dv, resize_fill_value ()); }
  //@}

  //@{
  //! Indexing with possible resizing and fill

  // FIXME: this is really a corner case, that should better be
  // handled directly in liboctinterp.

  Array<T> index (const idx_vector& i, bool resize_ok, const T& rfv) const;
  Array<T> index (const idx_vector& i, bool resize_ok) const
  {
    return index (i, resize_ok, resize_fill_value ());
  }

  Array<T> index (const idx_vector& i, const idx_vector& j, bool resize_ok,
                  const T& rfv) const;
  Array<T> index (const idx_vector& i, const idx_vector& j,
                  bool resize_ok) const
  {
    return index (i, j, resize_ok, resize_fill_value ());
  }

  Array<T> index (const Array<idx_vector>& ia, bool resize_ok,
                  const T& rfv) const;
  Array<T> index (const Array<idx_vector>& ia, bool resize_ok) const
  {
    return index (ia, resize_ok, resize_fill_value ());
  }
  //@}

  //@{
  //! Indexed assignment (always with resize & fill).
  void assign (const idx_vector& i, const Array<T>& rhs, const T& rfv);
  void assign (const idx_vector& i, const Array<T>& rhs)
  {
    assign (i, rhs, resize_fill_value ());
  }

  void assign (const idx_vector& i, const idx_vector& j, const Array<T>& rhs,
               const T& rfv);
  void assign (const idx_vector& i, const idx_vector& j, const Array<T>& rhs)
  {
    assign (i, j, rhs, resize_fill_value ());
  }

  void assign (const Array<idx_vector>& ia, const Array<T>& rhs, const T& rfv);
  void assign (const Array<idx_vector>& ia, const Array<T>& rhs)
  {
    assign (ia, rhs, resize_fill_value ());
  }
  //@}

  //@{
  //! Deleting elements.

  //! A(I) = [] (with a single subscript)
  void delete_elements (const idx_vector& i);

  //! A(:,...,I,...,:) = [] (>= 2 subscripts, one of them is non-colon)
  void delete_elements (int dim, const idx_vector& i);

  //! Dispatcher to the above two.
  void delete_elements (const Array<idx_vector>& ia);
  //@}

  //! Insert an array into another at a specified position.  If
  //! size (a) is [d1 d2 ... dN] and idx is [i1 i2 ... iN], this
  //! method is equivalent to x(i1:i1+d1-1, i2:i2+d2-1, ... ,
  //! iN:iN+dN-1) = a.
  Array<T>& insert (const Array<T>& a, const Array<octave_idx_type>& idx);

  //! This is just a special case for idx = [r c 0 ...]
  Array<T>& insert (const Array<T>& a, octave_idx_type r, octave_idx_type c);

  void maybe_economize (void)
  {
    if (rep->count == 1 && slice_len != rep->len)
      {
        ArrayRep *new_rep = new ArrayRep (slice_data, slice_len);
        delete rep;
        rep = new_rep;
        slice_data = rep->data;
      }
  }

  void print_info (std::ostream& os, const std::string& prefix) const;

  //! Give a pointer to the data in mex format.  Unsafe.  This function
  //! exists to support the MEX interface.  You should not use it
  //! anywhere else.
  void *mex_get_data (void) const { return const_cast<T *> (data ()); }

  Array<T> sort (int dim = 0, sortmode mode = ASCENDING) const;
  Array<T> sort (Array<octave_idx_type> &sidx, int dim = 0,
                 sortmode mode = ASCENDING) const;

  //! Ordering is auto-detected or can be specified.
  sortmode is_sorted (sortmode mode = UNSORTED) const;

  //! Sort by rows returns only indices.
  Array<octave_idx_type> sort_rows_idx (sortmode mode = ASCENDING) const;

  //! Ordering is auto-detected or can be specified.
  sortmode is_sorted_rows (sortmode mode = UNSORTED) const;

  //! @brief Do a binary lookup in a sorted array.  Must not contain NaNs.
  //! Mode can be specified or is auto-detected by comparing 1st and last element.
  octave_idx_type lookup (const T& value, sortmode mode = UNSORTED) const;

  //! Ditto, but for an array of values, specializing on the case when values
  //! are sorted.  NaNs get the value N.
  Array<octave_idx_type> lookup (const Array<T>& values,
                                 sortmode mode = UNSORTED) const;

  //! Count nonzero elements.
  octave_idx_type nnz (void) const;

  //! Find indices of (at most n) nonzero elements.  If n is specified,
  //! backward specifies search from backward.
  Array<octave_idx_type> find (octave_idx_type n = -1,
                               bool backward = false) const;

  //! Returns the n-th element in increasing order, using the same
  //! ordering as used for sort.  n can either be a scalar index or a
  //! contiguous range.
  Array<T> nth_element (const idx_vector& n, int dim = 0) const;

  //! Get the kth super or subdiagonal.  The zeroth diagonal is the
  //! ordinary diagonal.
  Array<T> diag (octave_idx_type k = 0) const;

  Array<T> diag (octave_idx_type m, octave_idx_type n) const;

  //! Concatenation along a specified (0-based) dimension, equivalent
  //! to cat().  dim = -1 corresponds to dim = 0 and dim = -2
  //! corresponds to dim = 1, but apply the looser matching rules of
  //! vertcat/horzcat.
  static Array<T>
  cat (int dim, octave_idx_type n, const Array<T> *array_list);

  //! Apply function fcn to each element of the Array<T>.  This function
  //! is optimized with a manually unrolled loop.
  template <typename U, typename F>
  Array<U>
  map (F fcn) const
  {
    octave_idx_type len = numel ();

    const T *m = data ();

    Array<U> result (dims ());
    U *p = result.fortran_vec ();

    octave_idx_type i;
    for (i = 0; i < len - 3; i += 4)
      {
        octave_quit ();

        p[i] = fcn (m[i]);
        p[i+1] = fcn (m[i+1]);
        p[i+2] = fcn (m[i+2]);
        p[i+3] = fcn (m[i+3]);
      }

    octave_quit ();

    for (; i < len; i++)
      p[i] = fcn (m[i]);

    return result;
  }

  //@{
  //! Overloads for function references.
  template <typename U>
  Array<U>
  map (U (&fcn) (T)) const
  { return map<U, U (&) (T)> (fcn); }

  template <typename U>
  Array<U>
  map (U (&fcn) (const T&)) const
  { return map<U, U (&) (const T&)> (fcn); }
  //@}

  //! Generic any/all test functionality with arbitrary predicate.
  template <typename F, bool zero>
  bool test (F fcn) const
  {
    return any_all_test<F, T, zero> (fcn, data (), numel ());
  }

  //@{
  //! Simpler calls.
  template <typename F>
  bool test_any (F fcn) const
  { return test<F, false> (fcn); }

  template <typename F>
  bool test_all (F fcn) const
  { return test<F, true> (fcn); }
  //@}

  //@{
  //! Overloads for function references.
  bool test_any (bool (&fcn) (T)) const
  { return test<bool (&) (T), false> (fcn); }

  bool test_any (bool (&fcn) (const T&)) const
  { return test<bool (&) (const T&), false> (fcn); }

  bool test_all (bool (&fcn) (T)) const
  { return test<bool (&) (T), true> (fcn); }

  bool test_all (bool (&fcn) (const T&)) const
  { return test<bool (&) (const T&), true> (fcn); }
  //@}

  template <typename U> friend class Array;

  //! Returns true if this->dims () == dv, and if so, replaces this->dimensions
  //! by a shallow copy of dv.  This is useful for maintaining several arrays
  //! with supposedly equal dimensions (e.g. structs in the interpreter).
  bool optimize_dimensions (const dim_vector& dv);

  //@{
  //! WARNING: Only call these functions from jit

  int *jit_ref_count (void) { return rep->count.get (); }

  T *jit_slice_data (void) const { return slice_data; }

  octave_idx_type *jit_dimensions (void) const { return dimensions.to_jit (); }

  void *jit_array_rep (void) const { return rep; }
  //@}

private:
  static void instantiation_guard ();
};

// We use a variadic template for template template parameter so that
// we don't have to specify all the template parameters and limit this
// to Container<T>. http://stackoverflow.com/a/20499809/1609556
template<typename T>
template<template <typename...> class Container>
Array<T>::Array (const Container<T>& a, const dim_vector& dv)
  : dimensions (dv), rep (new typename Array<T>::ArrayRep (dv.safe_numel ())),
    slice_data (rep->data), slice_len (rep->len)
{
  if (dimensions.safe_numel () != octave_idx_type (a.size ()))
    {
      std::string new_dims_str = dimensions.str ();

      (*current_liboctave_error_handler)
        ("reshape: can't reshape %i elements into %s array",
         a.size (), new_dims_str.c_str ());
    }

  octave_idx_type i = 0;
  for (const T& x : a)
    slice_data[i++] = x;

  dimensions.chop_trailing_singletons ();
}

//! This is a simple wrapper template that will subclass an Array<T>
//! type or any later type derived from it and override the default
//! non-const operator() to not check for the array's uniqueness.  It
//! is, however, the user's responsibility to ensure the array is
//! actually unaliased whenever elements are accessed.
template <typename ArrayClass>
class NoAlias : public ArrayClass
{
  typedef typename ArrayClass::element_type T;
public:
  NoAlias () : ArrayClass () { }

  // FIXME: this would be simpler once C++0x is available
  template <typename X>
    explicit NoAlias (X x) : ArrayClass (x) { }

  template <typename X, typename Y>
    explicit NoAlias (X x, Y y) : ArrayClass (x, y) { }

  template <typename X, typename Y, typename Z>
    explicit NoAlias (X x, Y y, Z z) : ArrayClass (x, y, z) { }

  T& operator () (octave_idx_type n)
  { return ArrayClass::xelem (n); }
  T& operator () (octave_idx_type i, octave_idx_type j)
  { return ArrayClass::xelem (i, j); }
  T& operator () (octave_idx_type i, octave_idx_type j, octave_idx_type k)
  { return ArrayClass::xelem (i, j, k); }
  T& operator () (const Array<octave_idx_type>& ra_idx)
  { return ArrayClass::xelem (ra_idx); }
};

template <typename T>
std::ostream&
operator << (std::ostream& os, const Array<T>& a);

#endif